SUPPORTING INFORMATION

Exploiting the Ring Strain in Bicyclo[2.2.1]heptane Systems for the Stereoselective Preparation of Highly Functionalized Cyclopentene, Dihydrofuran, Pyrroline and Pyrrolidine Scaffolds

Elena Moreno-Clavijo, Antonio J. Moreno-Vargas,* Raphaëlle Kieffer, Thérèse Sigstam, Ana T. Carmona and Inmaculada Robina*

Department of Organic Chemistry, Faculty of Chemistry, University of Seville. Prof. García González, 1, 41012-Seville (Spain)
ajmoreno@us.es,robina@us.es

Table of contents:

- General procedures ... S1
- Experimental details and characterization data for new compounds.......... S2
- ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra for all the new compounds............................ S13

General Procedures.

Optical rotations were measured in a 1.0 cm or 1 dm tube with a Jasco P-2000 spectropolarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in CDCl_{3}, $\left[\mathrm{d}_{6}\right]$ DMSO and $\mathrm{CD}_{3} \mathrm{OD}$. All the assignments were confirmed by two-dimensional NMR experiments. The FAB mass spectra were obtained using glycerol or 3-nitrobenzyl alcohol as the matrix. TLC was performed on silica gel HF_{254} (Merck), with detection by UV light charring with $\mathrm{H}_{2} \mathrm{SO}_{4}$ or with Pancaldi reagent $\left[\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MoO}_{4}, \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}\right.$, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$]. Silica gel 60 (Merck, 230 mesh) was used for preparative chromatography.

General strategy for the synthesis of 7-aza/oxa/carbabicyclo[2.2.1]hepta-2,5-diene derivatives 4,5 and 6 .

To a stirred solution of p-tolyl-2-bromoethynyl sulfone 3^{1} (1 mmol) in anhydrous toluene (3 mL) the corresponding diene (12 eq) was added. For $\mathrm{X}=\mathrm{CH}_{2}$, the diene was distilled over a solution of alkyne $\mathbf{3}$ in dry toluene. The mixture was heated ($90{ }^{\circ} \mathrm{C}$ (for $\mathrm{X}=\mathrm{NBoc}$), $45^{\circ} \mathrm{C}$ (for $\mathrm{X}=\mathrm{O}$) and $25{ }^{\circ} \mathrm{C}\left(\right.$ for $\left.\mathrm{X}=\mathrm{CH}_{2}\right)$) until the reaction was completed. The solvent was removed and the residue purified by chromatography column on silica gel.

(\pm)-2-Bromo-3-(p-toluenesulfonyl)-7-oxabicyclo[2.2.1]hepta-2,5-diene (5)

The cycloaddition of 3 with furan following the general procedure afforded, after chromatographic purification (AcOEt/petroleum ether, 1:6), compound 5 (91% yield).
${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$) $\delta 7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}), 7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ Ts), 7.10-7.04 (m, 2H, H-5, H-6), $5.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or H-4), $5.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or H-4), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 150.7,146.2,145.5$, 136.3 (C-Ar, C-2, C-3), 143.9, 140.4 (C-5, C-6), 130.2, 127.9 (C-Ar), 90.6, 85.4 (C-1, C-4), $21.9\left(\mathrm{CH}_{3}\right.$ of Ts). CIMS m/z $329\left[5 \%,(\mathrm{M}+\mathrm{H})^{+}\right], 326\left[5 \%,(\mathrm{M}+\mathrm{H})^{+}\right]$.CIHRMS m / z found 328.9692 , calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \operatorname{SBr}(81)(\mathrm{M}+\mathrm{H})^{+}: 328.9670$ and m / z found 326.9692, calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{SBr}(79)(\mathrm{M}+\mathrm{H})^{+}: 326.9691$

(\pm)-2-Bromo-3-(p-toluenesulfonyl)bicyclo[2.2.1]hepta-2,5-diene (6)

The cycloaddition of $\mathbf{3}$ with cyclopentadiene following the general procedure afforded, after chromatographic purification (ether/petroleum ether, 1:3), compound 6 (97% yield).

[^0]${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$) $\delta 7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}), 7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ Ts), 6.68 (br. dd, $1 \mathrm{H}, J=4.8, J=3.1, \mathrm{H}-5$ or $\mathrm{H}-6$), 6.61 (br. dd, $1 \mathrm{H}, J=4.8, J=2.9$, $\mathrm{H}-$ 5 or H-6), $3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1\right.$ or H-4), $3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or $\mathrm{H}-4), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts), $2.34(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.8, \mathrm{~J}=1.6, \mathrm{H}-7 \mathrm{a}), 2.34(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=6.8, \mathrm{~J}=1.7, \mathrm{H}-7 \mathrm{~b}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75.4$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 149.5,145.4,144.7,136.8$ (C-Ar, C-2, C-3), 142.3, 139.4 (C-5, C-6), 129.9, 127.8 (C-Ar), 71.7 (c-7), 62.4, 53.6 (C-1, C-4), $21.8\left(\mathrm{CH}_{3}\right.$ of Ts). CIMS $m / z 325\left[50 \%,(\mathrm{M}+\mathrm{H})^{+}\right], 327\left[50 \%,(\mathrm{M}+\mathrm{H})^{+}\right]$. CIHRMS m / z found 324.9898, calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{SBr}(79)(\mathrm{M}+\mathrm{H})^{+}: 324.9898$ and m / z found 326.9863 , calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{SBr}(81)(\mathrm{M}+\mathrm{H})^{+}: 324.9877$.

(\pm)-3-endo and 3-exo-(p-Toluenesulfonyl)-7-oxabicyclo[2.2.1]hept-5-en-2-one (7)

To a solution of $5(1.62 \mathrm{~g}, 4.95 \mathrm{mmoles})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(22 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ (3.62 mL) followed by a slowly addition of a solution of $\mathrm{Et}_{2} \mathrm{NH}(580 \mu \mathrm{~L}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$. The reaction was stirred for 1.5 h . at room temperature. An aqueous solution of $\mathrm{HCl}(10 \%, 18 \mathrm{~mL})$ was added and the mixture was stirred for 3.5 h . at r.t. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by chromatography column on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, acetone, $\left.50: 1\right)$ to give $7(1.26 \mathrm{~g}, 4.77$ mmoles, 97%) as a mixture of isomers (endo/exo $=1$).
${ }^{1} \mathrm{H}$ RMN $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right.$, mixture of isomers $\mathrm{a} / \mathrm{b}: 1 / 1$) $\delta 7.82-$ 7.78 (m, 4H, H-Ts(a), H-Ts(b)), 7.39-7.34 (m, 4H, H-Ts(a), H-Ts(b)), 7.02 (dd, 1H, J5,6 $\left.=5.7, J_{5,4}=1.6, \mathrm{H}-5 \mathrm{a}\right), 6.76\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.7, J_{5,4}=1.7, \mathrm{H}-5 \mathrm{~b}\right), 6.59\left(\mathrm{br} . \mathrm{dd}, 1 \mathrm{H}, J_{6,1}=\right.$ $1.8, \mathrm{H}-6 \mathrm{~b}), 6.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 5.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~b}), 5.49(\mathrm{~m} \mathrm{H}-4 \mathrm{a}), 4.77\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,6}=\right.$ 2.1, $\left.J_{1,4}=0.9, \mathrm{H}-1 \mathrm{a}\right), 4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~b}), 4.04$ (br. d, $\left.1 \mathrm{H}, J_{3,4}=4.2, \mathrm{H}-3 \mathrm{a}\right), 3.49(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-3 \mathrm{~b}), 2.46,2.45\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts (a), CH_{3} of Ts (b)). ${ }^{13} \mathrm{C}$ NMR $\quad(75.4 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 195.3,194.3$ (CO(a), CO(b)), 145.7 (C-Ar), 141.2 (C-5b), 139.9 (C$5 \mathrm{a}), 136.0,135.5$ (C-Ar), 134.1 (C-6b), 130.45 (C-6a), 130.1, 130.0, 129.3, 128.7 (CAr), 83.7 (C-1a), 81.9 (C-1b), 81.0 (C-4b), 79.6 (C-4a), 65.1 (C-3a), 64.3 (C-3b), 21.9 $\left(\mathrm{CH}_{3}\right.$ of $\mathrm{Ts}(\mathrm{a}), \mathrm{CH}_{3}$ of Ts (b)). CIMS $m / z 265\left[4 \%,(\mathrm{M}+\mathrm{H})^{+}\right]$. CIHRMS m/z found 265.0534, calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 265.0535$

(\pm)-3-endo- and 3-exo-(p-Toluenesulfonyl)bicyclo[2.2.1]hept-5-en-2-one (8)

To a solution of $\mathbf{6}(304 \mathrm{mg}, 0.938 \mathrm{mmoles})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(4.2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL})$ followed by a slowly addition of a solution of $\mathrm{Et}_{2} \mathrm{NH}(107 \mu \mathrm{~L})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.3 \mathrm{~mL})$. The reaction was stirred for 7 h . at $50^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{HCl}(10 \%, 3.5 \mathrm{~mL})$ was added and the mixture was stirred for 3.5 h . at r.t. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by chromatography column on silica gel ($\mathrm{AcOEt} /$ petroleum ether, $1: 4$) to give 8 (203 mg , 83%) as a mixture of isomers (endo/exo $=2.6$) as a white solid.
${ }^{1} \mathrm{H} \mathrm{RMN}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$, mixture of isomers a and $\mathrm{b}, \mathrm{a} / \mathrm{b}=$ 2.6/1) $\delta 7.79-7.74$ (m, 4H, H-Ts(a), H-Ts(b)), 7.35-7.30 (m, 4H, H-Ts(a), H-Ts(b)), 6.70 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{6,5}=5.4, J_{6,1}=2.6, \mathrm{H}-6 \mathrm{~b}\right), 6.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{6.5}=5.4, J_{6,1}=3.0, \mathrm{H}-6 \mathrm{a}\right), 6.24(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{5,4}=3.3, \mathrm{H}-5 \mathrm{a}\right), 6.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}), 3.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=3.0, \mathrm{H}-3 \mathrm{~b}\right), 3.69$ (br. s, 1 H , H-1a), 3.44 (m, 1H, H-1b), 3.40 (d, 1H, H-4a), 3.15 (m, 1H, H-4b), 3.10 (m, 1H, H-3a), 2.86 (br. d, $\left.1 \mathrm{H}, J_{\mathrm{H}, \mathrm{H}}=10.0, \mathrm{H}-7(\mathrm{a})\right), 2.43,2.41\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\mathrm{Ts}(\mathrm{a}), \mathrm{CH}_{3}$ of $\left.\mathrm{Ts}(\mathrm{b})\right)$, 2.18-10 (m, 2H, H-7(a), H-7(b)), 1.86 (d, 1H, $\left.J_{\mathrm{H}, \mathrm{H}}=9.8, \mathrm{H}-7(\mathrm{~b})\right) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz , $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 201.9,200.1$ (CO(a), $\left.\mathrm{CO}(\mathrm{b})\right), 145.2,145.0$ (C-Ar), 142.5 (C-6a), 139.9 (C-6b), 136.4 (C-Ar), 136.3, 135.3, 129.9, 129.7, 129.2, 128.8, 128.7 (C-Ar, C-5b), 69.0 (C-3b), 66.0 (C-4 ${ }^{\text {a }}$), 56.7 (C-4b), 55.2 (C-3a), 48.1 (C-7b), 46.9 (C-7a), 43.6 (C-1a), 43.0 (C-1b), $21.7\left(\mathrm{CH}_{3}\right.$ of Ts (a), CH_{3} of Ts (b)). CIMS m/z 263 [100\%, (M+H) $\left.{ }^{+}\right]$. CIHRMS $\quad \mathrm{m} / \mathrm{z}$ found 263.0737 , calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 263.0742$
(\pm)-3-endo-(p-Toluenesulfonyl)-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol (10a) and (\pm)-3-exo-(p-Toluenesulfonyl)-7-oxabicyclo[2.2.1]hept-5-en-2-exo-ol (10b).

10b

To a solution of 7 ($294.8 \mathrm{mg}, 1.14 \mathrm{mmoles}$) in anhydrous THF (7 mL) at $-7{ }^{\circ} \mathrm{C}$ was added a solution of LiBH_{4} in THF $(2 \mathrm{M}, 680 \mu \mathrm{~L})$. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture allowed to warm to r.t. under stirring. The solution was diluted with AcOEt, washed with water and brine, and concentrated. The resulting residue was purified by column chromatography (AcOEt/petroleum ether, $1: 2 \rightarrow 1: 1$) to give first (\pm)-10a ($142 \mathrm{mg}, 53 \%$) and second (\pm)-10b ($42 \mathrm{mg}, 14 \%$).

Data for (\pm)-10a:

${ }^{1} \mathrm{H}$ RMN $\quad\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.3, \mathrm{H}-\mathrm{Ts}), 7.38$ (d, 2H, H-Ts), 6.90 (br. dd, $1 \mathrm{H}, J_{5,6}=5.9, J_{5,4}=1.7, H-5$), 6.68 (br. dd, $1 \mathrm{H}, J_{6.1}=1.7$, H-6), $5.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.57$ (ddd, $1 \mathrm{H}, J_{2, \mathrm{OH}}=11.2, J_{2,3}=7.8, J_{2,1}=$ 4.4, H-6), 3.76 (dd, $1 \mathrm{H}, J_{3,4}=4.3, \mathrm{H}-5$), $3.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 145.4,137.4$ (C-Ar), 136.6 (C-5), 134.9 (C-6), 130.2. 128.1 (C-Ar), 81.5 (C-1), 79.9 (C-4), $70.6(\mathrm{C}-2), 65.3(\mathrm{C}-3), 21.8\left(\mathrm{CH}_{3}\right.$ of Ts). CIMS m/z $267\left[4 \%,(\mathrm{M}+\mathrm{H})^{+}\right]$. CIHRMS m / z found 267.0688, calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 267.0691$

Data for ($\mathbf{\pm} \mathbf{)} \mathbf{- 1 0 b}$:

${ }^{1} \mathrm{H} \mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 7.87(\mathrm{~d}, 2 \mathrm{H}, J=8.3 . \mathrm{H}-\mathrm{Ts}), 7.36(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}), 6.46$ (dd, $1 \mathrm{H}, J=5.8, J=1.5, \mathrm{H}-5$ or H-6), $6.41(\mathrm{dd}, 1 \mathrm{H}, J=5.8, J=1.6$, H5 or H-6), $5.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1\right.$ or H-4), $4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1\right.$ or H-4), $4.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{OH}}=\right.$ $\left.11.0, J_{2,3}=6.1, \mathrm{H}-2\right), 3.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}), 3.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 145.2$ (C-Ar), 138.3 (C-5 or C-6), 136.7 (C-Ar), 135.5 (C-5 or C-6), 130.0, 128.8 (C-Ar), 86.1 (C-1 or C-4), 78.8 (C-1 or C-4), 71.2 (C2), $65.5(\mathrm{C}-3), 21.8\left(\mathrm{CH}_{3}\right.$ of Ts). CIMS m/z $267\left[5 \%,(\mathrm{M}+\mathrm{H})^{+}\right], 249\left[23 \%,(\mathrm{M}-\mathrm{OH})^{+}\right]$. CIHRMS m / z found 267.0699, calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 267.0691$.

3-(p-Toluenesulfonyl)bicyclo[2.2.1]hept-5-en-2-ols (\pm)-11a, (\pm)-11b and (\pm)-11c.

To a solution of $\mathbf{8}$ ($286 \mathrm{mg}, 1.09 \mathrm{mmoles}$) in anhydrous THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiBH_{4} in THF ($2 \mathrm{M}, 0.54 \mathrm{~mL}$). The mixture was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture allowed to warm to r.t. under stirring. The solution was diluted with AcOEt, washed with water and brine, and concentrated. The resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: Acetone (20:1)) to give first a mixture of (\pm)-11a and $\mathbf{(\pm) - 1 1 b}(164 \mathrm{mg}, 57 \%, \mathbf{1 1 a} / \mathbf{1 1 b}=1.4)$ and second $(\pm)-\mathbf{1 1 c}(76 \mathrm{mg}, 27 \%)$.

Data for 11a + 11b:
${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$, mixture of isomers a+b) $\delta 7.77$ (d, $2 \mathrm{H}, J=8.3 . \mathrm{H}-\mathrm{Ts}(\mathrm{b})$), 7.75 (d, 2H, $J=8.3 . \mathrm{H}-\mathrm{Ts}(\mathrm{a})$), 7.27 (d, $2 \mathrm{H}, J=8.3 . \mathrm{H}-\mathrm{Ts}(\mathrm{a}+\mathrm{b})$), $6.53\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.7, J_{1,6}=2.9, \mathrm{H}-6(\mathrm{a})\right), 6.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.7, J_{4,5}=3.1, \mathrm{H}-5(\mathrm{a})\right)$, 6.1 (m, 2H, H-5(b) and H-6(b)), 4.56 (ddd, $1 \mathrm{H}, J_{2, \mathrm{OH}}=11.0, J_{2,3}=7.8, J_{1,2}=3.8, \mathrm{H}-2$), 4.10 (br t, 1H, $\left.J_{2, \mathrm{OH}}=J_{2,3}=6.1, \mathrm{H}-2(\mathrm{~b})\right), 3.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.0, J_{2,3}=7.8, \mathrm{H}-3(\mathrm{a})\right), 3.38$ (d, 1H, $J_{2, \mathrm{OH}}=6.3, \mathrm{OH}(\mathrm{b})$), 3.16 (br s, 1H, H-4(a)), 3.10 (br s, 2H, H-1(a) and H-4(b)), $3.03\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=6.3, J_{3,7 \mathrm{~b}}=1.5, \mathrm{H}-3(\mathrm{~b})\right), 2.95\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{OH}}=11.0, \mathrm{OH}(\mathrm{a})\right), 2.80(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{H}-1(\mathrm{~b})), 2.37$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$ of $\mathrm{Ts}(\mathrm{a})$ and CH_{3} of $\mathrm{Ts}(\mathrm{b})$), $2.22\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.5, \mathrm{H}-\right.$ $7 \mathrm{a}(\mathrm{b})), 1.57\left(\mathrm{dt}, 1 \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.5, J_{7 \mathrm{~b}, 2}=J_{7 \mathrm{~b}, 3}=1.5, \mathrm{H}-7 \mathrm{~b}(\mathrm{~b})\right), 1.50\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.4\right.$, $\mathrm{H}-7 \mathrm{a}(\mathrm{a})$), $1.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{7 \mathrm{a}, 7 \mathrm{~b}}=9.4, \mathrm{H}-7 \mathrm{~b}(\mathrm{a})\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta$ 144.6 (C-1 of Ts(b)), 144.5 (C-1 of Ts(a)), 138.9 (C-5(b)), 137.7 (C-4 of Ts(b)), 137.2 (C-6(b)), 136.9 (C-6(a)), 133.5 (C-5(a)), 129.8, 128.5, 128.2 (C-2, C-3, C-5, C-6 of $\mathrm{Ts}(\mathrm{a}+\mathrm{b}), \mathrm{C}-4$ of $\mathrm{Ts}(\mathrm{a})), 73.7$ (C-2(a)), 73.0 (C-2(b)), 68.0 (C-3(a)), 66.8 (C-3(b)), 49.6 (C-1(b)), 49.5 (C-1(a)), 46.4 (C-7(a)), 45.8 (C-4(a)), 44.1 (C-7(b)), 44.0 (C-4(b)), 21.6 $\left(\mathrm{CH}_{3}\right.$ of $\left.\mathrm{Ts}(\mathrm{a}+\mathrm{b})\right)$. FABMS $m / z 287\left[100 \%,(\mathrm{M}+\mathrm{Na})^{+}\right]$. FABHRMS m / z found 287.0718, calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 287.0718$.

Data for 11c:
${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$) $\delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.3$. H-2 and H-6 of Ts), 7.29 (d, $2 \mathrm{H}, J=8.3$. H-3 and H-5 of Ts), $6.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.7, J_{4,5}=3.2, \mathrm{H}-5\right)$, $6.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.7, J_{1,6}=2.9, \mathrm{H}-6\right), 4.77\left(\mathrm{dt}, 1 \mathrm{H}, J_{2, \mathrm{OH}}=6.2, J_{1,2}=J_{2,3}=3.6, \mathrm{H}-2\right)$, 3.02 (br s, 1H, H-4), 2.99 (br s, 1H, H-1), 2.57 (dd, $1 \mathrm{H}, J_{2,3}=3.6 J_{3,7 \mathrm{~b}}=2.4, \mathrm{H}-3$), 2.38 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts), $1.99\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.5, \mathrm{H}-7 \mathrm{a}\right), 1.89\left(\mathrm{~d}, 1 \mathrm{H}, J_{2, \mathrm{OH}}=6.2, \mathrm{OH}\right), 1.48$ $\left(\mathrm{dq}, 1 \mathrm{H}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=9.5, J_{7 \mathrm{~b}, 1}=J_{7 \mathrm{~b}, 4}=J_{7 \mathrm{~b}, 3}=2.4, \mathrm{H}-7 \mathrm{~b}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ ppm) $\delta 144.7$ (C-1 of Ts), 138.1 (C-5), 136.4 (C-4 of Ts), 136.2 (C-6), 74.0 (C-2), 73.4 (C-3), 47.9 (C-1), 45.2 (C-4), 45.1 (C-7), $21.6\left(\mathrm{CH}_{3}\right.$ of Ts). FABMS m/z 287 [100\%, $\left.(\mathrm{M}+\mathrm{Na})^{+}\right]$. FABHRMS m / z found 287.0724, calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}$: 287.0718.

(\pm)-(2RS,5SR)-N-tert-Butoxycarbonyl-2-methoxycarbonyl-5-(p-toluene-

 sulphonyl)methyl-3-pyrroline (2).

Basic catalysis-Method a: To a solution of the racemic 7-azanorbornenone $\mathbf{1}(100 \mathrm{mg}$, 0.275 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$, $\mathrm{NaOMe}(1.5 \mathrm{mg}, 0.028 \mathrm{mmol})$ was added and the mixture was stirred for 45 min . at room temperature. Then, acidic resin IR- $120 \mathrm{H}^{+}$was added till pH 7 , the resin was filtered and the solution evaporated to give pure $2(87 \mathrm{mg}$, 82% yield) as a yellowish powder. Characterization data for this compound were in agreement with those reported previously. ${ }^{2}$

Acid catalysis-Method b: To a solution of the racemic 7-azanorbornenone $\mathbf{1}$ (100 mg , 0.275 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$, a solution of $10 \% \mathrm{AcOH}$ (glacial) in $\mathrm{MeOH}(16 \mu \mathrm{l})$ was added and the mixture was stirred for 45 min . at room temperature. Then, the solution was evaporated to give pure 2 (107 mg , quant. yield) as a yellowish oil.

[^1](土)-(2RS,5SR)-2-Methoxycarbonyl-5-(p-toluenesulphonyl)methyl-2,5-dihydrofuran (12).

This compound was synthesized using the same protocol (method a or b) that for the synthesis of 2, except that racemic 7-oxanorbornenone 5 (mixture of epimers 1:1) was used as starting material. Pure 12 (quant. yield) was obtained as a white solid.
${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$) $\delta 7.81$ (d, 2H, $J=8.3, \mathrm{H}-\mathrm{Ts}$), 7.34 (d, $2 \mathrm{H}, \mathrm{H}-\mathrm{Ts}$), 6.11 (ddd, $1 \mathrm{H}, J=6.1, J=2.4, J=1.6, \mathrm{H}-3$ or $\mathrm{H}-4$), 5.91 (dt, $1 \mathrm{H}, J=6.0, J$ $=1.9, \mathrm{H}-3$ or H-4), $5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 5.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}, \mathrm{H}}=14.1, J_{\mathrm{H}, 5}\right.$ $=5.8, \mathrm{CHHTs}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}, 5}=6.7, \mathrm{CHHTs}\right), 2.44(\mathrm{~s}, 3 \mathrm{H}$, CH_{3} of Ts). ${ }^{13} \mathrm{C}$ NMR ($\left.75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 171.0\left(\mathrm{COOCH}_{3}\right), 144.9,136.9(\mathrm{C}-$ Ar), 130.8 (C-3 or C-4), 129.9 (C-Ar), 128.2 (C-Ar), 126.6 (C-3 or C-4), 84.6 (C-2), $81.7(\mathrm{C}-5), 61.9\left(\mathrm{CH}_{2} \mathrm{Ts}\right), 52.4\left(\mathrm{COOCH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right.$ of Ts$)$. CIMS m/z 297 $\left[100 \%,(\mathrm{M}+\mathrm{H})^{+}\right]$. CIHRMS m / z found 297.0797, calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 297.0797.

(\pm)-(1RS,4SR)-Methyl

 (13).

To a solution of compound $\mathbf{8}$ ($53 \mathrm{mg}, 0.202 \mathrm{mmol}$, mixture of epimers) in dry MeOH (2 mL), pyridine ($17 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 24 h . Then the solution was evaporated to give pure 13 (59 mg , quant. yield) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) 7.72\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{2^{\prime}, 3^{\prime}}={ }^{3} J_{5^{\prime}, 6^{\prime}}=8.2, \mathrm{H}-\mathbf{2}^{\prime}\right.$ and H-6' of Ts), 7.29 (d, 2H, H-3' and H-5'), 5.73 (m, 2H, H-2 and H-3), 3.60 (s, 3 H , COOCH_{3}), $3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.12\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ts}\right.$ and $\left.\mathrm{H}-4\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts), $2.30\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=13.8,{ }^{3} J_{5 \mathrm{a}, 1}={ }^{3} J_{5 \mathrm{a}, 4}=8.5, \mathrm{H}-5 \mathrm{a}\right), 1.82\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{5 \mathrm{~b}, 1}={ }^{3} J_{5 \mathrm{~b}, 4}=5.6, \mathrm{H}-\right.$ $5 \mathrm{~b}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}\right) 174.3$ (COOMe), 144.7 (C-1' of Ts), 136.8 (C-4’ of Ts), 134.8, 130.5 (C-2, C-3), 130.0, (C-2' and C-6' of Ts), 128.0 (C-3' and C-5' of Ts $), 61.4\left(\mathrm{CH}_{2} \mathrm{Ts}\right), 52.0\left(\mathrm{COOCH}_{3}\right), 50.1(\mathrm{C}-1), 39.7(\mathrm{C}-4), 32.8(\mathrm{C}-5), 21.6$
$\left(\mathrm{CH}_{3}\right.$ of Ts). CIMS m/z $295\left[30 \%\right.$, (M+H) $\left.{ }^{+}\right]$. HRCIMS m / z found 295.1013, calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}$ 295.1004.

(\pm)-(2RS,5SR)-N-tert-Butoxycarbonyl-2-formyl-5-(p-toluenesulphonyl)methyl-3pyrroline (14).

To a solution of the racemic alcohol $\mathbf{9}^{2}(1.17 \mathrm{~g}, 3.19 \mathrm{mmol})$ in $\mathrm{MeOH}, \mathrm{NaOMe}(43 \mathrm{mg}$, 0.8 mmol) was added and the mixture was stirred for 2 h at room temperature. Then, acidic resin IR- $120 \mathrm{H}^{+}$was added till pH 7 , the resin was filtered and the solution concentrated to give pure $14\left(1.20 \mathrm{~g}\right.$, quant.) as a yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d $\left.{ }_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) 9.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.0,-\mathrm{CHO}\right), 7.81\left(\mathrm{~d}, 2 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=J_{5^{\prime}, 6^{\prime}}=\right.$ 8.2, H-2' and H-6' of Ts), $7.49\left(\mathrm{~d}, 2 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=J_{5^{\prime}, 6^{\prime}}=8.2, \mathrm{H}-3^{\prime}\right.$ and H-5' of Ts $), 6.12(\mathrm{dt}$, $1 \mathrm{H},{ }^{3} J_{3,4}=6.4,{ }^{3} J_{4,5}={ }^{4} J_{2,4}=2.0, \mathrm{H}-4^{*}$), 5.86 (br. dt, $1 \mathrm{H},{ }^{3} J_{3,4}=6.4,{ }^{3} J_{2,3}={ }^{4} J_{3,5}=1.6$, H$3^{*}$), 4.87-4.81 (m, 2H, H-2 and H-5), 3.89 (br d, $1 \mathrm{H},{ }^{2} J=13.9$, CHHTs), 3.40 (dd, ${ }^{2} J=$ $13.9,{ }^{3} J_{\mathrm{CHTs}, 5}=9.5, \mathrm{CHHTs}$), 2.45 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of Ts), $1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Bu}^{\mathrm{t}}\right) .{ }^{13} \mathrm{C}-$ NMR (75.4 MHz, DMSO-d $\left.\mathrm{d}_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) 198.0(\mathrm{CHO}), 152.2$ (CO of Boc), 144.2 (C-1 of Ts), 136.7 (C-4 of Ts), 131.2 (C-3 or C-4) 129.5 (C-2 and C-6 of Ts), 127.0 (C-3 and C-5 of Ts), $123.4(\mathrm{C}-3$ or $\mathrm{C}-4)$, $80.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 72.2(\mathrm{C}-2), 59.312}\right.$ $\left(\mathrm{CH}_{2} \mathrm{Ts}\right), 58.6(\mathrm{C}-5), 27.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 20.4\left(\mathrm{CH}_{3}\right.$ of Ts). FABMS m/z $388[10 \%$, $\left.(\mathrm{M}+\mathrm{Na})^{+}\right], 266\left[60 \%,(\mathrm{M}-\mathrm{Boc}+\mathrm{H})^{+}\right]$. CIMS m/z $366\left[1 \%,(\mathrm{M}+\mathrm{H})^{+}\right], 266[100 \%$, (M $\left.\mathrm{Boc}+\mathrm{H})^{+}\right]$. HRCIMS m/z found 366.1374, calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S} 366.1375$.
*Exchangable assignment.
(2S,5R)-N-tert-Butoxycarbonyl-2-formyl-5-(p-toluenesulphonyl)methyl-3-pyrroline ((-)-14).

This compound was synthesized in the same manner than ($\pm \mathbf{)} \mathbf{- 1 4}$, except that enantiomerically pure alcohol $(+)-9^{2}$ was used as starting material. $[\alpha]_{26}=-41(0.5$, CHCl_{3}).
(2R,5S)-N-tert-Butoxycarbonyl-2-formyl-5-(p-toluenesulphonyl)methyl-3-pyrroline (+)-14).

This compound was synthesized in the same manner than $(\pm)-\mathbf{1 4}$, except that pure camphanoate $(-)-9^{2}$ was used as starting material. $[\alpha]_{26}=+43\left(c 0.7, \mathrm{CHCl}_{3}\right)$.

(\pm)-(1RS,2SR,3RS,4SR)-7-tert-Butoxycarbonyl-3-endo-(p-toluenesulfonyl)-7-

 azabicyclo[2.2.1]heptan-2-endo-ol (15).

A solution of bicyclic alcohol 9 ($206 \mathrm{mg}, 0.564 \mathrm{mmol}$) in $\mathrm{MeOH}(6 \mathrm{~mL})$ was hydrogenated under atmospheric pressure using Pd on charcoal ($10 \%, 20 \mathrm{mg}$) as catalyst. The suspension was stirred for 1 h at room temperature. Then, the mixture was filtered (celite) and the filtered solution was evaporated. The resulting crude of the reaction was purified by column chromatography (AcOEt:petroleum ether, 1:3) to give pure 15 ($170 \mathrm{mg}, 82 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}, J\right.$ Hz) $7.75\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{2^{\prime}, 3^{\prime}}={ }^{3} J_{5^{\prime}, 6}=8.3, \mathrm{H}-2\right.$ ' and H-6' of Ts), $7.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and H-5'), 4.35-4.20 (m, 3H, H-1, H-2 and H-4), $3.93\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{2, \mathrm{OH}}=9.5, \mathrm{OH}\right), 3.50(\mathrm{br} . \mathrm{dd}, 1 \mathrm{H}$, $\left.{ }^{3} J_{2,3}=9.4,{ }^{3} J_{3,4}=4.7, \mathrm{H}-3\right), 2.52\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{6 \mathrm{a}, 6 \mathrm{~b}}={ }^{3} J_{6 \mathrm{a}, 5 \mathrm{a}}=9.21, \mathrm{H}-6 \mathrm{a}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Ts), $2.11\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{5 \mathrm{a}, 5 \mathrm{~b}}=8.4,{ }^{3} J_{6 \mathrm{a}, 5 \mathrm{a}}=9.21, \mathrm{H}-5 \mathrm{a}\right), 1.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}$ and H-6b), $1.34(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{CH}_{3}$ of Bu^{t}). ${ }^{13} \mathrm{C}$-NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \delta \mathrm{ppm}$, mixture of rotamers) 154.5 (CO of carbamate), 145.2 (C-1' of Ts), 137.3 (C-4' of Ts), 130.1, 130.0 (C-2' and C-6' of Ts), 127.9, 127.8 (C-3' and C-5' of Ts $), 80.8\left(C_{\left(\mathrm{CH}_{3}\right)_{3}}, 70.0,69.9(\mathrm{C}-2), 64.2\right.$, 64.1 (C-3), 61.3, 61.2, 59.0, 58.8 (C-1 and C-4), $28.2\left(\mathrm{CH}_{3}\right.$ of Ts), 24.7 (br s, C-6), 21.7, $21.6\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 20.3(\mathrm{C}-5)$. FABMS m/z $390\left[100 \%,(\mathrm{M}+\mathrm{Na})^{+}\right]$. HRFABMS m/z found 390.1354, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$390.1351.
(2SR,5RS)-N-tert-Butoxycarbonyl-2-formyl-5-(p-toluenesulphonyl)methylpyrrolidine (16).

To a solution of the bicyclic alcohol 15 ($59 \mathrm{mg}, 0.159 \mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$, $\mathrm{NaOMe}(1.7 \mathrm{mg}, 0.032 \mathrm{mmol})$ was added and the mixture was stirred for 10 h at room temperature. Then, acidic resin IR- $120 \mathrm{H}^{+}$was added till pH 7 , the resin was filtered and the solution evaporated to give pure 16 ($56 \mathrm{mg}, 96 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}\right.$, DMSO- $d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$, mixture of rotamers) $9.46\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J_{\mathrm{CH}, 2}=\right.$ 1.92 , CHO of minor rotamer), 9.37 (d, $1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{CH}, 2}=1.92$, CHO of major rotamer), 7.78 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2$ ' and H-6' of Ts), 7.47 (m, 2H, H-3' and H-5' of Ts), 4.2-4.05 (m, 2H, H-2 and H-5), 3.60 (br. d, $1 \mathrm{H},{ }^{2} J=13.9$, CHHTs), 3.45 (dd, $1 \mathrm{H},{ }^{2} J=13.9,{ }^{3} \mathrm{~J}_{\mathrm{CH}, 5}=10.2$, CHHTs), 244 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of Ts), 2.03-1.94 (m, 4H, H-3a, H-3b, H-4a and H-4b), 1.34 (s, $\left.9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}\right.$, DMSO- $d_{6}, 363 \mathrm{~K}, \delta$ in ppm, major rotamer) 200.0 (CHO), 152.6 (CO of carbamate), 144.0, 136.8 (C-1' and C-4' of Ts), 129.5 (C-2' and C-6'), $127.0\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 79.8\left(\mathrm{C}^{\prime}\left(\mathrm{CH}_{3}\right)_{3}\right), 64.8(\mathrm{C}-2), 57.7\left(\mathrm{CH}_{2} \mathrm{Ts}\right), 52.9(\mathrm{C}-5)$, $28.4(\mathrm{C}-3$ or $\mathrm{C}-4), 27.4\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 23.9(\mathrm{C}-3$ or $\mathrm{C}-4), 20.5\left(\mathrm{CH}_{3}\right.$ of Ts). FABMS m/z $390\left[8 \%,(\mathrm{M}+\mathrm{Na})^{+}\right], \mathrm{m} / \mathrm{z} 390\left[8 \%,(\mathrm{M}+\mathrm{Na})^{+}\right], \mathrm{m} / \mathrm{z} 290\left[20 \%,(\mathrm{M}-\mathrm{Boc}+\mathrm{H}+\mathrm{Na})^{+}\right], \mathrm{m} / \mathrm{z}$ 239 [25\%, (M-Boc+2H-CHO) $\left.{ }^{+}\right]$. HRCIMS m / z found 367.1453, calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} 367.1429$.
(2SR,3RS,4SR,5RS)-N-tert-Butoxycarbonyl-3,4-isopropylidenedioxy-2-formyl-5-(p-toluenesulphonyl)-methylpyrrolidine (18).

To a solution of the bicyclic alcohol $17^{2}(72 \mathrm{mg}, 0.164 \mathrm{mmol})$ in dry $\mathrm{MeOH}(2.5 \mathrm{~mL})$, $\mathrm{NaOMe}(1.8 \mathrm{mg}, 0.034 \mathrm{mmol})$ was added and the mixture was stirred for 10 h at room temperature. Then, acidic resin IR- $120 \mathrm{H}^{+}$was added till pH 7 , the resin was filtered and the solution evaporated to give pure $\mathbf{1 8}$ ($68 \mathrm{mg}, 95 \%$ yield) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
(300 MHz , DMSO- $d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}, J \mathrm{~Hz}$, mixture of rotamers, data for major rotamer) $7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.2, \mathrm{H}-2$ and $\mathrm{H}-6$ of Ts), $7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.2, \mathrm{H}-3$ and $\mathrm{H}-5$ of Ts), 5.01 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=5.8, J_{2,3}=1.8, \mathrm{H}-3\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=5.8, \mathrm{H}-4\right), 4.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2)$, $4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{5, \text { СHHTs }}=10.1, J_{5, \mathrm{CHHTs}}=2.8, \mathrm{H}-5\right), 3.49\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=14.2, J_{5, \mathrm{CHHTs}}=\right.$ 10.1, CHHTs), 3.38 (br d, $1 \mathrm{H},{ }^{2} \mathrm{~J}=14.2$, CHHTs), 2.44 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of Ts), 1.40 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3} of acetonide), 1.33 (s, $9 \mathrm{H}, \mathrm{CH}_{3}$ of Boc), 1.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ of acetonide). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.4 MHz, DMSO-d ${ }_{6}, 363 \mathrm{~K}, \delta$ in ppm, mixture of rotamers, data for major rotamer) 202.4 (CO), 152.4 (CO of carbamate), 144.3 (C-1' of Ts), 136.3 (C-4' of Ts), 129.5 (C2^{\prime} and C-6' of Ts), 127.2 (C-3' and C-5' of Ts), 111.2 (Cq of acetonide), 82.5 (br. s, C3 or C-4), $80.2\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 78.4$ (br. s, C-3 or C-4), $72.0(\mathrm{C}-2), 58.7(\mathrm{C}-5), 55.5\left(\mathrm{CH}_{2} \mathrm{Ts}\right)$, $27.3\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, 26.3, $24.5\left(2 \mathrm{CH}_{3}\right.$ of acetonide), $20.5\left(\mathrm{CH}_{3}\right.$ of Ts). FABMS m/z 462 $\left(20 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right), 340\left[25 \%,(\mathrm{M}-\mathrm{Boc}+2 \mathrm{H})^{+}\right]$. HRCIMS m/z found 439.1636, calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S} 439.1665$.

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

LL8' τ Z-

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

\qquad M
 M 11

Endo/exo $=2.6$ M \qquad

${ }^{1} \mathrm{H}$-NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

'H-NMR, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

${ }^{13} \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}$, DMSO- $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$ (mixture of rotamers)

\int

${ }^{1} \mathrm{H}-\mathrm{NMR}, 300 \mathrm{MHz}$, DMSO- $d_{6}, 90^{\circ} \mathrm{C}$ (broad signals, rotamers)

${ }^{13} \mathrm{C}-$ NMR, 75 MHz , DMSO- $d_{6}, 90^{\circ} \mathrm{C}$

[^0]: ${ }^{1}$ Zhang, C.; Ballay II, C. J.; Trudell, M. L. J. Chem. Soc., Perkin Trans. 1 1999, 675.

[^1]: ${ }^{2}$ Moreno-Vargas, A. J.; Schütz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem. 2003, 68, 5632.

