SUPPORTING INFORMATION

Exploiting the Ring Strain in Bicyclo[2.2.1]heptane Systems for the Stereoselective Preparation of Highly Functionalized Cyclopentene, Dihydrofuran, Pyrroline and Pyrrolidine Scaffolds

Elena Moreno-Clavijo, Antonio J. Moreno-Vargas,* Raphaëlle Kieffer, Thérèse Sigstam, Ana T. Carmona and Inmaculada Robina*

Department of Organic Chemistry, Faculty of Chemistry, University of Seville. Prof. García González, 1, 41012-Seville (Spain)

ajmoreno@us.es, robina@us.es

Table of contents:

- General procedures	S1
- Experimental details and characterization data for new compounds	S2
- ¹ H- and ¹³ C-NMR spectra for all the new compounds	S13

General Procedures.

Optical rotations were measured in a 1.0 cm or 1 dm tube with a Jasco P-2000 spectropolarimeter. ¹H and ¹³C NMR spectra were obtained for solutions in CDCl₃, $[d_6]DMSO$ and CD₃OD. All the assignments were confirmed by two-dimensional NMR experiments. The FAB mass spectra were obtained using glycerol or 3-nitrobenzyl alcohol as the matrix. TLC was performed on silica gel HF₂₅₄ (Merck), with detection by UV light charring with H₂SO₄ or with Pancaldi reagent [(NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O]. Silica gel 60 (Merck, 230 mesh) was used for preparative chromatography.

General strategy for the synthesis of 7-aza/oxa/carbabicyclo[2.2.1]hepta-2,5-diene derivatives 4,5 and 6.

To a stirred solution of *p*-tolyl-2-bromoethynyl sulfone 3^1 (1 mmol) in anhydrous toluene (3 mL) the corresponding diene (12 eq) was added. For $X = CH_2$, the diene was distilled over a solution of alkyne 3 in dry toluene. The mixture was heated (90 °C (for X = NBoc), 45 °C (for X = O) and 25 °C (for $X = CH_2$)) until the reaction was completed. The solvent was removed and the residue purified by chromatography column on silica gel.

(±)-2-Bromo-3-(p-toluenesulfonyl)-7-oxabicyclo[2.2.1]hepta-2,5-diene (5)

The cycloaddition of **3** with furan following the general procedure afforded, after chromatographic purification (AcOEt/petroleum ether, 1:6), compound **5** (91% yield). ¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.78 (m, 2H, H-Ts), 7.36 (m, 2H, H-Ts), 7.10-7.04 (m, 2H, H-5, H-6), 5.57 (m, 1H, H-1 or H-4), 5.34 (m, 1H, H-1 or H-4), 2.45 (s, 3H, CH₃ of Ts). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 150.7, 146.2, 145.5, 136.3 (C-Ar, C-2, C-3), 143.9, 140.4 (C-5, C-6), 130.2, 127.9 (C-Ar), 90.6, 85.4 (C-1, C-4), 21.9 (CH₃ of Ts). CIMS *m*/*z* 329 [5%, (M+H)⁺], 326 [5%, (M+H)⁺].CIHRMS *m*/*z* found 328.9692, calcd. for C₁₃H₁₂O₃SBr(81) (M+H)⁺: 328.9670 and *m*/*z* found 326.9692, calcd. for C₁₃H₁₂O₃SBr(79) (M+H)⁺: 326.9691

(±)-2-Bromo-3-(p-toluenesulfonyl)bicyclo[2.2.1]hepta-2,5-diene (6)

The cycloaddition of **3** with cyclopentadiene following the general procedure afforded, after chromatographic purification (ether/petroleum ether, 1:3), compound **6** (97% yield).

¹ Zhang, C.; Ballay II, C. J.; Trudell, M. L. J. Chem. Soc., Perkin Trans. 1 1999, 675.

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.75 (m, 2H, H-Ts), 7.31 (m, 2H, H-Ts), 6.68 (br. dd, 1H, *J* = 4.8, *J* = 3.1, H-5 or H-6), 6.61 (br. dd, 1H, *J* = 4.8, *J* = 2.9, H-5 or H-6), 3.93 (m, 1H, H-1 or H-4), 3.72 (m, 1H, H-1 or H-4), 2.43 (s, 3H, CH₃ of Ts), 2.34 (dt, 1H, J = 6.8, J = 1.6, H-7a), 2.34 (dt, 1H, J = 6.8, J = 1.7, H-7b). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 149.5, 145.4, 144.7, 136.8 (C-Ar, C-2, C-3), 142.3, 139.4 (C-5, C-6), 129.9, 127.8 (C-Ar), 71.7 (c-7), 62.4, 53.6 (C-1, C-4), 21.8 (CH₃ of Ts). CIMS *m*/*z* 325 [50%, (M+H)⁺], 327 [50%, (M+H)⁺]. CIHRMS *m*/*z* found 324.9898, calcd. for C₁₄H₁₄O₂SBr(79) (M+H)⁺: 324.9898 and *m*/*z* found 326.9863, calcd. for C₁₄H₁₄O₂SBr(81) (M+H)⁺: 324.9877.

(±)-3-endo and 3-exo-(p-Toluenesulfonyl)-7-oxabicyclo[2.2.1]hept-5-en-2-one (7)

To a solution of **5** (1.62 g, 4.95 mmoles) in anhydrous CH₃CN (22 mL) was added Et₃N (3.62 mL) followed by a slowly addition of a solution of Et₂NH (580 μ L) in anhydrous CH₃CN (12 mL). The reaction was stirred for 1.5 h. at room temperature. An aqueous solution of HCl (10 %, 18 mL) was added and the mixture was stirred for 3.5 h. at r.t. The solution was diluted with CH₂Cl₂ and washed with water. The aqueous phase was extracted with CH₂Cl₂ and dried over Na₂SO₄, concentrated and purified by chromatography column on silica gel (CH₂Cl₂, acetone, 50:1) to give **7** (1.26 g, 4.77 mmoles, 97%) as a mixture of isomers (*endo/exo* = 1).

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz, mixture of isomers a/b: 1/1) δ 7.82-7.78 (m, 4H, H-Ts(a), H-Ts(b)), 7.39-7.34 (m, 4H, H-Ts(a), H-Ts(b)), 7.02 (dd, 1H, *J*_{5,6} = 5.7, *J*_{5,4} = 1.6, H-5a), 6.76 (dd, 1H, *J*_{5,6} = 5.7, *J*_{5,4} = 1.7, H-5b), 6.59 (br. dd, 1H, *J*_{6,1} = 1.8, H-6b), 6.55 (m, 1H, H-6a), 5.81 (m, 1H, H-4b), 5.49 (m H-4a), 4.77 (dd, 1H, *J*_{1,6} = 2.1, *J*_{1,4} = 0.9, H-1a), 4.56 (m, 1H, H-1b), 4.04 (br. d, 1H, *J*_{3,4} = 4.2, H-3a), 3.49 (s, 1H, H-3b), 2.46, 2.45 (2s, 6H, *CH*₃ of Ts (a), *CH*₃ of Ts (b)). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 195.3, 194.3 (CO(a), CO(b)), 145.7 (C-Ar), 141.2 (C-5b), 139.9 (C-5a), 136.0, 135.5 (C-Ar), 134.1 (C-6b), 130.45 (C-6a), 130.1, 130.0, 129.3, 128.7 (C-Ar), 83.7 (C-1a), 81.9 (C-1b), 81.0 (C-4b), 79.6 (C-4a), 65.1 (C-3a), 64.3 (C-3b), 21.9 (*C*H₃ of Ts (a), *CH*₃ of Ts (b)). CIMS *m*/*z* 265 [4%, (M+H)⁺]. CIHRMS *m*/*z* found 265.0534, calcd. for C₁₃H₁₃O₄S (M+H)⁺: 265.0535 (±)-3-endo- and 3-exo-(p-Toluenesulfonyl)bicyclo[2.2.1]hept-5-en-2-one (8)

To a solution of **6** (304 mg, 0.938 mmoles) in anhydrous CH₃CN (4.2 mL) was added Et₃N (0.7 mL) followed by a slowly addition of a solution of Et₂NH (107 μ L) in anhydrous CH₃CN (2.3 mL). The reaction was stirred for 7 h. at 50 °C. An aqueous solution of HCl (10 %, 3.5 mL) was added and the mixture was stirred for 3.5 h. at r.t. The solution was diluted with CH₂Cl₂ and washed with water. The aqueous phase was extracted with CH₂Cl₂ and dried over Na₂SO₄, concentrated and purified by chromatography column on silica gel (AcOEt/petroleum ether, 1:4) to give **8** (203 mg, 83%) as a mixture of isomers (*endo/exo* = 2.6) as a white solid.

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz, mixture of isomers a and b, a/b = 2.6/1) δ 7.79-7.74 (m, 4H, H-Ts(a), H-Ts(b)), 7.35-7.30 (m, 4H, H-Ts(a), H-Ts(b)), 6.70 (dd, 1H, $J_{6,5} = 5.4$, $J_{6,1} = 2.6$, H-6b), 6.55 (dd, 1H, $J_{6,5} = 5.4$, $J_{6,1} = 3.0$, H-6a), 6.24 (dd, 1H, $J_{5,4} = 3.3$, H-5a), 6.07 (m, 1H, H-5b), 3.82 (d, 1H, $J_{3,4} = 3.0$, H-3b), 3.69 (br. s, 1H, H-1a), 3.44 (m, 1H, H-1b), 3.40 (d, 1H, H-4a), 3.15 (m, 1H, H-4b), 3.10 (m, 1H, H-3a), 2.86 (br. d, 1H, $J_{H,H} = 10.0$, H-7(a)), 2.43, 2.41 (2s, 6H, CH_3 of Ts(a), CH_3 of Ts(b)), 2.18-10 (m, 2H, H-7(a), H-7(b)), 1.86 (d, 1H, $J_{H,H} = 9.8$, H-7(b)). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 201.9, 200.1 (CO(a), CO(b)), 145.2, 145.0 (C-Ar), 142.5 (C-6a), 139.9 (C-6b), 136.4 (C-Ar), 136.3, 135.3, 129.9, 129.7, 129.2, 128.8, 128.7 (C-Ar, C-5b), 69.0 (C-3b), 66.0 (C-4^a), 56.7 (C-4b), 55.2 (C-3a), 48.1 (C-7b), 46.9 (C-7a), 43.6 (C-1a), 43.0 (C-1b), 21.7 (CH₃ of Ts (a), CH₃ of Ts (b)). CIMS m/z 263 [100%, (M+H)⁺]. CIHRMS m/z found 263.0737, calcd. for C₁₄H₁₅O₃S (M+H)⁺: 263.0742

 $(\pm) -3 - endo - (p - Toluenesulfonyl) -7 - oxabicyclo[2.2.1] hept -5 - en-2 - endo - ol (10a) and (\pm) -3 - exo - (p - Toluenesulfonyl) -7 - oxabicyclo[2.2.1] hept -5 - en-2 - exo - ol (10b).$

To a solution of 7 (294.8 mg, 1.14 mmoles) in anhydrous THF (7 mL) at -78 °C was added a solution of LiBH₄ in THF (2 M, 680 μ L). The mixture was stirred for 30 min at -78 °C, then a saturated aqueous solution of NH₄Cl was added and the mixture allowed to warm to r.t. under stirring. The solution was diluted with AcOEt, washed with water and brine, and concentrated. The resulting residue was purified by column chromatography (AcOEt/petroleum ether, 1:2 \rightarrow 1:1) to give first (±)-10a (142 mg, 53%) and second (±)-10b (42 mg, 14%).

Data for (±)-10a:

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.83 (d, 2H, *J* = 8.3, H-Ts), 7.38 (d, 2H, H-Ts), 6.90 (br. dd, 1H, *J*_{5,6} = 5.9, *J*_{5,4} = 1.7, H-5), 6.68 (br. dd, 1H, *J*_{6,1} = 1.7, H-6), 5.17 (m, 1H, H-4), 5.03 (m, 1H, H-1), 4.57 (ddd, 1H, *J*_{2,OH} = 11.2, *J*_{2,3} = 7.8, *J*_{2,1} = 4.4, H-6), 3.76 (dd, 1H, *J*_{3,4} = 4.3, H-5), 3.23 (d, 1H, OH), 2.46 (s, 3H, CH₃ of Ts). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 145.4, 137.4 (C-Ar), 136.6 (C-5), 134.9 (C-6), 130.2. 128.1 (C-Ar), 81.5 (C-1), 79.9 (C-4), 70.6 (C-2), 65.3 (C-3), 21.8 (CH₃ of Ts). CIMS *m*/*z* 267 [4%, (M+H)⁺]. CIHRMS *m*/*z* found 267.0688, calcd. for C₁₃H₁₅O₄S (M+H)⁺: 267.0691

Data for (±)-10b:

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.87 (d, 2H, *J* = 8.3. H-Ts), 7.36 (d, 2H, H-Ts), 6.46 (dd, 1H, *J* = 5.8, *J* = 1.5, H-5 or H-6), 6.41 (dd, 1H, *J* = 5.8, *J* = 1.6, H-5 or H-6), 5.49 (m, 1H, H-1 or H-4), 4.87 (m, 1H, H-1 or H-4), 4.11 (dd, 1H, *J*_{2,OH} = 11.0, *J*_{2,3} = 6.1, H-2), 3.60 (d, 1H, OH), 3.26 (d, 1H, H-3), 2.45 (s, 3H, CH₃ of Ts). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 145.2 (C-Ar), 138.3 (C-5 or C-6), 136.7 (C-Ar), 135.5 (C-5 or C-6), 130.0, 128.8 (C-Ar), 86.1 (C-1 or C-4), 78.8 (C-1 or C-4), 71.2 (C-2), 65.5 (C-3), 21.8 (CH₃ of Ts). CIMS *m*/*z* 267 [5%, (M+H)⁺], 249 [23%, (M-OH)⁺]. CIHRMS *m*/*z* found 267.0699, calcd. for C₁₃H₁₅O₄S (M+H)⁺: 267.0691.

3-(*p*-Toluenesulfonyl)bicyclo[2.2.1]hept-5-en-2-ols (±)-11a, (±)-11b and (±)-11c.

To a solution of **8** (286 mg, 1.09 mmoles) in anhydrous THF (5 mL) at -78 °C was added a solution of LiBH₄ in THF (2 M, 0.54 mL). The mixture was stirred for 15 min at -78 °C, then a saturated aqueous solution of NH₄Cl was added and the mixture allowed to warm to r.t. under stirring. The solution was diluted with AcOEt, washed with water and brine, and concentrated. The resulting residue was purified by column chromatography (CH₂Cl₂ \rightarrow CH₂Cl₂:Acetone (20:1)) to give first a mixture of (±)-11a and (±)-11b (164 mg, 57%, 11a/11b = 1.4) and second (±)-11c (76 mg, 27%).

Data for **11a** + **11b**:

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, J Hz, mixture of isomers a+b) δ 7.77 (d, 2H, J = 8.3. H-Ts(b)), 7.75 (d, 2H, J = 8.3. H-Ts(a)), 7.27 (d, 2H, J = 8.3. H-Ts(a+b)), 6.53 (dd, 1H, $J_{5,6} = 5.7$, $J_{1,6} = 2.9$, H-6(a)), 6.24 (dd, 1H, $J_{5,6} = 5.7$, $J_{4,5} = 3.1$, H-5(a)), 6.1 (m, 2H, H-5(b) and H-6(b)), 4.56 (ddd, 1H, $J_{2,OH} = 11.0$, $J_{2,3} = 7.8$, $J_{1,2} = 3.8$, H-2), 4.10 (br t, 1H, $J_{2,OH} = J_{2,3} = 6.1$, H-2(b)), 3.52 (dd, 1H, $J_{3,4} = 3.0$, $J_{2,3} = 7.8$, H-3(a)), 3.38 (d, 1H, $J_{2,OH} = 6.3$, OH(b)), 3.16 (br s, 1H, H-4(a)), 3.10 (br s, 2H, H-1(a) and H-4(b)), 3.03 (dd, 1H, $J_{2,3} = 6.3$, $J_{3,7b} = 1.5$, H-3(b)), 2.95 (d, 1H, $J_{2,OH} = 11.0$, OH(a)), 2.80 (br s, 1H, H-1(b)), 2.37 (s, 6H, CH₃ of Ts(a) and CH₃ of Ts(b)), 2.22 (br d, 1H, $J_{7a,7b}$ = 9.5, H-7a(b)), 1.57 (dt, 1H, $J_{7a,7b} = 9.5$, $J_{7b,2} = J_{7b,3} = 1.5$, H-7b(b)), 1.50 (br d, 1H, $J_{7a,7b} = 9.4$, H-7a(a)), 1.16 (d, 1H, $J_{7a,7b} = 9.4$, H-7b(a)). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 144.6 (C-1 of Ts(b)), 144.5 (C-1 of Ts(a)), 138.9 (C-5(b)), 137.7 (C-4 of Ts(b)), 137.2 (C-6(b)), 136.9 (C-6(a)), 133.5 (C-5(a)), 129.8, 128.5, 128.2 (C-2, C-3, C-5, C-6 of Ts(a+b), C-4 of Ts(a)), 73.7 (C-2(a)), 73.0 (C-2(b)), 68.0 (C-3(a)), 66.8 (C-3(b)), 49.6 (C-1(b)), 49.5 (C-1(a)), 46.4 (C-7(a)), 45.8 (C-4(a)), 44.1 (C-7(b)), 44.0 (C-4(b)), 21.6 (CH₃ of Ts(a+b)). FABMS *m/z* 287 [100%, (M+Na)⁺]. FABHRMS *m/z* found 287.0718, calcd. for $C_{14}H_{16}O_3SNa (M+Na)^+$: 287.0718.

Data for 11c:

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.73 (d, 2H, *J* = 8.3. H-2 and H-6 of Ts), 7.29 (d, 2H, *J* = 8.3. H-3 and H-5 of Ts), 6.29 (dd, 1H, $J_{5,6}$ = 5.7, $J_{4,5}$ = 3.2, H-5), 6.21 (dd, 1H, $J_{5,6}$ = 5.7, $J_{1,6}$ = 2.9, H-6), 4.77 (dt, 1H, $J_{2,OH}$ = 6.2, $J_{1,2}$ = $J_{2,3}$ = 3.6, H-2), 3.02 (br s, 1H, H-4), 2.99 (br s, 1H, H-1), 2.57 (dd, 1H, $J_{2,3}$ = 3.6 $J_{3,7b}$ = 2.4, H-3), 2.38 (s, 3H, CH₃ of Ts), 1.99 (br d, 1H, $J_{7a,7b}$ = 9.5, H-7a), 1.89 (d, 1H, $J_{2,OH}$ = 6.2, OH), 1.48 (dq, 1H, $J_{7a,7b}$ = 9.5, $J_{7b,1}$ = $J_{7b,4}$ = $J_{7b,3}$ = 2.4, H-7b). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 144.7 (C-1 of Ts), 138.1 (C-5), 136.4 (C-4 of Ts), 136.2 (C-6), 74.0 (C-2), 73.4 (C-3), 47.9 (C-1), 45.2 (C-4), 45.1 (C-7), 21.6 (CH₃ of Ts). FABMS *m*/*z* 287 [100%, (M+Na)⁺]. FABHRMS *m*/*z* found 287.0724, calcd. for C₁₄H₁₆O₃SNa (M+Na)⁺: 287.0718.

(±)-(2RS,5SR)-N-tert-Butoxycarbonyl-2-methoxycarbonyl-5-(p-toluenesulphonyl)methyl-3-pyrroline (2).

Basic catalysis-Method a: To a solution of the racemic 7-azanorbornenone **1** (100 mg, 0.275 mmol) in MeOH (3 mL), NaOMe (1.5 mg, 0.028 mmol) was added and the mixture was stirred for 45 min. at room temperature. Then, acidic resin IR-120 H⁺ was added till pH 7, the resin was filtered and the solution evaporated to give pure **2** (87 mg, 82% yield) as a yellowish powder. Characterization data for this compound were in agreement with those reported previously.²

Acid catalysis-Method b: To a solution of the racemic 7-azanorbornenone **1** (100 mg, 0.275 mmol) in MeOH (3 mL), a solution of 10% AcOH (glacial) in MeOH (16 μ l) was added and the mixture was stirred for 45 min. at room temperature. Then, the solution was evaporated to give pure **2** (107 mg, quant. yield) as a yellowish oil.

² Moreno-Vargas, A. J.; Schütz, C.; Scopelliti, R.; Vogel, P. J. Org. Chem. 2003, 68, 5632.

 $(\pm)-(2RS,5SR)-2-Methoxy carbonyl-5-(p-toluenesulphonyl) methyl-2,5-dihydrofuran (12).$

This compound was synthesized using the same protocol (method a or b) that for the synthesis of **2**, except that racemic 7-oxanorbornenone **5** (mixture of epimers 1:1) was used as starting material. Pure **12** (quant. yield) was obtained as a white solid.

¹H RMN (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) δ 7.81 (d, 2H, *J* = 8.3, H-Ts), 7.34 (d, 2H, H-Ts), 6.11 (ddd, 1H, *J* = 6.1, *J* = 2.4, *J* = 1.6, H-3 or H-4), 5.91 (dt, 1H, *J* = 6.0, *J* = 1.9, H-3 or H-4), 5.35 (m, 1H, H-5), 5.16 (m, 1H, H-2), 3.67 (dd, 1H, *J*_{H,H} = 14.1, *J*_{H,5} = 5.8, *CH*HTs), 3.66 (s, 3H, COOC*H*₃), 3.29 (dd, 1H, *J*_{H,5} = 6.7, CH*H*Ts), 2.44 (s, 3H, *CH*₃ of Ts). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 171.0 (COOCH₃), 144.9, 136.9 (C-Ar), 130.8 (C-3 or C-4), 129.9 (C-Ar), 128.2 (C-Ar), 126.6 (C-3 or C-4), 84.6 (C-2), 81.7 (C-5), 61.9 (*C*H₂Ts), 52.4 (COOCH₃), 21.8 (*C*H₃ of Ts). CIMS *m*/*z* 297 [100%, (M+H)⁺]. CIHRMS *m*/*z* found 297.0797, calcd. for C₁₄H₁₇O₅S (M+H)⁺: 297.0797.

(±)-(1*RS*,4*SR*)-Methyl 4-(*p*-toluenesulphonyl)methylcyclopent-2-enecarboxylate (13).

To a solution of compound **8** (53 mg, 0.202 mmol, mixture of epimers) in dry MeOH (2 mL), pyridine (17 μ L, 0.21 mmol) was added and the mixture was stirred at room temperature for 24 h. Then the solution was evaporated to give pure **13** (59 mg, quant. yield) as a colorless oil.

¹H-NMR (300 MHz, CDCl₃, 298 K, δ ppm, *J* Hz) 7.72 (d, 2H, ³*J*_{2',3'} = ³*J*_{5',6'} = 8.2, H-2' and H-6' of Ts), 7.29 (d, 2H, H-3' and H-5'), 5.73 (m, 2H, H-2 and H-3), 3.60 (s, 3 H, COOC*H*₃), 3.46 (m, 1H, H-1), 3.12 (m, 3H, C*H*₂Ts and H-4), 2.37 (s, 3H, C*H*₃ of Ts), 2.30 (dt, 1H, ²*J*_{5a,5b} = 13.8, ³*J*_{5a,1} = ³*J*_{5a,4} = 8.5, H-5a), 1.82 (dt, 1H, ³*J*_{5b,1} = ³*J*_{5b,4} = 5.6, H-5b). ¹³C-NMR (75.4 MHz, CDCl₃, 298 K, δ ppm) 174.3 (COOMe), 144.7 (C-1' of Ts), 136.8 (C-4' of Ts), 134.8, 130.5 (C-2, C-3), 130.0, (C-2' and C-6' of Ts), 128.0 (C-3' and C-5' of Ts), 61.4 (*C*H₂Ts), 52.0 (COO*C*H₃), 50.1 (C-1), 39.7 (C-4), 32.8 (C-5), 21.6

(*C*H₃ of Ts). CIMS m/z 295 [30%, (M+H)⁺]. HRCIMS m/z found 295.1013, calculated for C₁₅H₁₉O₄S 295.1004.

(±)-(2RS,5SR)-N-tert-Butoxycarbonyl-2-formyl-5-(p-toluenesulphonyl)methyl-3pyrroline (14).

To a solution of the racemic alcohol 9^2 (1.17 g, 3.19 mmol) in MeOH, NaOMe (43 mg, 0.8 mmol) was added and the mixture was stirred for 2 h at room temperature. Then, acidic resin IR-120 H⁺ was added till pH 7, the resin was filtered and the solution concentrated to give pure 14 (1.20 g, quant.) as a yellowish oil. ¹H-NMR (300 MHz, DMSO-d₆, 363 K, δ ppm, J Hz) 9.43 (d, 1H, ³J = 2.0, -CHO), 7.81 (d, 2H, $J_{2',3'} = J_{5',6'} =$ 8.2, H-2' and H-6' of Ts), 7.49 (d, 2H, $J_{2',3'} = J_{5',6'} = 8.2$, H-3' and H-5' of Ts), 6.12 (dt, 1H, ${}^{3}J_{3,4} = 6.4$, ${}^{3}J_{4,5} = {}^{4}J_{2,4} = 2.0$, H-4*), 5.86 (br. dt, 1H, ${}^{3}J_{3,4} = 6.4$, ${}^{3}J_{2,3} = {}^{4}J_{3,5} = 1.6$, H-3*), 4.87-4.81 (m, 2H, H-2 and H-5), 3.89 (br d, 1H, ${}^{2}J = 13.9$, CHHTs), 3.40 (dd, ${}^{2}J =$ 13.9, ${}^{3}J_{CHT_{5,5}} = 9.5$, CHHTs), 2.45 (s, 3H, CH₃ of Ts), 1.35 (s, 9H, CH₃ of Bu^t). ${}^{13}C_{-1}$ NMR (75.4 MHz, DMSO-d₆, 363 K, δ ppm, J Hz) 198.0 (CHO), 152.2 (CO of Boc), 144.2 (C-1 of Ts), 136.7 (C-4 of Ts), 131.2 (C-3 or C-4) 129.5 (C-2 and C-6 of Ts), 127.0 (C-3 and C-5 of Ts), 123.4 (C-3 or C-4), 80.2 (C(CH₃)₃), 72.2 (C-2), 59.3 (CH₂Ts), 58.6 (C-5), 27.4 ((CH₃)₃C), 20.4 (CH₃ of Ts), FABMS m/z 388 [10%, $(M+Na)^{+}$], 266 [60%, $(M - Boc + H)^{+}$]. CIMS m/z 366 [1%, $(M+H)^{+}$], 266 [100%, $(M - H)^{+}$] Boc + H)⁺]. HRCIMS m/z found 366.1374, calculated for $C_{18}H_{24}NO_5S$ 366.1375. *Exchangable assignment.

(2*S*,5*R*)-*N-tert*-Butoxycarbonyl-2-formyl-5-(*p*-toluenesulphonyl)methyl-3-pyrroline ((-)-14).

This compound was synthesized in the same manner than (±)-14, except that enantiomerically pure alcohol (+)-9² was used as starting material. $[\alpha]_{26} = -41$ (0.5, CHCl₃).

(2*R*,5*S*)-*N-tert*-Butoxycarbonyl-2-formyl-5-(*p*-toluenesulphonyl)methyl-3-pyrroline ((+)-14).

This compound was synthesized in the same manner than (±)-14, except that pure camphanoate (-)-9² was used as starting material. $[\alpha]_{26} = +43$ (*c* 0.7, CHCl₃).

(±)-(1*RS*,2*SR*,3*RS*,4*SR*)-7-*tert*-Butoxycarbonyl-3-*endo*-(*p*-toluenesulfonyl)-7azabicyclo[2.2.1]heptan-2-*endo*-ol (15).

A solution of bicyclic alcohol 9 (206 mg, 0.564 mmol) in MeOH (6 mL) was hydrogenated under atmospheric pressure using Pd on charcoal (10%, 20 mg) as catalyst. The suspension was stirred for 1 h at room temperature. Then, the mixture was filtered (celite) and the filtered solution was evaporated. The resulting crude of the reaction was purified by column chromatography (AcOEt:petroleum ether, 1:3) to give pure 15 (170 mg, 82%) as a colorless oil. ¹H-NMR (300 MHz, CDCl₃, 298 K, δ ppm, J Hz) 7.75 (d, 2H, ${}^{3}J_{2',3'} = {}^{3}J_{5',6'} = 8.3$, H-2' and H-6' of Ts), 7.29 (d, 2H, H-3' and H-5'), 4.35-4.20 (m, 3H, H-1, H-2 and H-4), 3.93 (d, 1H, ${}^{3}J_{2,OH} = 9.5$, OH), 3.50 (br. dd, 1H, ${}^{3}J_{2,3} = 9.4$, ${}^{3}J_{3,4} = 4.7$, H-3), 2.52 (t, 1H, ${}^{2}J_{6a,6b} = {}^{3}J_{6a,5a} = 9.21$, H-6a), 2.37 (s, 3H, CH₃ of Ts), 2.11 (t, 1H, ${}^{2}J_{5a,5b} = 8.4$, ${}^{3}J_{6a,5a} = 9.21$, H-5a), 1.72 (m, 2H, H-5b and H-6b), 1.34 (s, 9H, CH₃ of Bu^t). ¹³C-NMR (75.4 MHz, CDCl₃, 298 K, δ ppm, mixture of rotamers) 154.5 (CO of carbamate), 145.2 (C-1' of Ts), 137.3 (C-4' of Ts), 130.1, 130.0 (C-2' and C-6' of Ts), 127.9, 127.8 (C-3' and C-5' of Ts), 80.8 (C(CH₃)₃, 70.0, 69.9 (C-2), 64.2, 64.1 (C-3), 61.3, 61.2, 59.0, 58.8 (C-1 and C-4), 28.2 (CH₃ of Ts), 24.7 (br s, C-6), 21.7, 21.6 ((*C*H₃)₃C), 20.3 (C-5). FABMS m/z 390 [100%, (M+Na)⁺]. HRFABMS m/z found 390.1354, calculated for $C_{18}H_{25}NO_5SNa$ (M+Na⁺) 390.1351.

(2*SR*,5*RS*)-*N-tert*-Butoxycarbonyl-2-formyl-5-(*p*-toluenesulphonyl)methyl-pyrrolidine (16).

To a solution of the bicyclic alcohol 15 (59 mg, 0.159 mmol) in dry MeOH (2 mL), NaOMe (1.7 mg, 0.032mmol) was added and the mixture was stirred for 10 h at room temperature. Then, acidic resin IR-120 H⁺ was added till pH 7, the resin was filtered and the solution evaporated to give pure **16** (56 mg, 96% yield) as a colorless oil. ¹H-NMR (300 MHz, DMSO- d_6 , 363 K, δ ppm, J Hz, mixture of rotamers) 9.46 (d, 1 H, ${}^{3}J_{CH,2}$ = 1.92, CHO of minor rotamer), 9.37 (d, 1 H, ${}^{3}J_{CH2} = 1.92$, CHO of major rotamer), 7.78 (m, 2H, H-2' and H-6' of Ts), 7.47 (m, 2H, H-3' and H-5' of Ts), 4.2-4.05 (m, 2H, H-2 and H-5), 3.60 (br. d, 1H, ${}^{2}J = 13.9$, CHHTs), 3.45 (dd, 1H, ${}^{2}J = 13.9$, ${}^{3}J_{CH,5} = 10.2$, CHHTs), 244 (s, 3H, CH3 of Ts), 2.03-1.94 (m, 4H, H-3a, H-3b, H-4a and H-4b), 1.34 (s, 9H, (CH₃)₃C). ¹³C-NMR (75.4 MHz, DMSO-d₆, 363 K, δ in ppm, major rotamer) 200.0 (CHO), 152.6 (CO of carbamate), 144.0, 136.8 (C-1' and C-4' of Ts), 129.5 (C-2' and C-6'), 127.0 (C-3' and C-5'), 79.8 (C(CH₃)₃), 64.8 (C-2), 57.7 (CH₂Ts), 52.9 (C-5), 28.4 (C-3 or C-4), 27.4 ((CH₃)₃C), 23.9 (C-3 or C-4), 20.5 (CH₃ of Ts). FABMS m/z 390 [8%, $(M+Na)^+$], m/z 390 [8%, $(M+Na)^+$], m/z 290 [20%, $(M-Boc+H+Na)^+$], m/z 239 $[25\%, (M-Boc+2H-CHO)^+]$. HRCIMS m/z found 367.1453, calculated for C₁₈H₂₅NO₅S 367.1429.

(2*SR*,3*RS*,4*SR*,5*RS*)-*N-tert*-Butoxycarbonyl-3,4-isopropylidenedioxy-2-formyl-5-(*p*-toluenesulphonyl)-methylpyrrolidine (18).

To a solution of the bicyclic alcohol 17^2 (72 mg, 0.164 mmol) in dry MeOH (2.5 mL), NaOMe (1.8 mg, 0.034 mmol) was added and the mixture was stirred for 10 h at room temperature. Then, acidic resin IR-120 H⁺ was added till pH 7, the resin was filtered and the solution evaporated to give pure **18** (68 mg, 95% yield) as a colorless oil. ¹H-NMR

(300 MHz, DMSO-*d*₆, 363 K, δ ppm, *J* Hz, mixture of rotamers, data for major rotamer) 7.80 (d, 1H, *J* = 8.2, H-2 and H-6 of Ts), 7.50 (d, 1H, *J* = 8.2, H-3 and H-5 of Ts), 5.01 (dd, 1H, *J*_{3,4} = 5.8, *J*_{2,3} = 1.8, H-3), 4.76 (d, 1H, *J*_{3,4} = 5.8, H-4), 4.36 (br s, 1H, H-2), 4.27 (dd, 1H, *J*_{5,CHHTs} = 10.1, *J*_{5,CHHTs} = 2.8, H-5), 3.49 (dd, 1H, ²*J* = 14.2, *J*_{5,CHHTs} = 10.1, CH*H*Ts), 3.38 (br d, 1 H, ²*J* = 14.2, *CH*HTs), 2.44 (s, 3H, CH₃ of Ts), 1.40 (s, 3H, CH₃ of acetonide), 1.33 (s, 9H, CH₃ of Boc), 1.29 (s, 3H, CH₃ of acetonide). ¹³C-NMR (75.4 MHz, DMSO-d₆, 363 K, δ in ppm, mixture of rotamers, data for major rotamer) 202.4 (CO), 152.4 (CO of carbamate), 144.3 (C-1' of Ts), 136.3 (C-4' of Ts), 129.5 (C-2' and C-6' of Ts), 127.2 (C-3' and C-5' of Ts), 111.2 (C*q* of acetonide), 82.5 (br. s, C-3 or C-4), 80.2 ((CH₃)₃C), 78.4 (br. s, C-3 or C-4), 72.0 (C-2), 58.7 (C-5), 55.5 (*C*H₂Ts), 27.3 ((*C*H₃)₃C), 26.3, 24.5 (2 CH₃ of acetonide), 20.5 (CH₃ of Ts). FABMS m/z 462 (20%, [M+Na]⁺), 340 [25%, (M – Boc + 2H)⁺]. HRCIMS m/z found 439.1636, calculated for C₂₁H₂₉NO₇S 439.1665.

¹³C-NMR, 75 MHz, CDCl₃, 25 °C

S13

¹H-NMR, 300 MHz, CDCl₃, 25 °C

¹³C-NMR, 75 MHz, DMSO-*d*₆, 90 °C

¹³C-NMR, 75 MHz, CDCl₃, 25 °C

¹³C-NMR, 75 MHz, DMSO-*d*₆, 90 °C (mixture of rotamers)

¹H-NMR, 300 MHz, DMSO-*d*₆, 90 °C (broad signals, rotamers)

¹³C-NMR, 75 MHz, DMSO-*d*₆, 90 °C