Intramolecular Ester Enolate-Imine Cyclization Reactions for the Asymmetric Synthesis of Polycyclic β-Lactams and Cyclic β-Amino Acid Derivatives

Caroline D. Evans, ${ }^{a}$ Mary F. Mahon, ${ }^{b}$ Philip C. Andrews, ${ }^{c}$ James C. Muir, ${ }^{d}$ and Steven D. Bull ${ }^{\text {a* }}$
(a) Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK;
(b) Department of Chemical Crystallography, University of Bath, BA2 7AY, UK;
(c) School of Chemistry, Monash University, Clayton, Melbourne, Vic 3800, Australia;
(d) Process R\&D, AstraZeneca plc, Silk Road Business Park, Macclesfield, Cheshire SK10 2NA, UK.

General Experimental Details

All reactions were performed under a nitrogen atmosphere in oven-dried apparatus, unless otherwise stated. Anhydrous acetonitrile, dichloromethane and tetrahydrofuran were obtained from an Innovative Technology Inc. PS-400-7 solvent purification system. Petrol refers to the fraction of petroleum ether boiling at $40-60^{\circ} \mathrm{C}$. All other commercially available compounds were used as obtained from the chemical suppliers. Analytical thin layer chromatography was performed using commercially available aluminium backed plates coated with Merck G/UV254 neutral silica. Plates were visualised under UV light (at 254 nm) or by staining with phosphomolybdic acid followed by heating. Flash chromatography was performed using chromatography grade, silica 60 Å particle size 35-70 microns from Fisher Scientific. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were recorded at 75 MHz on a Brüker Avance 300 spectrometer. Chemical shifts, δ, are quoted in parts per million and are referenced to the residual solvent peak. The following abbreviations are used: s, singlet; d, doublet; t , triplet; q , quartet; dd, doublet of doublets; dt , doublet of triplets; m, multiplet; app., apparent and br., broad.. Coupling constants, J, are quoted to the nearest 0.5 Hz . High resolution mass spectra were recorded on a Brüker Daltonics microTOF spectrometer with an electrospray source and external calibration. Masses were recorded in positive electrospray ionisation mode and were introduced by flow injection. Masses are accurate to 5 ppm and data was processed using DataAnalysis software from

Brüker Daltonics. Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer, using a Universal ATR accessory for sampling, with only selected absorbances quoted as v in cm^{-1}.

General Procedures

General Procedure 1: Acetal Formation ${ }^{1}$

To a stirred substituted 2-bromobenzadehyde (1.0 equiv.) in toluene (50 mL), 1,3propanediol (1.5 equiv.) and p-toluene sulphonic acid (PTSA) (0.1 equiv.) were added and the solution was heated at reflux under Dean-Stark conditions for 3 hours. After cooling to room temperature, the reaction mixture was washed with water, the organic extract dried using MgSO_{4} and the solvent evaporated under reduced pressure. The crude compounds were purified by recrystallisation using a suitable solvent system.

General Procedure 2: Heck Reaction on Protected 2-Bromobenzaldehydes ${ }^{2}$

To a solution of substituted 2-(2-bromophenyl)-1,3-dioxolan (1.0 equiv.) in acetonitrile, palladium(II) acetate (0.05 equiv.) and tri(o-tolyl)phosphine (0.10 equiv.) were added. Diisopropylethylamine (3.0 equiv.) and the appropriate acrylate (1.0 equiv.) were added and the mixture was heated at reflux for 24 hours. After cooling to room temperature, the reaction was diluted with water (50 mL) and the aqueous layer extracted with toluene (2 x $50 \mathrm{~mL})$. The combined organic extracts were combined and washed with water ($2 \times 50 \mathrm{~mL}$) and brine (30 mL) then dried over MgSO_{4}. The mixture was filtered through a plug of Celite ${ }^{\circledR}$ and then the solvent removed under reduced pressure. Crude compounds were purified by flash column chromatography.

General Procedure 3: Chemoselective Conjugate Reduction of Esters ${ }^{3}$

Substituted ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)propanoates (2.0 equiv.) were stirred in ethanol (10 mL) for 30 minutes prior to the addition of cobalt(II) chloride hexahydrate (0.02 equiv.). The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and sodium borohydride (4.0 equiv.) was added. The solution was then allowed to warm to room temperature and stirred for up to 48 hours. The reaction was then quenched with water (50 mL) and diluted with ethyl acetate (30 mL). The organic layer was separated, washed with brine (50 mL), dried with
MgSO_{4} and the solvent evaporated under reduced pressure. Crude compounds were purified by flash column chromatography.

General Procedure 4: Acetal Deprotection

Substituted ethyl-3-(2-formylphenyl)propanoates were added to a solution of acetic acid: water ($7 \mathrm{~mL}: 3 \mathrm{~mL}$) and left to stir open to the air overnight. The residue was partioned between water $(50 \mathrm{~mL})$ and diethyl ether $(50 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine (30 mL). The organics are then dried using MgSO_{4} and filtered before being evaporated under reduced pressure to yield pure products.

General Procedure 5: Imine-Enolate Cyclisation Reaction for 1a-g

Substituted $\quad(S, E)$-ethyl-3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoates (1.0 equiv.) were dissolved in THF. 15-Crown-5 (1.1 equiv.) and NaHMDS (1.1 equiv.) were added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 30 mL) and the organic layers were combined and washed with water (50 mL). The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. Crude compounds were purified by flash column chromatography.

Acetals

2-(2-Bromophenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 2bromobenzadehyde ($10.0 \mathrm{~g}, 54 \mathrm{mmol}$), 1,3-propanediol ($6.16 \mathrm{~g}, 81 \mathrm{mmol}$) and PTSA (0.86 g , $5 \mathrm{mmol})$. The crude was purified by recrystallisation from diethyl ether, yielding a white solid (10.47 g, 80\%).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=7.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0$ and $1.5 \mathrm{~Hz}, \mathrm{CBrCH}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, \operatorname{Ar}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.04(1 \mathrm{H}, \mathrm{t}$ of $\mathrm{d}, \mathrm{J}=8.0$ and $1.5 \mathrm{~Hz}, \mathrm{Ar}), 5.63(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH})$, $4.10\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0\right.$ and $\left.5.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.85\left(2 \mathrm{H}, \mathrm{t}\right.$ of d, J=12.5 and $\left.2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.16-$ $1.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.24\left(1 \mathrm{H}\right.$, broad d, J = $\left.13.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{C}=137.6,132.6,130.4,128.2,127.6,122.4,100.9,67.6,25.7$; $\mathrm{IR}\left(f i l m / \mathrm{cm}^{-1}\right) \mathrm{v}=2846(\mathrm{O}-$ $\mathrm{CH}-\mathrm{O}$); HRMS: m / z (ES) 243.0018, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$requires 243.0021; mp 53-55 ${ }^{\circ} \mathrm{C}$.

2-(2-Bromo-4-methylphenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 2-bromo-4methylbenzaldehyde $0.56 \mathrm{~g}, 2.8 \mathrm{mmol}$), 1,3-propanediol ($0.30 \mathrm{~mL}, 4.2 \mathrm{mmol}$) and PTSA (0.05 $\mathrm{g}, 0.2 \mathrm{mmol})$. The crude was purified by recrystallisation from diethyl ether, yielding a pale yellow oil ($0.61 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H}=7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CBrCH}), 7.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{Ar})$, $7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \operatorname{Ar}), 5.63(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCH}), 4.18-4.10(2 \mathrm{H}, \mathrm{app} . \mathrm{ddd}, \mathrm{J}=12.0,5.0$ and 1.0 $\mathrm{Hz}, \mathrm{OCH}_{2}$), 3.95-3.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.18-2.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.32$ (1 H , app. d of septet, $\mathrm{J}=13.5$ and $1.5, \mathrm{OCH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=140.6$, 134.7, 133.0, 128.3, 127.8, 122.1, 101.0, 67.6, 25.7, 20.9; IR (film / cm^{-1}) $\mathrm{v}=2851$ (O-CH-O); HRMS: m / z (ES) 279.0002, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}$requires 278.9997;

2-(2-Bromo-5-(trifluoromethyl)phenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 2-bromo-5(trifluoromethyl)benzaldehyde ($3.59 \mathrm{~g}, 14.2 \mathrm{mmol}$), 1,3-propanediol ($1.5 \mathrm{~mL}, 21.3 \mathrm{mmol}$) and PTSA ($0.24 \mathrm{~g}, 1.4 \mathrm{mmol}$) . The crude product was purified by column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{\mathrm{f}} 0.88$] to afford the title compound as a pale yellow oil (3.50 g , 79\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, \operatorname{Ar}), 7.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{Ar}), 7.37-$ $7.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and $2.4 \mathrm{~Hz}, \mathrm{Ar}), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.23-4.14(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.8,5.0$ and $1.2 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 3.98-3.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), 2.25-2.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.37\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=138.6,133.2,130.3-129.8\left(\mathrm{~d}, \mathrm{~J}=33.3 \mathrm{~Hz}, \mathrm{CCF}_{3}\right.$), 126.9-126.8 ($q, \mathrm{~J}=3.56 \mathrm{~Hz}, \mathrm{CHCCF}_{3}$), 126.18 (d, J = 1.65Hz, CHCCF_{3}), $125.6-125.3$ ($\mathrm{q}, \mathrm{J}=3.82 \mathrm{~Hz}, C B r$), $125.6-122.0\left(\mathrm{~d}, \mathrm{~J}=272.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 100.0,67.6,25.6$; $\mathrm{IR}\left(\right.$ film $\left./ \mathrm{cm}^{-1}\right) \mathrm{v}=2855(\mathrm{O}-\mathrm{CH}-\mathrm{O})$.

2-(2-Bromo-6-fluorophenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 2-(2-bromo-6-fluorophenyl)-1,3-dioxane $0.93 \mathrm{~g}, 4.6 \mathrm{mmol}$), 1,3-propanediol ($0.49 \mathrm{~mL}, 6.8 \mathrm{mmol}$) and PTSA $(0.09 \mathrm{~g}, 0.5 \mathrm{mmol})$. The crude product was purified by recrystallisation from diethyl ether, to afford the title compound as a white solid ($0.60 \mathrm{~g}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CFCH}), 7.13-7.04(1 \mathrm{H}$, app. t of $\mathrm{d}, \mathrm{J}=$ 8.2 and $5.7 \mathrm{~Hz}, \mathrm{CBrCH}), 7.02-6.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.25-4.18(2 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J}$ $=12.2$ and $\left.4.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.96-3.86\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.35-2.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $1.37\left(1 \mathrm{H}, \mathrm{d}\right.$ of app. septets, $\mathrm{J}=13.6$ and $\left.1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=$ 159.8, 131.1 ($\mathrm{d}, \mathrm{J}=9.64 \mathrm{~Hz}, \mathrm{CHCH}$), 129.0 (d, J = 3.75, CBrCH), 123.0, 116.2, 115.9, 100.7, 67.8, 25.6; IR (film $/ \mathrm{cm}^{-1}$) $v=2851$ ($\mathrm{O}-\mathrm{CH}-\mathrm{O}$); HRMS: m / z (ES) 282.9738, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{BrF}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 282.9746 ; mp 59-60 ${ }^{\circ} \mathrm{C}$.

2-(2-Bromo-5-methoxyphenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 2-bromo-5methoxybenzaldehyde ($0.47 \mathrm{~g}, 2.2 \mathrm{mmol}$), propan- 1,3 , diol ($0.24 \mathrm{~mL}, 3.3 \mathrm{mmol}$) and PTSA $(0.04 \mathrm{~g}, 0.2 \mathrm{mmol})$. The crude was purified by recrystallisation from diethyl ether, yielding a white solid ($0.58 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.32(1 \mathrm{H}$, broad d, J = $8.8 \mathrm{~Hz}, \mathrm{Ar}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{Ar})$, $6.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.7$ and $3.2, \mathrm{Ar}), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.19$ ($2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.8,5.1$ and 1.2 Hz , $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.95\left(2 \mathrm{H}\right.$, app. broad t, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.30-2.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $1.37\left(1 \mathrm{H}\right.$, app. d of sept, $\mathrm{J}=13.7$ and $\left.1.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=159.5$, $138.7,133.6,117.5,113.1,113.0,101.2,68.0,55.9,26.1$; IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=2853$ (O-CH-O); HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 273.0129, \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$requires 273.0126, mp 79-81 ${ }^{\circ} \mathrm{C}$.

2-(6-Bromo-2,3-dimethoxyphenyl)-1,3-dioxane

The title compound was prepared according to General Procedure 1 from 6bromoveratraldehyde ($2.03 \mathrm{~g}, 8.3 \mathrm{mmol}$), 1,3-propanediol ($0.9 \mathrm{~mL}, 12.4 \mathrm{mmol}$) and PTSA $(0.14 \mathrm{~g}, 0.8 \mathrm{mmol})$. The crude was purified by recrystallisation from diethyl ether, yielding a white solid ($2.11 \mathrm{~g}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.99(1 \mathrm{H}, \mathrm{s} \mathrm{Ar}), 5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.27(2 \mathrm{H}$, ddd, J = 11.9, 6.4 and $1.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 4.08-3.97 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.35-2.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.46(1 \mathrm{H}, \mathrm{app}$. d of sept, J = 13.6 and 1.4 Hz , $\mathrm{OCH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=150.2,149.0,130.2,115.5,112.9,110.7,101.4$,
68.0, 56.6, 56.4, 26.0; IR (film / cm^{-1}) $\mathrm{v}=2855$ (O-CH-O); HRMS: m/z (ES) 303.0232, $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$requires 303.0232; mp 98-99 ${ }^{\circ} \mathrm{C}$.

Heck Products

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromophenyl)-1,3-dioxane ($10.8 \mathrm{~g}, 44.4 \mathrm{mmol}$), ethyl acrylate ($4.82 \mathrm{~mL}, 44.4 \mathrm{mmol}$), palladium (II) acetate ($0.49 \mathrm{~g}, 2.2 \mathrm{mmol}$), tri(o-tolyl)phosphine ($1.35 \mathrm{~g}, 4.5 \mathrm{mmol}$) and diisopropylethyl amine ($23.2 \mathrm{~mL}, 133.4 \mathrm{mmol}$) in acetonitrile (120 mL). The crude product was purified by column chromatography [Petrol : EtOAc (80:20), $R_{f} 0.39$] yielding a yellow oil (11.2 g, 96\%).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \operatorname{ArCHCH}), 7.53(2 \mathrm{H}$, app. t of $\mathrm{d}, \mathrm{J}=$ 2.0Hz, Ar), 7.35-7.24 (2H, m, Ar), 6.28 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \operatorname{ArCHCH}$), 5.63 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 4.25$4.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00-3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.30-2.13(1 \mathrm{H}$, diastereotopic multiplet, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.40\left(1 \mathrm{H}\right.$, app. d of sept, J = 1.5Hz, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.27(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=167.0,142.2,137.1,132.9,129.8,129.1$, 127.0, 126.7, 119.9, 100.3, 67.6, 60.5, 25.7, 14.3; IR (film / cm ${ }^{-1}$) v=2851 (O-CH-O), 1728 (C=O), 1608 (C=C); HRMS: m/z (ES) 287.1259, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires 287.1259.

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)-5-methylphenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromo-4-methylphenyl)-1,3-dioxane ($0.96 \mathrm{~g}, 3.7 \mathrm{mmol}$), ethyl acrylate ($0.40 \mathrm{~mL}, 3.7 \mathrm{mmol}$), palladium (II) acetate ($0.04 \mathrm{~g}, 0.19 \mathrm{mmol})$, tri(o-tolyl)phosphine ($0.11 \mathrm{~g}, 0.37 \mathrm{mmol}$) and diisopropylethyl amine ($1.95 \mathrm{~mL}, 11.2 \mathrm{mmol}$) in acetonitrile (30 mL). The crude product was purified by column chromatography [Petrol : EtOAc (90:10), $\mathrm{R}_{f} 0.20$] yielding a yellow oil ($0.74 \mathrm{~g}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.14\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{CHCHCO}_{2}\right), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar})$, $7.33(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}), 6.28\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{CHCHCO}_{2}\right), 5.60(1 \mathrm{H}, \mathrm{s}$, $\operatorname{ArCH})$, 4.23-4.16 (4H, m, OCH CH_{3} and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.98-3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.28(3 \mathrm{H}, \mathrm{s}$, CCH_{3}), 2.25-2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}$), $1.39\left(1 \mathrm{H}\right.$, app. d, J = $\left.13.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=167.0,142.4,138.3,134.5,132.6,130.6$, 127.3, 127.0, 119.6, 100.4, 67.5, 60.4, 25.7, 21.2, 14.3; IR (film / cm^{-1}) $v=2852$ (O-CH-O), 1709 (C=O), 1636 (C=C), 1612 (C-O); HRMS: m/z (ES) 277.1444, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$requires 277.1440.

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)-4-(trifluoromethyl)phenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromo-5-(trifluoromethyl)phenyl)-1,3-dioxane ($0.80 \mathrm{~g}, 2.6 \mathrm{mmol}$), ethyl acrylate ($0.28 \mathrm{~mL}, 2.6 \mathrm{mmol}$), palladium (II) acetate ($0.03 \mathrm{~g}, 0.13 \mathrm{mmol}$), tri(o-tolyl)phosphine ($0.08 \mathrm{~g}, 0.26 \mathrm{mmol}$) and diisopropylethyl amine ($1.34 \mathrm{~mL}, 7.7 \mathrm{mmol}$) in acetonitrile (25 mL). The crude product was purified by column chromatography [Petrol : EtOAc (80:20), $\mathrm{R}_{f} 0.48$] yielding a yellow oil ($0.57 \mathrm{~g}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{CHCHCO}_{2}\right)$, $7.83(1 \mathrm{H}, \mathrm{app} . \mathrm{s}, \mathrm{Ar})$, 7.57-7.47 (2H, m, Ar), $6.30\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, \mathrm{CHCHCO}_{2}\right), 5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 4.23-4.16$ (4H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.98-3.87 (2 H , app. dd, $\mathrm{J}=12.4$ and 2.5, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.27-2.09 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.39\left(1 \mathrm{H}\right.$, app. d of sept, J = 13.7 and $\left.1.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3$
$\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=166.4,140.5-137.8(\mathrm{~d}, \mathrm{~J}=207.27 \mathrm{~Hz}, \mathrm{ArCHCH}$), 136.4 ($\mathrm{d}, \mathrm{J}=1.27 \mathrm{~Hz}, \mathrm{CCHCH}$), 132.0-130.7 ($\mathrm{q}, \mathrm{J}=32.66 \mathrm{~Hz}, \mathrm{CCF}_{3}$), 127.2, 125.8-125.7 ($\mathrm{q}, \mathrm{J}=$ $3.66 \mathrm{~Hz}, \mathrm{CHCCF}_{3}$), 124.2-124.0 ($\mathrm{q}, \mathrm{J}=3.87 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.2, 118.4, 100.4, 99.09, 67.5, 60.7, 25.5, 14.2; $\operatorname{IR}\left(f i l m / \mathrm{cm}^{-1}\right) ~ v=2872$ ($\mathrm{O}-\mathrm{CH}-\mathrm{O}$), 1716 ($\mathrm{C}=\mathrm{O}$), 1630 ($\mathrm{C}=\mathrm{C}$), 1580 ($\mathrm{C}-\mathrm{O}$); HRMS: m / z (ES) 331.1147, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 331.1157.

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)-3-fluorophenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromo-6-fluorophenyl)-1,3-dioxane ($0.46 \mathrm{~g}, 1.8 \mathrm{mmol}$), ethyl acrylate ($0.19 \mathrm{~mL}, 1.8 \mathrm{mmol}$), palladium (II) acetate ($0.02 \mathrm{~g}, 0.09 \mathrm{mmol}$), tri(o-tolyl)phosphine ($0.05 \mathrm{~g}, 0.18 \mathrm{mmol}$) and diisopropylethyl amine ($0.92 \mathrm{~mL}, 5.3 \mathrm{mmol}$) in acetonitrile (15 mL). The crude product was purified by column chromatography [Petrol : EtOAc (80:20), $\mathrm{R}_{f} 0.48$] yielding a yellow oil ($0.40 \mathrm{~g}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \operatorname{ArCHCH}), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar})$, 7.26-7.19 ($1 \mathrm{H}, \mathrm{m}, \operatorname{Ar}$), 7.01-6.93 (1H, m, Ar), $6.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \operatorname{ArCHCH}), 5.98(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCHCO}_{2}\right), 4.25-4.16\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.40-2.23$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.40\left(1 \mathrm{H}\right.$, app. d of sept, $\mathrm{J}=13.6$ and $\left.1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=166.9,161.9-158.6$ ($\mathrm{d}, \mathrm{J}=248.49 \mathrm{~Hz}, \mathrm{CF}$), 143.3 ($\mathrm{d}, \mathrm{J}=2.78 \mathrm{~Hz}, \operatorname{ArCHCH}$), 136.3 ($\mathrm{d}, \mathrm{J}=2.78 \mathrm{~Hz}, \mathrm{CCHCH}$), 130.4 ($\mathrm{d}, \mathrm{J}=9.48 \mathrm{~Hz}, \mathrm{CFCHCH}$), 124.3 ($\mathrm{d}, \mathrm{J}=11.25 \mathrm{~Hz}, \operatorname{ArCHCH}$), 123.3 ($\mathrm{d}, \mathrm{J}=3.41, \mathrm{CFCC}$), 119.6, 116.5 ($\mathrm{d}, \mathrm{J}=23.51 \mathrm{~Hz}, \mathrm{CFCH}$), 96.3 ($\mathrm{d}, \mathrm{J}=10.11 \mathrm{~Hz}, \mathrm{ArCHO}_{2}$), 68.0, 60.4, 25.9, 14.3; IR (film / cm ${ }^{-1}$) v=2856(O-CH-O),1710 (C=O), 1639 ($\mathrm{C}=\mathrm{C}$), 1577 (C-O); HRMS: m/z (ES) 281.1179, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$requires 281.1189.

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)-4-methoxyphenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromo-5-methoxyphenyl)-1,3-dioxane ($0.58 \mathrm{~g}, 2.1 \mathrm{mmol}$), ethyl acrylate ($0.23 \mathrm{~mL}, 2.1 \mathrm{mmol}$), palladium (II) acetate ($0.02 \mathrm{~g}, 0.11 \mathrm{mmol}$), tri(o-tolyl)phosphine ($0.06 \mathrm{~g}, 0.21 \mathrm{mmol}$) and diisopropylethyl amine ($1.10 \mathrm{~mL}, 6.4 \mathrm{mmol}$) in acetonitrile (15 mL). The crude product was purified by column chromatography [Petrol : EtOAc (85:15), $\mathrm{R}_{f} 0.25$] yielding a yellow crystalline solid ($0.36 \mathrm{~g}, 58 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.04(1 \mathrm{H}$, broad d, J=15.9 Hz, $\operatorname{ArCHCH}), 7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7$ $\mathrm{Hz}, \mathrm{Ar}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7, \operatorname{Ar}), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6$ and $2.7 \mathrm{~Hz}, \operatorname{Ar}), 6.20(1 \mathrm{H}$, broad d, J= 15.9, ArCHCH), $5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.26-4.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.01-3.90(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.31-2.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.40(1 \mathrm{H}, \mathrm{app}$. d of sept, J = 1.3 $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=167.7,161.4$, 141.9, 139.3, 128.6, 125.5, 117.9, 115.8, 111.9, 100.0, 67.9, 60.7, 55.8, 26.0, 14.7; IR (film / cm^{-1}) v = 2855 (O-CH-O), 1702 (C=O), 1605 (C=C); HRMS: m/z (ES) 315.1195, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 315.1208; mp 43-44 ${ }^{\circ} \mathrm{C}$.

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)-3,4-dimethoxyphenyl)acrylate

The title compound was prepared according to General Procedure 2 from 2-(2-bromo-4,5-dimethoxyphenyl)-1,3-dioxane ($1.02 \mathrm{~g}, 3.4 \mathrm{mmol}$), ethyl acrylate ($0.36 \mathrm{~mL}, 3.4 \mathrm{mmol}$), palladium (II) acetate ($0.04 \mathrm{~g}, 0.17 \mathrm{mmol}$), tri(o-tolyl)phosphine ($0.10 \mathrm{~g}, 0.34 \mathrm{mmol}$) and diisopropylethyl amine ($1.75 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in acetonitrile (40 mL). The crude product was
purified by column chromatography [Petrol : EtOAc (70:30), $\mathrm{R}_{f} 0.49$] yielding a yellow oil ($0.82 \mathrm{~g}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.03(1 \mathrm{H}$, broad d, J=15.8 Hz, $\operatorname{ArCHCH}), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 7.00$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}$), $6.22(1 \mathrm{H}$, broad d, J = $15.8 \mathrm{~Hz}, \operatorname{ArCHCH}), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.26-4.15(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.02-3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 2.33-2.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.41 (1 H, broad d, J = $13.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.28(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=167.6,151.0,149.5,141.7,131.6,125.5,118.1$, 109.7, 109.0, 99.7, 67.9, 60.8, 56.4, 26.0, 14.8; IR (film / cm ${ }^{-1}$) v = 2853 (O-CH-O), 1703 ($\mathrm{C}=\mathrm{O}$), 1602 ($\mathrm{C}=\mathrm{C}$); HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 323.1495, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 323.1495 .

Chemoselective Reduction Products

Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)propanoate

The title compound was prepared according to General Procedure 3 from ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)acrylate ($1.91 \mathrm{~g}, 7.7 \mathrm{mmol}$), cobalt (II) chloride hexahydrate ($0.02 \mathrm{~g}, 0.08$ $\mathrm{mmol})$ in ethanol (30 mL) with the addition of sodium borohydride ($0.58 \mathrm{~g}, 15.4 \mathrm{mmol}$). The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f} 0.74$] yielding a yellow oil ($1.65 \mathrm{~g}, 81 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.62-7.57(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.31-7.16(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.67(1 \mathrm{H}, \mathrm{s}$, ArCHO), $4.27\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.6,5.2\right.$ and $\left.1.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.01(2 \mathrm{H}, \mathrm{t}$ of d, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.12-3.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.69-2.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.35-2.17 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.50-1.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.6,138.9,136.8,129.9,129.3,127.0,126.8,100.6,67.7,60.7,36.5,28.3$, 26.1, 14.6; IR (film / cm ${ }^{-1}$) v = 1729 (C=O); HRMS: m/z (ES) 287.1247, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ requires 287.1259.

Ethyl 3-(2-(1,3-dioxan-2-yl)-5-methylphenyl)propanoate

The title compound was prepared according to General Procedure $\mathbf{3}$ from (E)-ethyl 3-(2-(1,3-dioxan-2-yl)-5-methylphenyl)acrylate ($0.64 \mathrm{~g}, 2.3 \mathrm{mmol}$), cobalt (II) chloride hexahydrate $(0.05 \mathrm{~g}, 0.02 \mathrm{mmol})$ in ethanol $(20 \mathrm{~mL})$ with the addition of sodium borohydride $(0.17 \mathrm{~g}, 4.6$ $\mathrm{mmol})$. The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), R_{f} 0.54] yielding a colourless oil ($0.44 \mathrm{~g}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=7.38\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CCHCH}\right), 6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CCHCH}$), $6.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CCH}\right), 5.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHO}_{2}\right), 4.21-4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.07$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.95-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, 2.99-2.91 (2 H , diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.58-2.50 (2 H , diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, 2.20-2.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.35\left(1 \mathrm{H}\right.$, app. d of sept, J = $\left.1.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.18(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.0Hz, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=173.3,138.6,138.3,133.6,130.2,127.2$, $126.5,100.3,67.5,60.3,36.2,27.7,25.8,21.2,14.3$; IR (film / cm^{-1}) v = 2854 (O-CH-O), 1730 (C=O), 1617 (C-O); HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 279.1587, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$requires 279.1596.

Ethyl 3-(2-(1,3-dioxan-2-yl)-4-(trifluoromethyl)phenyl)propanoate

The title compound was prepared according to General Procedure $\mathbf{3}$ from (E)-ethyl 3-(2-(1,3-dioxan-2-yl)-4-(trifluoromethyl)phenyl)acrylate $0.32 \mathrm{~g}, 1.0 \mathrm{mmol}$), cobalt (II) chloride hexahydrate ($0.002 \mathrm{~g}, 0.01 \mathrm{mmol}$) in ethanol (10 mL) with the addition of sodium borohydride ($0.07 \mathrm{~g}, 1.9 \mathrm{mmol}$). The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f} 0.49$] yielding a colourless oil ($0.17 \mathrm{~g}, 54 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.25(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J}=10.0$ and $2.5 \mathrm{~Hz}, \mathrm{Ar}), 7.07(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J}$ $=5.5$ and $8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.88(1 \mathrm{H}$, app. t of $\mathrm{d}, \mathrm{J}=8.5$ and $3.0 \mathrm{~Hz}, \mathrm{Ar}), 5.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}_{2}\right), 4.22-4.14$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.97-3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.93(2 \mathrm{H}$, app. t, J = 8.0Hz, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.55-2.48 (2 H , diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.24-2.06 (1 H , diastereotopic multiplet, $\mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.37\left(1 \mathrm{H}\right.$, app. d of sept, $\left.\mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.17$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=172.8,142.6,137.3,129.9,128.7$ ($\mathrm{d}, \mathrm{J}=33.0 \mathrm{~Hz}, \mathrm{CCF}_{3}$), 126.0 and $122.4\left(\mathrm{~d}, \mathrm{~J}=271.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $125.6\left(\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CHCCF}_{3}\right), 123.8$ ($q, J=4.0 \mathrm{~Hz}, \mathrm{CHCCF}_{3}$), $99.1,67.4,60.5,53.4,35.5,27.5,25.6,14.2$; $\mathrm{IR}\left(\right.$ film $/ \mathrm{cm}^{-1}$) $v=2856$ ($\mathrm{O}-\mathrm{CH}-\mathrm{O}$), 1731 (C=O), 1624 (C-O); HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 333.1300, \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 333.1314.

Ethyl 3-(2-(1,3-dioxan-2-yl)-3-fluorophenyl)propanoate

The title compound was prepared according to General Procedure 3 from (E)-ethyl 3-(2-(1,3-dioxan-2-yl)-3-fluorophenyl)acrylate ($0.38 \mathrm{~g}, 1.4 \mathrm{mmol}$), cobalt (II) chloride hexahydrate $(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ with the addition of sodium borohydride $(0.10 \mathrm{~g}, 2.7$ mmol) for 72 hours. The crude was purified using flash column chromatography [Petrol: EtOAc (75:25), $\mathrm{R}_{f} 0.69$] yielding a colourless oil ($0.19 \mathrm{~g}, 49 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.19-7.08(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.93(1 \mathrm{H}, \mathrm{app} . \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 6.87-$ $6.76(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}_{2}\right), 4.23-4.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.08(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.89\left(2 \mathrm{H}\right.$, app. t of d, $\mathrm{J}=12.0$ and $\left.2.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.33-3.28(2 \mathrm{H}$, diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.64-2.54 (2 H , diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.31-2.10 (1 H , diastereotopic multiplet, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.37\left(1 \mathrm{H}\right.$, app. d of sept, J = 1.5Hz, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.20(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.4,162.1-158.3(\mathrm{~d}, \mathrm{~J}=247.5 \mathrm{~Hz}, \mathrm{CF})$, $143.0\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, C_{2}\right.$), 130.2 ($\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{CFCHCH}$), 126.5 ($\mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{CFCHCHCH}$), 123.8 ($\mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{CFCCHO}_{2}$), 113.4 ($\mathrm{d}, \mathrm{J}=23.55 \mathrm{~Hz}, \mathrm{CHCF}$), $97.0\left(\mathrm{~d}, \mathrm{~J}=10.01 \mathrm{~Hz}, \mathrm{CHO}_{2}\right.$), 67.7, 60.3, 36.6, 28.6 ($d, J=1.85 \mathrm{~Hz}, \operatorname{ArCH}_{2}$), 25.8, 14.3; IR (film / cm ${ }^{-1}$) v=2856(O-CH-O), 1729 (C=O), 1619 (C-O); HRMS: m/z (ES) 283.1351, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$requires 283.1346.

Ethyl 3-(2-(1,3-dioxan-2-yl)-4-methoxyphenyl)propanoate

The title compound was prepared according to General Procedure 3 from ethyl 3-(2-(1,3-dioxan-2-yl)-4-methoxyphenyl)acrylate ($0.36 \mathrm{~g}, 1.2 \mathrm{mmol}$), cobalt (II) chloride hexahydrate $(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$ in ethanol $(10 \mathrm{~mL})$ with the addition of sodium borohydride ($0.09 \mathrm{~g}, 2.4$ mmol) and left stirring at room temperature for 48 hours. The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f} 0.44$] yielding a colorless oil (0.26 g , 71\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{Ar}), 7.01(1 \mathrm{H}$, broad d, J=8.4 Hz, Ar), $6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5$ and 2.9 Hz$), 5.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHO}_{2}\right), 4.18(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.2$ and 5.0 Hz , $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.06\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.91\left(2 \mathrm{H}, \mathrm{t}\right.$ of d, $\mathrm{J}=12.6$ and $\left.2.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.91\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.50\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.16$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.7,158.6,137.8,131.0,130.8,115.6,111.6,100.2,67.8,60.7,55.7$, 36.7, 27.4, 26.1, 14.6; IR (film / cm ${ }^{-1}$) v = 2852 ($\mathrm{O}-\mathrm{CH}-\mathrm{O}$), 1729 (C=O); HRMS: m/z (ES) 295.1551, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right.$requires 295.1545.

Ethyl 3-(2-(1,3-dioxan-2-yl)-3,4-dimethoxyphenyl)propanoate

The title compound was prepared according to General Procedure 3 from ethyl 3-(2-(1,3-dioxan-2-yl)-4,5-dimethoxyphenyl)acrylate $0.82 \mathrm{~g}, 2.6 \mathrm{mmol}$), cobalt (II) chloride hexahydrate ($0.01 \mathrm{~g}, 0.03 \mathrm{mmol}$) in ethanol (20 mL) with the addition of sodium borohydride ($0.19 \mathrm{~g}, 5.1 \mathrm{mmol}$) and left stirring at room temperature for 48 hours. The crude was
purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f} 0.11$] yielding a pale yellow crystalline solid ($0.73 \mathrm{~g}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.07(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 5.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}_{2}\right), 4.19(2 \mathrm{H}$, dd, $\mathrm{J}=12.0$ and $\left.5.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.08\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.92(2 \mathrm{H}, \mathrm{t}$ of d, $\mathrm{J}=12.4$ and $2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 2.95-2.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.56-2.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.26-2.09 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.37(1 \mathrm{H}, \mathrm{app}$. d of sept, J = 1.3 $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.6,149.4$, $147.8,131.3,129.2,112.8,109.8,100.1,67.9,60.8,56.3,36.8,27.8,26.1,14.6 ;$ IR (film / cm^{-} ${ }^{1}$) $v=2858$ (O-CH-O), 1729 (C=O); HRMS: m / z (ES) 325.1667, $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 325.1651; mp 58-60 ${ }^{\circ} \mathrm{C}$.

Aldehydes

Ethyl 3-(2-formylphenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)propanoate ($0.55 \mathrm{~g}, 2.2 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($7 \mathrm{~mL}: 3 \mathrm{~mL}$) and left to stir open to the air overnight. The product was obtained as a yellow colourless oil ($0.32 \mathrm{~g}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHO}), 7.89-7.80(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.60-7.27(3 \mathrm{H}$, m, Ar), $4.14\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.89\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.67(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=192.7,172.6$, 142.9, 133.8, 133.8, 133.4, 131.2, 127.0, 60.5, 35.6, 28.0, 14.2; IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=1728$ (C=O), 1694 (C=O) HRMS: m/z (ES) 207.1009, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 207.1021.

Ethyl 3-(2-formyl-5-methylphenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl 3-(2-(1,3-dioxan-2-yl)-5-methylphenyl)propanoate ($0.26 \mathrm{~g}, 1.0 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($14 \mathrm{~mL}: 6 \mathrm{~mL}$) and left to stir open to the air overnight. The product was obtained as a white crystalline solid ($0.16 \mathrm{~g}, 73 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CHCCOH}), 7.14$ $\left(1 \mathrm{H}\right.$, broad d, J $\left.=8.0 \mathrm{~Hz}, \mathrm{CHCCH}_{3}\right), 7.06\left(1 \mathrm{H}\right.$, broad $\left.\mathrm{s}, \mathrm{CHCCH}_{3}\right), 4.04(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.24\left(2 \mathrm{H}\right.$, app. $\left.\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}\right.$, app. $\left.\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.32$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=192.3,172.8$, 144.9, 142.9, 133.9, 132.0, 131.5, 127.8, 60.5, 35.6, 28.1, 21.8, 14.2; IR (film / cm^{-1}) $v=1729$ (C=O), 1690 ($\mathrm{C}=\mathrm{O}$), 1610 (C-O); HRMS: m/z (ES) 243.0989, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$requires 243.0997, mp 37-39 ${ }^{\circ} \mathrm{C}$.

Ethyl 3-(2-formyl-4-(trifluoromethyl)phenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl 3-(2-(1,3-dioxan-2-yl)-4-(trifluoromethyl)phenyl)propanoate ($0.15 \mathrm{~g}, 0.46 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($14 \mathrm{~mL}: 6 \mathrm{~mL}$) and left to stir open to the air for 36 hours. The product was obtained as a colourless oil ($0.09 \mathrm{~g}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.01(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{CHCCHO}), 7.69(1 \mathrm{H}$, dd, $\mathrm{J}=8.0$ and $1.5 \mathrm{~Hz}, \mathrm{CCHCH}), 7.43\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CHCCH}_{2}\right), 4.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.OHz, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=191.1,172.2,146.8,134.1,132.0,130.1$,
130.0, 129.7, 60.7, 35.2, 27.8, 14.2; IR (film / cm^{-1}) v=1731 (C=O), 1704 (C=O), 1618 (C-O); HRMS: m / z (ES) 275.0868, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 275.0895.

Ethyl 3-(3-fluoro-2-formylphenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl 3-(2-(1,3-dioxan-2-yl)-3-fluorophenyl)propanoate ($0.19 \mathrm{~g}, 0.68 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($7 \mathrm{~mL}: 3 \mathrm{~mL}$) and left to stir open to the air overnight. The product was obtained as a colourless oil ($0.12 \mathrm{~g}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=10.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.41(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=8.0$ and $6.0 \mathrm{~Hz}, \mathrm{Ar}), 7.07-$ $6.94(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.04\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.23\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.15\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=189.0(\mathrm{~d}$, $\mathrm{J}=11.8, C H O), 172.8,166.64(\mathrm{~d}, \mathrm{~J}=257.7, C F), 144.7,135.40(\mathrm{~d}, \mathrm{~J}=10.54, \mathrm{CFCHCH}$), 127.2 (d, J = 3.43, $\mathrm{CH}_{2} \mathrm{CCH}$), 122.19 ($\left.\mathrm{d}, \mathrm{J}=5.29, ~ C F C\right), 114.6$ ($\mathrm{d}, \mathrm{J}=21.87, \mathrm{CFCH}$), 60.5, 35.0, 29.03 ($\mathrm{d}, \mathrm{J}=2.22, \mathrm{ArCH}_{2}$), 14.2; IR (film / cm^{-1}) $\mathrm{v}=1730$ ($\mathrm{C}=\mathrm{O}$), 1695 ($\mathrm{C}=\mathrm{O}$), 1610 ($\mathrm{C}-\mathrm{O}$).

Ethyl 3-(2-formyl-4-methoxyphenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl-3-(2-(1,3-dioxan-2-yl)-4-methoxyphenyl)propanoate ($0.15 \mathrm{~g}, 0.5 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($14 \mathrm{~mL}: 6 \mathrm{~mL}$) and left to stir open to the air overnight. The product was obtained as an orange oil ($0.12 \mathrm{~g}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.16(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}, \operatorname{Ar}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $4.9 \mathrm{~Hz}, \mathrm{Ar}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4$ and $2.9 \mathrm{~Hz}, \mathrm{Ar}), 4.04\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.21\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.51\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right) 1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=192.3,173.0,158.9,135.7,134.9,132.7,120.9$,
116.2, 60.9, 55.9, 36.5, 27.2, 14.6; IR (film $/ \mathrm{cm}^{-1}$) $v=1728$ ($\mathrm{C}=0$), 1686 ($\mathrm{C}=0$); HRMS: m / z (ES) 259.0941, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$requires 259.0946.

Ethyl 3-(2-formyl-3,4-dimethoxyphenyl)propanoate

The title compound was prepared according to General Procedure 4 from ethyl-3-(2-(1,3-dioxan-2-yl)-4,5-dimethoxyphenyl)propanoate ($0.47 \mathrm{~g}, 1.5 \mathrm{mmol}$) which was added to a solution of acetic acid: water ($14 \mathrm{~mL}: 6 \mathrm{~mL}$) and left to stir open to the air overnight. The product was obtained as a white solid ($0.30 \mathrm{~g}, 77 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{H}=10.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.71(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 4.05(2 \mathrm{H}$, $\left.q, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.24(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.57\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=190.4,172.9,154.1,148.3,138.7,127.1,113.5,112.9,61.0,56.5,56.4$, 36.8, 27.4, 14.6 IR (film / cm^{-1}) v = 1727 ($\mathrm{C}=\mathrm{O}$), 1673 ($\mathrm{C}=\mathrm{O}$); HRMS: m / z (ES) 289.1035, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$requires 289.1052 , mp 121-123 ${ }^{\circ} \mathrm{C}$

Ethyl 4-(2-formylphenyl)butanoate

To a Schlenk flask flushed with nitrogen, anhydrous $\mathrm{LiCl}(0.75 \mathrm{~g}, 17.6 \mathrm{mmol})$ was added dried under vacuum. Zinc dust ($1.15 \mathrm{~g}, 17.6 \mathrm{mmol}$) was added and the resultant mixture was further dried under high vacuum. THF (10 mL) was added and left to stir for 10 mins. To the suspension, dibromoethane ($0.076 \mathrm{~mL}, 0.58 \mathrm{mmol}$), $\mathrm{Me}_{3} \mathrm{SiCl}$ ($0.015 \mathrm{~mL}, 0.12 \mathrm{mmol}$), iodine $(0.09 \mathrm{~g}, 0.35 \mathrm{mmol})$ and ethyl 4-bromobutyrate ($1.68 \mathrm{~mL}, 11.8 \mathrm{mmol}$) were added and the solution was stirred for 12 hrs at $50^{\circ} \mathrm{C}$. The resultant grey suspension was cooled to room temperature and 2-bromobenzaldehyde ($1.10 \mathrm{~mL}, 9.4 \mathrm{mmol}$), PEPPSI ($0.04 \mathrm{~g}, 0.06 \mathrm{mmol}$) and DMI (5 mL) were added to the solution which was left to stir at room temperature for

12 hrs . The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and then filtered through cotton wool. The aqueous layer was extracted with diethyl ether (2×10 mL). The combined organics were collected, washed with brine ($2 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. The solution was then filtered and the solvent evaporated under reduced pressure. ${ }^{4}$ The crude compound was purified using flash column chromatography [Petrol : EtOAc, 90:10, $\mathrm{R}_{f}-0.50$] yielding a yellow oil ($0.90 \mathrm{~g}, 51 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=10.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.77(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Ar})$, $7.45(1 \mathrm{H}, \mathrm{t}$ of $\mathrm{d}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Ar}), 7.32(1 \mathrm{H}, \mathrm{t}$ of $\mathrm{d}, \mathrm{J}=7.5$ and 1.5Hz, Ar), 7.28-7.20 (1H, $\mathrm{m}, \mathrm{Ar}), 4.06\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.31(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.93-1.82 (2H, p, J = 7.5Hz, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=192.5,173.3,144.3,133.8,133.7,132.5,131.2,126.8,60.4$, $33.8,31.8,27.0,14.3$; IR (film / cm ${ }^{-1}$) $v=1728$ ($\mathrm{C}=\mathrm{O}$), 1695 ($\mathrm{C}=\mathrm{O}$), 1600 (C-O); HRMS: m/z (ES) 243.0984, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$requires 243.0997.

Imines

(S,E)-Ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate, 1a

Ethyl 3-(2-formylphenyl)propanoate ($4.07 \mathrm{~g}, 19.8 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (150 mL) with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes $(S)-(-)-4-$ methoxy- α-methylbenzylamine ($2.92 \mathrm{~mL}, 19.8 \mathrm{mmol}$) was added and the solution was stirred for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a yellow oil ($6.34 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.67(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCHN}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5$ and $1.5 \mathrm{~Hz}, \mathrm{Ar})$, 7.44-7.24 (5H, m, Ar), 6.96-6.92 ($2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}$), $4.55\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.19(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.30\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.66(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.62\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.0,158.5,157.9,140.3,137.5,134.1,130.2,130.1,129.5,127.6,127.4$,
126.7, 114.1, 113.8, $70.1,60.4,55.3,35.9,28.4,25.2,14.2$; $\operatorname{R~(film~} / \mathrm{cm}^{-1}$) $v=1730$ ($C=0$), 1639 (C=N), 1611 (C-O); HRMS: m/z (ES) 340.1912, $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 340.1913; $[\alpha]_{\mathrm{D}}{ }^{25}=+15.2\left(\mathrm{c} 1.45, \mathrm{CHCl}_{3}\right)$.
(S,E)-Ethyl3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)-5-methylphenyl)propanoate, 1b

Ethyl 3-(2-formyl-5-methylphenyl)propanoate ($0.07 \mathrm{~g}, 0.30 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes (S)-(-)-4-methoxy- α-methylbenzylamine ($0.04 \mathrm{~mL}, 0.30 \mathrm{mmol}$) was added and the solution was stirred for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a hygroscopic white solid ($0.10 \mathrm{~g}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.45(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCHN}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.31-7.24$ (2H, m, Ar), 7.02-6.93 (2H, m, Ar), 6.84-6.77 (2H, m, Ar), 4.39 (1H, q, J = 4.5Hz, CHCH $)^{2}$, 4.06 $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.14\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.51(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=173.0,158.4,157.9,140.3,140.2,137.7,131.4$, 131.0, 129.7, 127.6, 127.5, 126.9, 113.9, 113.8, 70.1, 60.4, 55.3, 36.0, 28.5, 25.3, 21.4, 14.3; HRMS: m / z (ES) 354.2071, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 354.2069.
(S,E)-Ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)-4-(trifluoromethyl)phenyl) propanoate, 1c

Ethyl 3-(2-formyl-4-(trifluoromethyl)phenyl)propanoate ($0.11 \mathrm{~g}, 0.39 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes (S)-(-)-4-methoxy- α-methylbenzylamine ($0.06 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added and left stirring for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a yellow oil ($0.14 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=8.55(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHN}), 8.01(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCCHN}), 7.48(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}$, $\mathrm{J}=8.0$ and 1.5Hz, Ar), 7.30-7.23 (3H, m, Ar), 6.85-6.78 (2H, m, Ar), $4.46(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 4.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.57-$ $2.50\left(2 \mathrm{H}\right.$, diastereotopic multiplet, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.16(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 408.1802, \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 408.1787.

(S,E)-Ethyl 3-(3-fluoro-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate, 1d

Ethyl 3-(3-fluoro-2-formylphenyl) propanoate ($0.06 \mathrm{~g}, 0.27 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes $(S)-(-)-4-$ methoxy- α-methylbenzylamine ($0.04 \mathrm{~mL}, 0.27 \mathrm{mmol}$) was added and the solution was stirred for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a yellow oil ($0.08 \mathrm{~g}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.65(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHN}), 7.35-7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.02-6.72(5 \mathrm{H}, \mathrm{m}$, Ar), $4.38\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.06\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.49\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, $1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=173.3,158.5,153.4,143.2$, 137.4, 130.9, 130.8, 127.6, 127.3, 126.7, 122.5, 113.8, 113.5, 71.4, 60.3, 55.3, 35.6, 29.7, 25.6, 14.3; HRMS: m / z (ES) 258.1815, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NF}[\mathrm{M}+\mathrm{H}]^{+}$requires 358.1818.
(S,E)-Ethyl 3-(4-methoxy-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate, 1 e

Ethyl-3-(2-formyl-4-methoxyphenyl)propanoate ($0.18 \mathrm{~g}, 0.75 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes $(S)-(-)-4$-methoxy- α-methylbenzylamine ($0.11 \mathrm{~mL}, 0.75 \mathrm{mmol}$) was added and the solution was stirred for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a yellow oil ($0.23 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.50(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCHN}), 7.34-7.24(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.82-6.76(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 4.42\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.03(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.07\left(2 \mathrm{H}\right.$, broad t, J = 7.5Hz, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2}\right)$, $2.47\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{ArCH}_{2} \mathrm{CH}_{2}\right), 1.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=172.9,158.5,158.3,157.5,137.4,135.0,132.7$, 131.3, 127.7, 116.7, 114.1, 113.8, 113.2, 69.9, 60.4, 55.4, 55.3, 36.3, 29.7, 27.5, 25.2, 14.3; HRMS: m / z (ES) 370.2021, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 370.2018.

(S,E)-Ethyl 3-(3,4-dimethoxy-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)

 propanoate, 1f

Ethyl 3-(2-formyl-3,4-dimethoxyphenyl)propanoate ($0.49 \mathrm{~g}, 1.9 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes $(S)-(-)-4-m e t h o x y-\alpha-m e t h y l b e n z y l a m i n e ~(~ 0.28 ~ m L, ~ 1.9 ~ m m o l) ~ w a s ~ a d d e d ~ a n d ~ t h e ~ s o l u t i o n ~$
was stirred for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a yellow oil ($0.68 \mathrm{~g}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCHN}), 7.53(1 \mathrm{H}$, broad s, Ar), 7.42-7.38(2H, m, Ar), 6.96-6.91 (2H, m, Ar), $6.74(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}), 4.55\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 8.0Hz, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 2.64-2.59 (2H, diastereotopic multiplet, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $1.62(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=172.8,158.5,156.7$, 150.7, 147.7, 137.6, 133.9, 127.7, 126.5, 113.8, 112.6, 110.7, 69.6, 60.5, 56.0, 55.9, 55.3, 36.5, 27.6, 25.1, 14.3; HRMS: m / z (ES) 400.2143, $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 400.2124 .

(S,E)-Ethyl 4-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)butanoate, 1g

Ethyl 4-(2-formylphenyl)butanoate ($0.84 \mathrm{~g}, 3.8 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) with MgSO_{4} and left stirring under a nitrogen atmosphere. After 5 minutes (S)-(-)-4-methoxy- α-methylbenzylamine ($0.56 \mathrm{~mL}, 3.8 \mathrm{mmol}$) was added and stirring was continued for 5 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a colourless oil ($1.10 \mathrm{~g}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=8.57(1 \mathrm{H}, \mathrm{s}, \operatorname{ArCHN}), 7.82(1 \mathrm{H}$, app. dd, $\mathrm{J}=7.5$ and 1.5 Hz , CHCCHN), $7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}), 7.24-7.13(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{OCCHCH}\right), 6.81\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{OCCH}\right), 4.44\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.82\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 2.25(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.82\left(2 \mathrm{H}, \mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right), 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta_{\mathrm{C}}=173.4,158.5,157.8,141.2,137.5,134.1$, $130.2,130.1,128.6,127.7,126.5,113.8,69.7,60.3,55.3,33.8,32.2,26.9,25.0,14.3$; HRMS: m / z (ES) 354.2074, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 354.2069.

Cyclised Products

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)one, 2a

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate 1a ($0.144 \mathrm{~g}, 0.42 \mathrm{mmol}$) which was dissolved in THF (10 mL) under a nitrogen atmosphere. 15-Crown-5 $(0.09 \mathrm{~mL}, 0.46$ mmol) and NaHMDS (1 M in THF, $0.46 \mathrm{~mL}, 0.46 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f}-0.47$] yielding a white crystalline solid ($0.088 \mathrm{~g}, 73$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.34-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.22-7.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCHCH}\right), 6.98-$ $6.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{OCH}\right), 5.00\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{CHCHN}), 3.92-$ $3.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.41\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.03(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=17.5$ and $10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}$), $1.44\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=169.8,159.1,145.1,139.7,132.0,128.8,128.4,126.5,126.4,126.2,114.0,61.4,55.4$, 51.7, 51.2, 30.1, 18.9; IR (film / cm ${ }^{-1}$) $v=1731$ (C=O) HRMS: m / z (ES) 316.1308, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}$ $[\mathrm{M}+\mathrm{Na}]^{+}$requires 316.1313; mp 90-92 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-52\left(c 1.15, \mathrm{CHCl}_{3}\right)$.
(2aS,7bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet2(7bH)one, 3a

(S,E)-ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate 1a (0.24 g, 0.7 mmol) was dissolved in THF (23 mL). KHMDS (0.5 M in Toluene, $1.5 \mathrm{~mL}, 0.78 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at room temperature. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the organic layers were combined and washed with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and water (50 mL). The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Hexane: $\mathrm{Et}_{2} \mathrm{O}(1: 1), \mathrm{R}_{f} 0.15$] yielding a white crystalline solid ($0.031 \mathrm{~g}, 15$ \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.33-7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.24-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.15-7.10(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar})$, 6.93-6.86 (3H, m, Ar), $4.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{CHCHN}), 4.48\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, 3.92-3.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.07$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5\right.$ and $\left.10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=170.3,159.0,144.9,138.9,133.4,128.8,128.1,126.5,126.4,125.8,114.1,61.1$, 55.4, 53.9, 51.5, 30.3, 20.8; IR (film / cm ${ }^{-1}$) v = 1737 (C=O); HRMS: m/z (ES) 294.1502, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 294.1494; mp 93-95 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{17}=+37.3\left(c 0.375, \mathrm{CHCl}_{3}\right)$.
(1S,2R)-Ethyl 1-((S)-1-(4-ethoxyphenyl)ethylamino)-2,3-dihydro-1H-indene-2-carboxylate, 4

(S,E)-ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate 1a (0.060 g, 0.18 mmol) was dissolved in THF (6 mL). KHMDS (0.5 M in toluene, $0.39 \mathrm{~mL}, 0.19 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at room temperature. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the organic layers were combined and washed with $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and water (50 mL), dried over MgSO_{4} and the evaporated under reduced pressure. The crude product was purified using flash column chromatography [Petrol: EtOAc (70:30), $\mathrm{R}_{f} 0.74$] yielding a yellow oil ($0.011 \mathrm{~g}, 18$ \%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.40(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.25-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.19-7.16$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), $6.91(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}$, broad d, $\mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{NHCHCH}), 4.19-4.06(3 \mathrm{H}, \mathrm{m}$, CHCH_{3} and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36-3.25\left(1 \mathrm{H}\right.$, broad s, $\left.\mathrm{CH}_{2} \mathrm{CH}\right)$, 3.18-3.06 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{CNMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=175.3,158.7,143.8,140.7,137.2,130.6,127.9,126.9,124.6,124.3,113.8,64.8$, 60.7, 55.3, 53.3, 35.0, 26.4, 25.5, 14.2; IR (film / cm ${ }^{-1}$) v = 1726 (C=O); HRMS: m/z (ES) 340.1899, $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires $340.1913 ;[\alpha]_{\mathrm{D}}{ }^{25}=+21\left(c 0.99, \mathrm{CHCl}_{3}\right)$.

The stereochemistry was confirmed using experimental data described on page S36.
(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-5-methyl-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 2b

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)-5-methylphenyl)propanoate 1b ($0.087 \mathrm{~g}, 0.25$ mmol) which was dissolved in THF (7 mL) under a nitrogen atmosphere. 15-Crown-5 (0.05 $\mathrm{mL}, 0.27 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.27 \mathrm{~mL}, 0.27 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f} 0.35$] yielding a white crystalline solid ($0.045 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.34-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.11(1 \mathrm{H}, \mathrm{s}, \operatorname{Ar}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}$, Ar), 7.02-6.98 (1H, m, Ar), 6.98-6.95 (2H, m, Ar), $5.00\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=4.5 \mathrm{~Hz}, \mathrm{CHCHN}), 3.91-3.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{OCH}_{3}\right), 3.36\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.99$ (1H, dd, J = 17.5 and $10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), $2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=169.9,159.0,145.4,138.8,136.9,132.1,128.4,127.4,126.9$, 125.9, 114.0, 61.1, $55.4,51.9,50.9,29.9,21.4,18.9$; IR (film / cm ${ }^{-1}$) v=1738 (C=O); HRMS:
$\mathrm{m} / \mathrm{z}(\mathrm{ES})$ 208.1642, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 308.1651; mp 71-73 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-18(c 0.895$, CHCl_{3}).
(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-6-(trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one 2c

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(2-((1-(4-methoxyphenyl)ethylimino)methyl)-4-(trifluoromethyl)phenyl)propanoate 1c (0.086 $\mathrm{g}, 0.21 \mathrm{mmol}$) which was dissolved in THF (6 mL) under a nitrogen atmosphere. 15-Crown-5 ($0.05 \mathrm{~mL}, 0.23 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.23 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f} 0.24$] yielding a white crystalline solid ($0.053 \mathrm{~g}, 69 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.24$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}), 7.14(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}), 4.89(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{NCHCH}), 3.96\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5\right.$ and $\left.10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 1.51(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}$,CDCl 3): $\delta_{\mathrm{C}}=169.3,159.3,149.1,140.4,131.7,128.7$ ($q, J=31.0 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{C}$) , 128.4, 126.7, 125.8 ($\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CHCCH}$), 124.1 ($\mathrm{q}, \mathrm{J}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), $123.2\left(q, J=4.0 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CCH}\right), 122.7,114.1,61.2,55.3,52.8,51.7,30.2,19.3$; $\mathrm{IR}\left(\right.$ film $\left./ \mathrm{cm}^{-1}\right) \mathrm{V}$ $=1742$ (C=O); HRMS: m/z (ES) 362.1358, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 362.1368; mp 108$110^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-14\left(c 0.5825, \mathrm{CHCl}_{3}\right)$.

(2aR,7bR)-7-Fluoro-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-

 2(7bH)-one, 2d

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(3-fluoro-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate 1d (0.070 g, 0.20 mmol) which was dissolved in THF (6 mL) under a nitrogen atmosphere. 15-Crown-5 (0.04 $\mathrm{mL}, 0.22 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f} 0.30$] yielding a white crystalline solid ($0.048 \mathrm{~g}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.37-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 6.94-6.86(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 5.02-4.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}$ and CHCH_{3}), 3.98-3.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.44$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.05\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.0\right.$ and $\left.11.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}$, CHCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=169.2,161.5-158.2(\mathrm{~d}, \mathrm{~J}=247.81 \mathrm{~Hz}, \mathrm{CF}), 158.9,148.7$ (d, J = 4.54Hz, CH ${ }_{2}$ C), 132.6, 131.1 ($d, \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{CFCCH}$), 128.2 ($\mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{CFCHCH}$), 127.2, 127.0, 122.0 ($\mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{CFCHCHCH}$), 113.9, 113.2 ($\mathrm{d}, \mathrm{J}=20.5 \mathrm{~Hz}, \mathrm{CFCH}$), 57.7, 55.3, 52.5, $51.4,30.2,18.2$ ($d, J=3.5 \mathrm{~Hz}$, who); IR (film / cm^{-1}) $v=1743$ (C=O); HRMS: m / z (ES) 334.1225, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{NF}[\mathrm{M}+\mathrm{Na}]^{+}$requires 334.1219; mp 75-77 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-46\left(c 0.5475, \mathrm{CHCl}_{3}\right)$.
(2aR,7bR)-6-Methoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 2e

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(4-methoxy-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate $1 \mathbf{e}$ ($0.105 \mathrm{~g}, 0.28$ mmol) which was dissolved in THF (7 mL) under a nitrogen atmosphere. 15-Crown-5 (0.06 $\mathrm{mL}, 0.31 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.31 \mathrm{~mL}, 0.31 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f} 0.25$] yielding a white crystalline solid ($0.057 \mathrm{~g}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.98-$ $6.94(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0$ and $2.5 \mathrm{~Hz}, \operatorname{Ar}), 6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \operatorname{Ar}), 4.98(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCHCH}), 3.91\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5\right.$ and $\left.2.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right)$, $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.0$ and $10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), $1.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=170.0$, 159.1, 158.5, 140.9, 136.9, 132.0, 128.5, 126.9, 114.9, 114.0, 111.4, 61.5, 55.5, 55.3, 52.4, 51.5, 29.3, 19.1; IR (film / cm ${ }^{-1}$) v=1730(C=O); HRMS: m/z (ES) 324.1601, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ requires $324.1600 ; \mathrm{mp} 128-130{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-55\left(c 0.60, \mathrm{CHCl}_{3}\right)$.
(2aR,7bR)-6,7-Dimethoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, $2 f$

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 3-(3,4-dimethoxy-2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)propanoate $\mathbf{1 f}(0.054 \mathrm{~g}, 0.14$ mmol) which was dissolved in THF (5 mL) under a nitrogen atmosphere. 15-Crown-5 (0.03 $\mathrm{mL}, 0.15 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc ($60: 40$), $R_{f} 0.15$] yielding a white crystalline solid ($0.029 \mathrm{~g}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.32-7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.77(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CHCOCH}_{3}\right), 6.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCOCH}_{3}\right), 4.95\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}$, CHCHN), 3.92-3.95 (1H, m, CHCH_{2}), $3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 3.34\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 2.97\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.0\right.$ and $\left.10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 1.49(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}$,CDCl 3): $\delta_{\mathrm{C}}=170.2,159.1,149.9,147.9,137.2,132.1$, $131.4,128.5,114.0,108.8,108.5,61.9,56.0,55.9,55.3,52.4,51.6,30.0,19.2 ;$ IR (film / cm ${ }^{-1}$) $v=1720(\mathrm{C}=\mathrm{O})$; HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 354.1692, \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 354.1701; mp 142$144^{0} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-3.5\left(\mathrm{c} 0.565, \mathrm{CHCl}_{3}\right)$.

(2aR,8bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-1,3,4,8b-tetrahydronaphtho[1,2-b]azet-

 2(2aH)-one, 2g

Major

Minor

The title compound was prepared according to General Procedure 5 from (S, E)-ethyl 4-(2-((1-(4-methoxyphenyl)ethylimino)methyl)phenyl)butanoate $1 \mathrm{~g}(0.064 \mathrm{~g}, 0.18 \mathrm{mmol})$ which was dissolved in THF (6 mL) under a nitrogen atmosphere. 15-Crown-5 ($0.07 \mathrm{~mL}, 0.36 \mathrm{mmol}$) and NaHMDS (1 M in THF, $0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}$) was added and the mixture was left stirring for 8 hours at $-40^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f} 0.36$] yielding a colorless oil ($0.032 \mathrm{~g}, 57 \%$).

Major Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.31-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.22-7.17(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar})$, 6.97-6.89 (3H, m, Ar), $4.99\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{NCHCH})$, $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.59-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH}), 2.85-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 2.40(1 \mathrm{H}, \mathrm{app} . \mathrm{d}$ of sep, $\mathrm{J}=13.5$ and $1.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$), 1.61-1.50 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}$, CHCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=169.1,158.9,139.9,133.7,131.6,130.1,128.8$, 128.7, 128.3, 126.2, 113.8, 55.3, 52.8, 50.6, 49.4, 26.8, 23.1, 18.2;

Minor Diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.31-7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.22-7.17(2 \mathrm{H}, \mathrm{m}$, Ar), 7.10-7.07 ($2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}$), $7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{Ar}), 6.82-6.78(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}), 4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 5.0Hz, NCHCH), $4.32\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.59-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCH})$, 2.85-2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), $2.40\left(1 \mathrm{H}\right.$, app. d of sep, J = 13.5 and $\left.1.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.67(3 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.47-1.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=169.4,158.7$, 139.9, 132.7, 131.6, 130.3, 128.8, 128.6, 128.3, 127.8, 114.0, 55.3, 52.8, 50.6, 49.2, 26.8, 22.9, 19.9;

IR (film $/ \mathrm{cm}^{-1}$) $v=1727$ ($\mathrm{C}=\mathrm{O}$); HRMS: m / z (ES) 308.1644, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 308.1650.

Deprotection, Esters and Amino Acids

(2aR,7bR)-2a,3-Dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 5a

(2aR,7bR)-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one $(0.035 \mathrm{~g}, 0.12 \mathrm{mmol}) \mathbf{2 a}$ was added to a solution of acetonitrile : water ($7.5 \mathrm{~mL}: 1.5 \mathrm{~mL}$). Ammonium cerium(IV) nitrate ($0.19 \mathrm{~g}, 0.35 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether (30 mL). The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified by recrystallisation from dichloromethane and hexane yielding a white crystalline solid (0.14 g , 76\%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.35-7.21(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.25(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{NH}), 5.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $4.5 \mathrm{~Hz}, \mathrm{NCHCH}), 4.06-4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5, \mathrm{CHCH}_{2}\right), 3.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5$ and $10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.5,143.2,139.5,128.1,126.1,125.3$,
124.1, 57.5, 53.2, 29.3; IR (film / cm^{-1}) v=3164 (N-H), 1695 (C=O); HRMS: m/z (ES) 182.0581, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ON}[\mathrm{M}+\mathrm{Na}]^{+}$requires 181.0582; mp 191-192 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-214\left(c 0.69, \mathrm{CHCl}_{3}\right)$.

(2aR,7bR)-5-methyl-2a,3-Dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 5b

(2aR,7bR)-1-((S)-1-(4-methoxyphenyl)ethyl)-5-methyl-2a,3-dihydro-1H-indeno[1,2-b]azet$2(7 \mathrm{bH})$-one ($0.019 \mathrm{~g}, 0.06 \mathrm{mmol}$) $\mathbf{2 b}$ was added to a solution of acetonitrile : water ($5 \mathrm{~mL}: 1$ $\mathrm{mL})$. Ammonium cerium(IV) nitrate ($0.10 \mathrm{~g}, 0.18 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether $(30 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (65:45), R_{f} 0.17] yielding a white crystalline solid ($0.007 \mathrm{~g}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CCHCH}\right), 7.12\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CCHC}\right)$, $7.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CCHCH}\right), 6.19(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{NH}), 5.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0, \mathrm{CHNH}), 4.04$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.33\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5$ and $10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=171.5,144.5,139.1$, 137.7, 128.0, 126.9, 124.8, 58.3, 54.5, 30.3, 21.4; IR (film / cm^{-1}) $v=3194(\mathrm{~N}-\mathrm{H}), 1701$ (C=O); HRMS: m / z (ES) 174.0903, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$requires 174.0910; $\mathrm{mp} 97-100{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-140$ (c $0.22, \mathrm{CHCl}_{3}$).

(2aR,7bR)-6-(Trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 5c

(2aR,7bR)-1-((S)-1-(4-methoxyphenyl)ethyl)-6-(trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one ($0.024 \mathrm{~g}, 0.07 \mathrm{mmol}$) $\mathbf{2 c}$ was added to a solution of acetonitrile : water (5 $\mathrm{mL}: 1 \mathrm{~mL})$. Ammonium cerium(IV) nitrate ($0.11 \mathrm{~g}, 0.20 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether $(30 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (70:30), $\mathrm{R}_{f} 0.15$] yielding a white crystalline solid ($0.009 \mathrm{~g}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CF}_{3} \mathrm{CHC}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{CHCH}\right), 7.42$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz} \mathrm{CF}_{3} \mathrm{CHCH}$), $6.35(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{NH}), 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCHCH}), 4.12(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2}$), $3.42\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right), 3.14\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5\right.$ and $\left.10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.5,148.4,141.3,129.9\left(\mathrm{q}, \mathrm{J}=33.0 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{C}\right.$) 126.8, 126.2 (q, J $=4.0 \mathrm{~Hz}, \mathrm{CHCCH}$), 124.0 ($\mathrm{q}, \mathrm{J}=272.0 \mathrm{~Hz}, \mathrm{CF}_{3}$), 122.3 ($\mathrm{q}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CCHCH}$), $58.0,54.6,30.4 ; \mathrm{IR}$ (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=3201(\mathrm{~N}-\mathrm{H}), 1755$ (C=O); HRMS: m/z (ES) 228.0639, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ONF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ requires 228.0636; mp 138-139 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-221\left(c 0.24, \mathrm{CHCl}_{3}\right)$.
(2aR,7bR)-7-Fluoro-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one, 5d

(2aR,7bR)-7-fluoro-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet$2(7 \mathrm{bH})$-one ($0.024 \mathrm{~g}, 0.08 \mathrm{mmol}$) 2d was added to a solution of acetonitrile : water ($5 \mathrm{~mL}: 1$ $\mathrm{mL})$. Ammonium cerium(IV) nitrate ($0.13 \mathrm{~g}, 0.23 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether $(30 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (70:30), $\mathrm{R}_{f} 0.25$] yielding a white crystalline solid ($0.0085 \mathrm{~g}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.33-7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CFCHCH}), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}$, CFCHCHCH $), 6.92(1 \mathrm{H}$, app. $\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{CFCH}), 6.30(1 \mathrm{H}$, broad s, NH), $5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, NCHCH), 4.14-4.10 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$), $3.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.5, \mathrm{CHCH}_{2}\right.$), $3.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.5$ and $10.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.7,160.1(\mathrm{~d}, \mathrm{~J}=248.0 \mathrm{~Hz}, \mathrm{CF}$), $147.8(\mathrm{~d}, \mathrm{~J}$ $=4.5 \mathrm{~Hz}, \mathrm{CFCCCH}$), 131.4 ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CFCHCH}$), 127.6 ($\mathrm{d}, \mathrm{J}=19.0 \mathrm{~Hz}, \mathrm{CFCCCH}$), 121.9 ($\mathrm{d}, \mathrm{J}=$ $19.0 \mathrm{~Hz}, \mathrm{CFCCCH}$), 113.5 ($\mathrm{d}, \mathrm{J}=19.0 \mathrm{~Hz}, \mathrm{CFCH}$), $55.2,55.1,30.6$; $\mathrm{IR}\left(\right.$ film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=3225$ ($\mathrm{N}-\mathrm{H}$), 1786 (C=O); HRMS: m/z (ES) 200.0472, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ONF}[\mathrm{M}+\mathrm{Na}]^{+}$requires 200.0488; mp 151-153 ${ }^{0} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{21}=-182\left(c 0.28, \mathrm{CHCl}_{3}\right)$.

(2aR,8bR)-1,3,4,8b-Tetrahydronaphtho[1,2-b]azet-2(2aH)-one, 5g

(2aR,8bR)-1-((S)-1-(4-methoxyphenyl)ethyl)-1,3,4,8b-tetrahydronaphtho[1,2-b]azet-2(2aH)one $\mathbf{2 g}(0.027 \mathrm{~g}, 0.09 \mathrm{mmol})$ was added to a solution of acetonitrile : water ($5 \mathrm{~mL}: 1 \mathrm{~mL}$). Ammonium cerium(IV) nitrate ($0.15 \mathrm{~g}, 0.27 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether (30 mL). The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$. The organics were then dried using MgSO_{4} and filtered
before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (70:30), $\mathrm{R}_{f} 0.29$] yielding a white crystalline solid ($0.011 \mathrm{~g}, 72$ \%).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.32-7.20(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.06(1 \mathrm{H}$, broad s, NH), $4.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 5.0Hz, NCHCH), $3.74\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.88-2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.5$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2}$), 1.68-1.59 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.6,139.3,134.0$, $129.6,129.0,128.5,126.6,51.5,50.2,26.9,22.9$; IR (film / cm$\left.{ }^{-1}\right) \mathrm{v}=3235(\mathrm{~N}-\mathrm{H}), 1737$ (C=O); HRMS: m / z (ES) 196.0721, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ON}[\mathrm{M}+\mathrm{Na}]^{+}$requires 196.0738; mp 103-105 ${ }^{\circ} \mathrm{C}$.
(1R,2R)-1-Amino-2,3-dihydro-1H-indene-2-carboxylic acid hydrochloride, 6

(2aR,7bR)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one 5a ($0.020 \mathrm{~g}, 0.13 \mathrm{mmol}$) was refluxed in $18 \% \mathrm{HCl}$ solution for 3 hours. The solvent was then evaporated under reduced pressure. The crude was purified by recrystallisation from ethanol and diethyl ether yielding a white crystalline solid ($0.022 \mathrm{~g}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.40-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.31(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.0 \mathrm{~Hz}, \operatorname{Ar}), 4.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{NCH}), 3.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NCHCH}), 3.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.5 \mathrm{~Hz}, \mathrm{CHCH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=175.4,142.1,136.6,130.3,127.7,125.4$, 125.3, 55.3, 45.5, 33.3; IR (film / cm ${ }^{-1}$) v=3384 (O-H), 1715 (C=O); HRMS: m/z (ES) 200.0680, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{Na}]^{+}$requires 200.0687; mp 210-214 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=-2.5(c 0.4, \mathrm{MeOH})$.
(1S,2S)-Ethyl-1-(((S)-1-(4-methoxyphenyl)ethyl)amino)-2,3-dihydro-1H-indene-2carboxylate hydrochloride

(2aS,7bS)-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet 2(7bH)one $3 \mathbf{a}(0.011 \mathrm{~g}, 0.037 \mathrm{mmol})$ was refluxed in ethanol (2.1 ml) with dry hydrogen chloride (1 M in diethyl ether, 0.9 mL) for 5 hours. The solvent was then evaporated under reduced pressure yielding a yellow oil ($0.0136 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta_{\mathrm{H}}=7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 7.46-$ $7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}), 4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{NHCHCH}), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz} \mathrm{CHCH}_{3}\right), 4.33-4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69-3.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}\right)$, 3.42-3.32 (2H, m, CH 2 CH), $1.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=173.9,160.3,143.6,134.3,130.7,128.7,128.4,127.5,126.2$, 125.9, 115.3, $62.7,59.3,56.6,55.6,45.6,34.5,22.4,14.1$; IR (film / cm ${ }^{-1}$) $v=1727$ (C=O); HRMS: m / z (ES) $340.1968, \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 340.1913.
(1S,2R)-Ethyl 1-((S)-1-(4-methoxyphenyl)ethylamino)-2,3-dihydro-1H-indene-2carboxylate, 4

(1S,2S)-ethyl-1-(((S)-1-(4-methoxyphenyl)ethyl)amino)-2,3-dihydro-1H-indene-2-carboxylate hydrochloride ($0.015 \mathrm{~g}, 0.039 \mathrm{mmol}$) was dissolved in dry ethanol (3 ml) under a nitrogen atmosphere. Sodium ethoxide ($0.007 \mathrm{~g}, 0.10 \mathrm{mmol}$) was added and the reaction was heated at reflux for 48 hours. After cooling, the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$). The combined organics were collected and washed with water $(2 \times 20 \mathrm{~mL})$ and then dried over MgSO_{4}. The solvent was then evaporated under reduced pressure. ${ }^{5}$ The crude was purified using flash column chromatography [Petrol: EtOAc (70:30), $\mathrm{R}_{f} 0.74$] yielding a yellow oil ($0.011 \mathrm{~g}, 81 \%$).

Data for this compound identical to that reported on page S25

(2aS,7bR)-5,6-Dimethoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-1H-indeno[1,2-b]azete-2,3(2aH,7bH)-dione, 12

(2aR,7bR)-6,7-dimethoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one $2 f(0.020 \mathrm{~g}, 0.06 \mathrm{mmol})$ was added to a solution of acetonitrile : water (5 $\mathrm{mL}: 1 \mathrm{~mL}$). Ammonium cerium(IV) nitrate ($0.093 \mathrm{~g}, 0.17 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 16 hrs . The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with diethyl ether $(30 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$) and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure yielding a yellow oil (0.004 g , 19\%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.18-7.12(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.86-6.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.25$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}), 4.82\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 4.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{COCH}), 4.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $3.5 \mathrm{~Hz}, \mathrm{NHCHCH}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.44(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 7.0Hz, $\mathrm{CH}_{3} \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=193.6,161.7,159.4,155.0,150.9,144.3$, 131.4, 131.3, 128.6, 114.2, 108.2, 105.4, 63.1, $56.3,56.2,55.4,53.5,53.3,19.4 ;$ IR (film / $\left.\mathrm{cm}^{-1}\right) \mathrm{v}=1729(\mathrm{C}=\mathrm{O}) ;$ HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ES}) 370.1651, \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 370.1654.

Acyclic Substrates

Ethyl 6-oxohexanoate

Ethyl-6-hydrohexanoate ($0.50 \mathrm{~mL}, 3.1 \mathrm{mmol}$) was added to pyridinium chlorochromate (1.00 $\mathrm{g}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ and allowed to stir at room temperature for 2 hours. The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and Fluorosil ${ }^{\circledR}$ and then evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f}-0.51$] yielding a colourless liquid ($0.44 \mathrm{~g}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHO}), 4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.46$ ($2 \mathrm{H}, \mathrm{app} \mathrm{q}, \mathrm{CH}_{2} \mathrm{CHO}$), $2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.67\left(4 \mathrm{H}, \mathrm{m}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25(3 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=201.9,173.1,60.1,43.3,33.8,24.3,21.4$, 14.1; IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=1721$ (C=O); HRMS: m / z (ES) 159.1013, $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 159.1021.

(S,E)-Ethyl 6-((1-(4-methoxyphenyl)ethyl)imino)hexanoate, 1h

Ethyl-6-oxohexanoate ($0.193 \mathrm{~g}, 1.22 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ with MgSO_{4}. After 5 minutes $(S)-(-)-4-M e t h o x y-\alpha$-methylbenzylamine ($0.180 \mathrm{~mL}, 1.22 \mathrm{mmol}$) was added and the reaction was left to stir for 3 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a pale yellow oil ($0.318 \mathrm{~g}, 90 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.71(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CNH}), 7.29-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.85(2 \mathrm{H}$, d, J = 8.5Hz, Ar), $4.24\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 4.11\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 2.34-2.22 (4H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.71-1.52 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.46(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$), $1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HRMS: m / z (ES) 292.1911, $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ requires 292.1913.
(1R,5S)-6-((S)-1-(4-Methoxyphenyl)ethyl)-6-azabicyclo[3.2.0]heptan-7-one, 2 h

(S,E)-ethyl 6-((1-(4-methoxyphenyl)ethyl)imino)hexanoate 1 h ($0.966 \mathrm{~g}, 3.31 \mathrm{mmol})$ was dissolved in THF (50 mL). 15-Crown-5 ($1.31 \mathrm{~mL}, 6.62 \mathrm{mmol}$) and NaHMDS (1M in THF, 6.62 $\mathrm{mL}, 6.62 \mathrm{mmol}$) were added and the mixture was left stirring for 8 hours at room temperature. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the THF was removed under reduced pressure. The resulting solution was further diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ $\mathrm{mL})$. The organic layers were combined and washed with water (50 mL). The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. . The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f}-0.41$] yielding a yellow oil ($0.357 \mathrm{~g}, 44 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.26(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}), 4.81(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.83\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3} \& \mathrm{CHNH}\right), 3.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz} \& 8.0 \mathrm{~Hz}, \mathrm{CHCHNH}), 2.07-$ 1.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.87-1.62 (3H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.58 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$), 1.38$1.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=168.9,159.0,132.9,128.2,114.0,57.2$, 55.3, 53.8, 51.5, 29.2, 24.8, 22.7, 19.6; IR (film / cm^{-1}) v = 1731 (C=O); HRMS: m/z (ES) 246.1489, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$requires 246.1494. $[\alpha]_{\mathrm{D}}{ }^{21}=-14\left(c 1.09, \mathrm{CHCl}_{3}\right)$.

(1R,5S)-6-Azabicyclo[3.2.0]heptan-7-one, 5h

(1R,5S)-6-((S)-1-(4-methoxyphenyl)ethyl)-6-azabicyclo[3.2.0]heptan-7-one 2h (0.297 g, 1.2 mmol) was added to a solution of acetonitrile : water ($15 \mathrm{~mL}: 15 \mathrm{~mL}$). Ammonium cerium(IV) nitrate ($2.63 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added portion-wise and the solution was left to stir for 4 hrs. The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$ and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30$ mL) The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified by recrystallisation from dichloromethane and hexane yielding a white solid ($0.095 \mathrm{~g}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=6.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CHCHNH})$, 3.47$3.43(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHNH}), 1.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5 \& 6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), 1.85-1.69 (3H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.44-1.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=171.0,55.9$, 54.0, 30.0, 25.2, 22.4; IR (film / cm^{-1}) v = 3250 ($\mathrm{N}-\mathrm{H}$), 1716 (C=O); HRMS: m/z (ES) 112.0778, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$requires $112.0762 ; \mathrm{mp} 49-50^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{17}=-33\left(c 0.87, \mathrm{CHCl}_{3}\right)$.

Ethyl 6-hydroxy-4,4-dimethylhexanoate

Potassium persulfate ($2.40 \mathrm{~g}, 8.87 \mathrm{mmol}$) is added to a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$, ethanol (10 mL) and water (2 mL) which has been cooled to $15{ }^{\circ} \mathrm{C}$. A solution of 4,4' dimethylcyclohexanone ($0.373 \mathrm{~g}, 2.96 \mathrm{mmol}$) in ethanol (3 mL) was added dropwise and the reaction was left to stir overnight. The reaction was diluted with water (30 mL) and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organics were collected, dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc (80:20), $\mathrm{R}_{f^{-}} 0.23$] yielding a colourless oil ($0.445 \mathrm{~g}, 80 \%$). ${ }^{6}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}=4.05\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $2.68(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.25-2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.54-1.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.19(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.83\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=174.4,60.4,59.5$, 44.0, 36.9, 31.9, 29.6, 27.1, 14.2; IR (film / cm^{-1}) v=3413(O-H), 1733 (C=O); HRMS: m/z (ES) 189.1486, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 189.1490 .

Ethyl 4,4-dimethyl-6-oxohexanoate

Pyridinium chlorochromate ($0.589 \mathrm{~g}, 2.73 \mathrm{mmol}$) was added to Ethyl 6-hydroxy-4,4dimethylhexanoate ($0.343 \mathrm{~mL}, 1.82 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and allowed to stir at room temperature for 2 hours. The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and

Fluorosil ${ }^{(}$and then evaporated under reduced pressure. The crude was purified using flash column chromatography [Petrol: EtOAc ($80: 20$), $\mathrm{R}_{f}-0.79$] yielding a colourless oil ($0.295 \mathrm{~g}, 87$ \%).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=9.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 4.15-4.01\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.34-2.18$ ($4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{CHO} \& \mathrm{CH}_{2} \mathrm{CO}_{2}$), 1.75-1.59 ($\left.2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.30-1.15 (3H, br s, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.10-0.95 ($\left.6 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=202.9,173.6,60.5,54.5,37.1,33.1$, 29.4, 27.0, 14.2; IR (film / cm^{-1}) v=1732 (C=O); HRMS: m/z (ES) 187.1340, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ requires 187.1334.
(S,E)-Ethyl 6-((1-(4-methoxyphenyl)ethyl)imino)-4,4-dimethylhexanoate, 1 i

Ethyl 4,4-dimethyl-6-oxohexanoate ($0.183 \mathrm{~g}, 0.98 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) with MgSO_{4}. After 5 minutes (S)-(-)-4-Methoxy- α-methylbenzylamine ($0.145 \mathrm{~mL}, 0.98$ $\mathrm{mmol})$ was added and the reaction was left to stir for 3 hours. The solution was then filtered and the solvent evaporated under reduced pressure yielding a pale yellow oil ($0.272 \mathrm{~g}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CNH}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 6.78$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 4.20\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.04\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.71$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.26-2.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.11\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.57-1.50(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}$), $1.41\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.87(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}=174.0,161.5,158.4,137.0,127.6,114.1,113.8,69.3$, $60.3,55.3,47.0,37.0,33.3,29.5,27.0,24.3,14.2$; $\operatorname{RR}\left(\right.$ film $\left./ \mathrm{cm}^{-1}\right) \mathrm{v}=1731$ (C=O), 1661 (C=N), 1611 (C-O);
(1R,5S)-6-((S)-1-(4-Methoxyphenyl)ethyl)-3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one, 2i

(S,E)-Ethyl 6-((1-(4-methoxyphenyl)ethyl)imino)-4,4-dimethylhexanoate 1 i ($0.378 \mathrm{~g}, 1.18$ mmol) was dissolved in THF (40 mL). 15-Crown-5 ($0.47 \mathrm{~mL}, 2.36 \mathrm{mmol}$) and NaHMDS (1M in THF, $2.36 \mathrm{~mL}, 2.36 \mathrm{mmol}$) were added and the mixture was left stirring for 8 hours at room temperature. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the THF was removed under reduced pressure. The resulting solution was further diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ $\mathrm{mL})$. The organic layers were combined and washed with water (50 mL). The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. . The crude was purified using flash column chromatography [Petrol: EtOAc (60:40), $\mathrm{R}_{f}-0.57$] yielding a pale yellow oil ($0.252 \mathrm{~g}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=7.19-7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.84-6.78(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}), 4.85(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.80-3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCHN}), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.36(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=9.0,4.5$ \& $2.0 \mathrm{~Hz}, \mathrm{CHCHN}$), $1.81\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0 \& 2.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$), $1.49\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.39-1.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=170.3,158.9,132.7,128.3$, $113.9,57.9,55.3,55.2,50.6,43.2,42.0,38.3,31.2,30.1,18.8$; IR (film / cm^{-1}) $\mathrm{v}=1737$ (C=O); HRMS: m / z (ES) 296.1644, $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{Na}]^{+}$requires 296.1626; $[\alpha]_{\mathrm{D}}{ }^{21}=-18\left(c 0.55, \mathrm{CHCl}_{3}\right)$

(1R,5S)-3,3-Dimethyl-6-azabicyclo[3.2.0]heptan-7-one, 5i

(1R,5S)-6-((S)-1-(4-Methoxyphenyl)ethyl)-3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one 2i ($0.227 \mathrm{~g}, 0.83 \mathrm{mmol}$) was added to a solution of acetonitrile : water ($20 \mathrm{~mL}: 20 \mathrm{~mL}$). Ammonium cerium(IV) nitrate ($1.82 \mathrm{~g}, 3.32 \mathrm{mmol}$) was added portion-wise and the solution
was left to stir for 4 hrs. The reaction was then quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$ and the organic layers combined and washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ The organics were then dried using MgSO_{4} and filtered before being evaporated under reduced pressure. The crude was purified by recrystallisation from $\mathrm{Et}_{2} \mathrm{O}$ and petroleum ether yielding a white crystalline solid ($0.100 \mathrm{~g}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}}=5.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CHNH})$, 3.64-3.59 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}), 1.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0 \& 5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right)$, 1.61-1.53 (2H, m, CH $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}}=172.3,57.4,55.9,44.1,41.9,39.5,31.5,30.1$; $\mathrm{IR}\left(\right.$ film $/ \mathrm{cm}^{-1}$) $\mathrm{v}=3218(\mathrm{~N}-\mathrm{H}), 1735$ (C=O); HRMS: m/z (ES) 140.1056, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$requires 140.1075; mp 95-97 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{17}=-2\left(\mathrm{c} 1.01, \mathrm{CHCl}_{3}\right)$

2-(2-Bromophenyl)-1,3-dioxane, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

2－（2－Bromophenyl）－1，3－dioxane， $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N	$\cdots \sim$－	の
\bigcirc	$\bigcirc \square^{\circ} \mathrm{T}$	m．
\wedge	$\cdots \bigcirc \infty$	\sim
m	$m m \sim N$	\sim
	$\mid \stackrel{\sim}{F}$	

ォL•Sて—

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)acrylate, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(E)-Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)acrylate, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ลু	
$\dot{6}$	

Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)propanoate, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 3-(2-(1,3-dioxan-2-yl)phenyl)propanoate, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 3-(2-formylphenyl)propanoate, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

N ${ }_{\sim}^{\circ} \stackrel{\infty}{\sim}$

Ethyl 3-(2-formylphenyl)propanoate, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\xrightarrow{\circ}$	$\stackrel{\rightharpoonup}{6}$	мmarom				
-	\cdots	$\bigcirc{ }^{\infty} \times$. ${ }^{\text {¢ }}$.		$\stackrel{\square}{8}$	®	$\stackrel{\square}{0}$
欠ู	N		$\stackrel{\rightharpoonup}{\wedge} \dot{\oplus}$	\bigcirc	$\stackrel{\sim}{n}$	∞
\checkmark	$\stackrel{+}{+}$		\wedge	6	m	\sim
		W/l/				

（S，E）－Ethyl 3－（2－（（（1－（4－methoxyphenyl）ethyl）imino）methyl）phenyl）propanoate（1a）， $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

へ ค 6
 $\dot{\sim} \sim \dot{\sim}$
 けナナナ サナ অナ m mmm い～～～

(S,E)-Ethyl 3-(2-(((1-(4-methoxyphenyl)ethyl)imino)methyl)phenyl)propanoate (1a), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10 ppm

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2a), $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aS,7bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2a), $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aS,7bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (3a), $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 III

(2aS,7bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (3a), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR,7bR)-2a,3-Dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5a), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR,7bR)-2a,3-Dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5a), $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\square}{\square}$	$\stackrel{+}{\sim}$	norm
$\stackrel{\circ}{\circ}$	$\dot{m} \dot{\sigma}$	$\infty \dot{\infty} \dot{\circ}$ ம்
$\stackrel{\text { ® }}{+}$	$\stackrel{\text { ¢ }}{\square}$	

$\underset{\nrightarrow-1}{\infty} \stackrel{\infty}{n}$	\cdots
$\dot{\omega} \dot{\omega}$	
人	

て\&•62—

(1R,2R)-1-Amino-2,3-dihydro-1H-indene-2-carboxylic acid hydrochloride (6), $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$

(1R,2R)-1-Amino-2,3-dihydro-1H-indene-2-carboxylic acid hydrochloride (6), $125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$

Ethyl 4-(2-formylphenyl)butanoate, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ethyl 4－（2－formylphenyl）butanoate， $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{n}{n}$	N	$\stackrel{\sim}{\sim}$	N「のペ	－			
$\stackrel{\sim}{\sim}$	\cdots	$\stackrel{\sim}{\square}$	$\dot{m} \times \dot{\sim}$	¢0	$\stackrel{\bigcirc}{+}$	$\stackrel{\infty}{\sim} \stackrel{\sim}{\infty}$	$\stackrel{\square}{\sim}$
$\stackrel{\sim}{\square}$	$\stackrel{\text {－}}{+}$	$\stackrel{+}{+}$		ストセ	8	$\cdots \stackrel{\sim}{n} \stackrel{-1}{\sim}$	$\stackrel{+}{\square}$
			V／			，	

(S,E)-Ethyl 4-(2-(((1-(4-methoxyphenyl)ethyl)imino)methyl)phenyl)butanoate (1g), $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left|\begin{array}{c}n \\ 0 \\ \dot{n}\end{array}\right|$

（S，E）－Ethyl 4－（2－（（（1－（4－methoxyphenyl）ethyl）imino）methyl）phenyl）butanoate（1g）， $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\bigcirc	$\cdots \mathrm{m}$	ナmNサへにへm	∞					
へ̆	○ ¢ ¢		${ }_{\infty}$	へのペ	$\stackrel{\square}{7}$	の	m	の $\begin{aligned} & \text { a } \\ & \text {－}\end{aligned}$
N	$\stackrel{\sim}{\circ}$		\dot{m}	mor．r			の．	サ～
$\stackrel{ }{ }$	$\bigcirc \sim$	HmmmmnnN	\square	へNம○	\bigcirc	\sim	$\stackrel{\sim}{n}$	$\infty \sim$
\checkmark	$\checkmark-$	「「「「「「」	\checkmark	\bigcirc	6	\sim	m	$\sim \sim$
	V／	V						

(2aS,8bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-1,3,4,8b-tetrahydronaphtho[1,2-b]azet-2(2aH)-one (2g), 400MHz, CDCl_{3}

(2aS,8bS)-1-((S)-1-(4-Methoxyphenyl)ethyl)-1,3,4,8b-tetrahydronaphtho[1,2-b]azet-2(2aH)-one (2g), $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\gamma} \dot{\gamma}$
先

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-5-methyl-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2b),

 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-5-methyl-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2b), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-6-(trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2c),

Clel
$1 /$

(2aR,7bR)-1-((S)-1-(4-Methoxyphenyl)ethyl)-6-(trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2c), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

（2aR，7bR）－7－Fluoro－1－（（S）－1－（4－methoxyphenyl）ethyl）－2a，3－dihydro－1H－indeno［1，2－b］azet－2（7bH）－one（2d），
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

「の の
＋

（2aR，7bR）－7－Fluoro－1－（（S）－1－（4－methoxyphenyl）ethyl）－2a，3－dihydro－1H－indeno［1，2－b］azet－2（7bH）－one（2d），
$75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

○へ○ サーが

$\langle 1 /$

(2aR,7bR)-6-Methoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2e),

 .

(2aR,7bR)-6-Methoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2e), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

m	$\checkmark 6$			
\bigcirc	$\begin{array}{ll} 6 \\ 0 & \mathrm{n} \\ \hline \end{array}$	$\begin{array}{cc} \circ \\ \text { の } \\ \hline \end{array}$	$\begin{array}{ccc} -1 \\ 0 \\ \rightarrow 1 \\ \hline \end{array}$	MNo N
\bigcirc	$\dot{\infty}$	$\dot{0}$ -	$\dot{\sim} \times \dot{0}$	
$\stackrel{ }{ }$	$\bigcirc \cap$	$\square_{1} \mathrm{~m}$	$\cdots \sim$	-
	$\stackrel{\square}{\square}$	r	-	
	V/			I

SII•6I-
$0 \angle Z \cdot 6 Z-$
 $\begin{array}{r}4 \\ + \\ \stackrel{+}{4} \\ \hline\end{array}$

(2aR,7bR)-5,6-Dimethoxy-1-((S)-1-(4-methoxyphenyl)ethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (2f), $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{array}{ll}
\infty & \underset{\sim}{\infty} \\
\stackrel{1}{\circ} \\
\overbrace{1} \\
.
\end{array}
$$

\qquad

$$
\begin{aligned}
& \text { リ/| }
\end{aligned}
$$

（2aR，7bR）－5，6－Dimethoxy－1－（（S）－1－（4－methoxyphenyl）ethyl）－2a，3－dihydro－1H－indeno［1，2－b］azet－2（7bH）－one（2f）， $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

で

てع०•0ع

Me

(2aR,7bR)-5-Methyl-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5b), $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

6
∞
\square
\square
6
$\begin{array}{lll}n & 6 & \infty \\ \sim & -1 & 0 \\ m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & & \end{array}$
$\begin{array}{cc}\text { M } & \cdots \\ 0 & n \\ 0 & 0 \\ \dot{\circ} & \dot{4} \\ 1\end{array}$

($2 \mathrm{a} R, 7 \mathrm{~b} R$)-5-Methyl-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5b), $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

む	N	-\%
$\stackrel{\text { İ }}{\text { - }}$	年	$\stackrel{\sim}{9}$
1		

$\varepsilon s \cdot \sigma \mathrm{~s}-$
$\mathrm{sz} \cdot 8 \mathrm{~s}-$
$\stackrel{\circ}{\circ}_{\stackrel{\infty}{\infty}}^{\stackrel{\infty}{\sim}} \stackrel{\stackrel{\infty}{\sim}}{n}$

($2 \mathrm{a} R, 7 \mathrm{~b} R$)-6-(Trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5c), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR, $7 \mathrm{~b} R$)-6-(Trifluoromethyl)-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5c), $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\|ll

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

(2aR,7bR)-7-Fluoro-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5d), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2aR,7bR)-7-Fluoro-2a,3-dihydro-1H-indeno[1,2-b]azet-2(7bH)-one (5d), $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \text { ppm }\end{array}$

1,3,4,8b-Tetrahydronaphtho[1,2-b]azet-2(2aH)-one (5g), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

1,3,4,8b-Tetrahydronaphtho[1,2-b]azet-2(2aH)-one (5g), $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

~~

(1S,2R)-Ethyl 1-(((S)-1-(4-methoxyphenyl)ethyl)amino)-2,3-dihydro-1H-indene-2-carboxylate (4), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(1S,2R)-Ethyl 1-(((S)-1-(4-methoxyphenyl)ethyl)amino)-2,3-dihydro-1H-indene-2-carboxylate (4), $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(1S,2S)-Ethyl 1-(((S)-1-(4-methoxyphenyl)ethyl)amino)-2,3-dihydro-1H-indene-2-carboxylate, $500 \mathrm{MHz}, \mathrm{MeOD}$

(1R,5S)-6-((S)-1-(4-methoxyphenyl)ethyl)-6-azabicyclo[3.2.0]heptan-7-one (2h) 300MHz, CDCl_{3}

MeO
-

-

(1R,5S)-6-((S)-1-(4-methoxyphenyl)ethyl)-6-azabicyclo[3.2.0]heptan-7-one (2h) 75MHz, CDCl_{3}

추N ̇̇
N ત N N さ

(1R,5S)-6-azabicyclo[3.2.0]heptan-7-one (5h), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(1R,5S)-6-azabicyclo[3.2.0]heptan-7-one (5h), $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(1R,5S)-6-((S)-1-(4-methoxyphenyl)ethyl)-3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one (2i), 300MHz, CDCl ${ }_{3}$

(1R,5S)-6-((S)-1-(4-methoxyphenyl)ethyl)-3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one (2i), 75MHz, CDCl 3

3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one (5i), 400MHz, CDCl_{3}

3,3-dimethyl-6-azabicyclo[3.2.0]heptan-7-one (5i), $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

References

(1) Hollinshead, S. P.; Nichols, J. B.; Wilson, J. W. Journal of Organic Chemistry 1994, 59, 6703.
(2) Warshawsky, A. M.; Alt, C. A.; Brozinick, J. T.; Harkness, A. R.; Hawkins, E. D.; Henry, J. R.; Matthews, D. P.; Miller, A. R.; Misener, E. A.; Montrose-Rafizadeh, C.; Rhodes, G. A.; Shen, Q. R.; Vance, J. A.; Udodong, U. E.; Wang, M. M.; Zhang, T. Y.; Zink, R. W. Bioorganic \& Medicinal Chemistry Letters 2006, 16, 6328.
(3) Jagdale, A. R.; Sudalai, A. Tetrahedron Letters 2008, 49, 3790.
(4) Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. Journal of Organic Chemistry 2008, 73, 7380.
(5) Fulop, F.; Palko, M.; Kaman, J.; Lazar, L.; Sillanpaa, R. Tetrahedron-Asymmetry 2000, 11, 4179.
(6) Ballini, R.; Marcantoni, E.; Petrini, M. Synthetic Communications 1991, 21, 1075.

