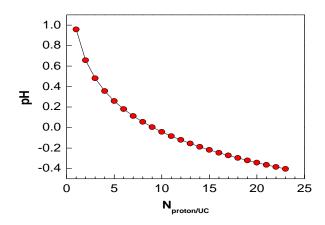
## **Supporting Information**

## Photovoltaic Effects of the CdS and PbS Quantum Dots Encapsulated in Zeolite Y

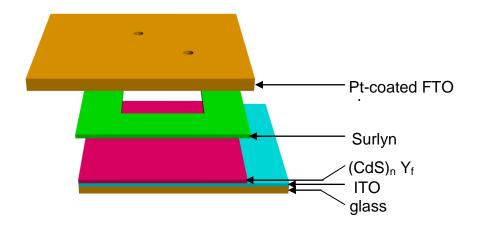
Hyun Sung Kim, Nak Cheon Jeong, and Kyung Byung Yoon\*

#### Contents


- SI-1. Local pH Variation in Zeolite-Y Depending on the Number of H<sup>+</sup> in A Unit Cell.
- S-2. Fabrication of the photovoltaic cells
- SI-3. Effect of ITO glass on the growth of zeolite films..
- SI-4. Diffuse-reflectance UV-vis spectra of  $(2NH_4^+, CdS)_{6.3}Y_{ITO}$  after ODC coating, after exposure to air, and after immersion in the electrolyte solution
- SI-5. Stability of (CdS)<sub>6.3</sub>Y<sub>ITO</sub> and (PbS)<sub>6.7</sub>Y<sub>ITO</sub> after immersion in the electrolyte solution confrmed by by X-ray diffraction intensities.
- SI-6. Stability of (CdS)<sub>6.3</sub>Y<sub>ITO</sub> and (PbS)<sub>6.7</sub>Y<sub>ITO</sub> after immersion in the electrolyte solution confrmed by AFM investigation of the surfaces.
- SI-7. Characterization of (PbS)<sub>6.7</sub>Y<sub>ITO</sub> with transmission electron microscopy (TEM).
- SI-8. Transmittance spectra of  $(Na)_{59}Y_{ITO}$  and  $(CdS)_nY_{ITO}$  (n = 3.2, 4.3, and 6.3)
- SI-9. Extrapolated plots of IPCE (A) and APCE (B) with respect to the loaded number of CdS per unit cell
- SI-10. Estimation of band gap energies of interconnected QDs in  $(CdS)_{6.3}Y_{ITO}$  and  $(PbS)_{6.7}Y_{ITO}$
- SI-11. Basis for the calculation of the volume percent of 6.3 CdS in a unit cell.
- SI-12. Calculation of the interdot distance between the interconnected CdS QDs in  $(CdS)_{6.3}Y_{ITO}$ .
- SI-13. Electrolyte salt occlusion into zeolite-Y films upon immersion into the electrolyte solution
- SI-14. Laser scanning confocal microscope (LSCM) images of the fluorescein-stained zeolite Y films
- SI-15 Photovoltaic characteristics of (CdS)<sub>6.3</sub>Y<sub>ITO</sub> Pt<sub>FTO</sub> with various thickness.
- SI-16. Photovoltaic characteristics of (CdS)<sub>6.3</sub>Y<sub>ITO</sub> Pt<sub>FTO</sub> under different light intensities.

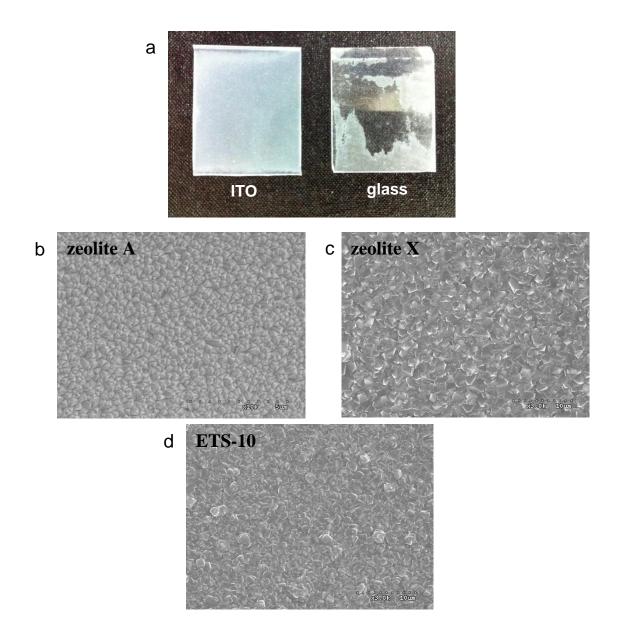
| SI-1. Local pH | Variation in | Zeolite-Y De | pending on | the Number | r of H+ iı | n A Unit Cell. |
|----------------|--------------|--------------|------------|------------|------------|----------------|
|                |              |              |            |            |            |                |

| V <sub>UC</sub> ( | $(m^3)^a$ N <sub>H</sub> - | $/V_{\rm UC}^{b}$ | $N_{H+}/1L^c$         | $M_{H^+}{}^d$ | pН     |
|-------------------|----------------------------|-------------------|-----------------------|---------------|--------|
| 1.51 ×            | 10 <sup>-26</sup>          | 1                 | $6.64 \times 10^{22}$ | 0.110         | 0.958  |
|                   |                            | 2                 | $1.33 \times 10^{23}$ | 0.220         | 0.657  |
|                   |                            | 3                 | $1.99 \times 10^{23}$ | 0.330         | 0.481  |
|                   |                            | 4                 | $2.65 \times 10^{23}$ | 0.440         | 0.356  |
|                   |                            |                   | $3.32 \times 10^{23}$ | 0.551         | 0.259  |
|                   |                            | 6                 | $3.98 \times 10^{23}$ | 0.661         | 0.180  |
|                   |                            |                   | $4.65 \times 10^{23}$ | 0.771         | 0.113  |
|                   |                            |                   | $5.31 \times 10^{23}$ | 0.881         | 0.055  |
|                   |                            | 9                 | $5.97 \times 10^{23}$ | 0.991         | 0.004  |
|                   |                            |                   | $6.64 \times 10^{23}$ | 1.102         | -0.042 |
|                   |                            |                   | $7.30 \times 10^{23}$ | 1.212         | -0.084 |
|                   |                            | 12                | $7.96 \times 10^{23}$ | 1.322         | -0.121 |
|                   |                            | 13                | $8.63 \times 10^{23}$ | 1.433         | -0.156 |
|                   |                            | 14                | $9.29 \times 10^{23}$ | 1.543         | -0.188 |
|                   |                            | 15                | $9.95 \times 10^{23}$ | 1.653         | -0.218 |
|                   |                            | 16                | $1.06 \times 10^{24}$ | 1.763         | -0.246 |
|                   |                            | 17                | $1.13 \times 10^{24}$ | 1.873         | -0.273 |
|                   |                            | 18                | $1.19 \times 10^{24}$ | 1.984         | -0.297 |
|                   |                            | 19                | $1.26 \times 10^{24}$ | 2.094         | -0.321 |
|                   |                            | 20                | $1.33 \times 10^{24}$ | 2.204         | -0.343 |
|                   |                            | 21                | $1.39 \times 10^{24}$ | 2.314         | -0.364 |
|                   |                            | 22                | $1.46 \times 10^{24}$ | 2.424         | -0.385 |
|                   |                            | 23                | $1.53 \times 10^{24}$ | 2.535         | -0.404 |


Table SI-1. Local pH variation with changing the number of  $H^+$  ion in a unit cell.

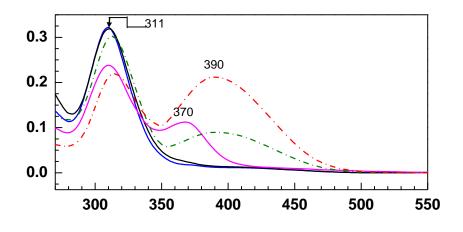
<sup>a</sup>Volume of a unit cell. <sup>b</sup>Number of protons in unit cell volume. <sup>c</sup>Number of protons in 1 L.<sup>d</sup>Molar concentration of proton.




**Figure SI-1-1**. Plot of the calculated local pH with respect to the number of  $H^+$  ion in a unit cell of zeolite-Y.

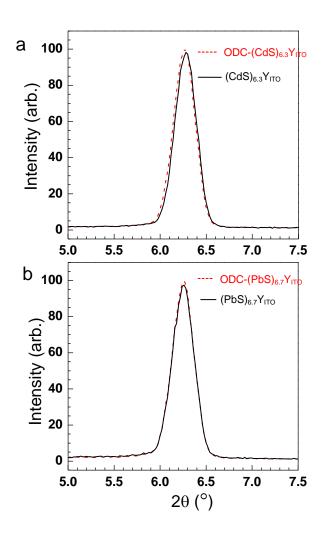
#### S-2. Fabrication of the photovoltaic cells




**Figure SI-2-1**. Schematic illustration of the components for the photovoltaic cell fabricated in this study.

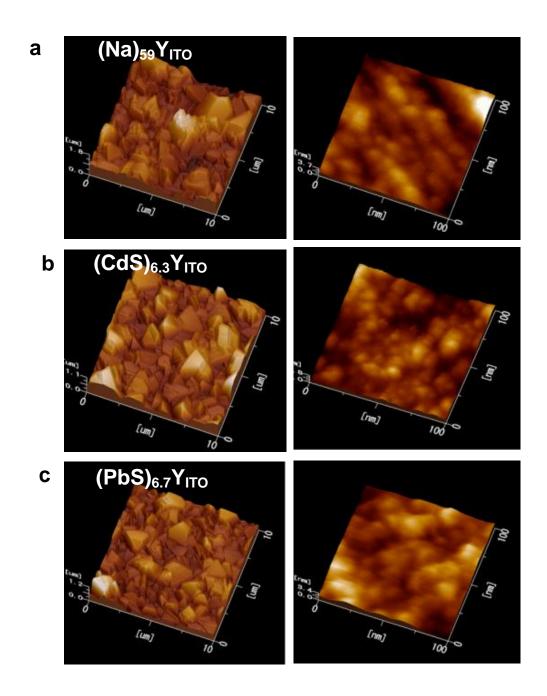
SI-3. Effect of ITO glass on the growth of zeolite films.




**Figure SI-3-1**. Photograph (a) and SEM images (b-d) showing the effect of ITO on the growth of zeolite films.

SI-4. Diffuse-reflectance UV-vis spectra of  $(2NH_4^+, CdS)_{6.3}Y_{ITO}$  after ODC coating, after exposure to air, and after immersion in the electrolyte solution



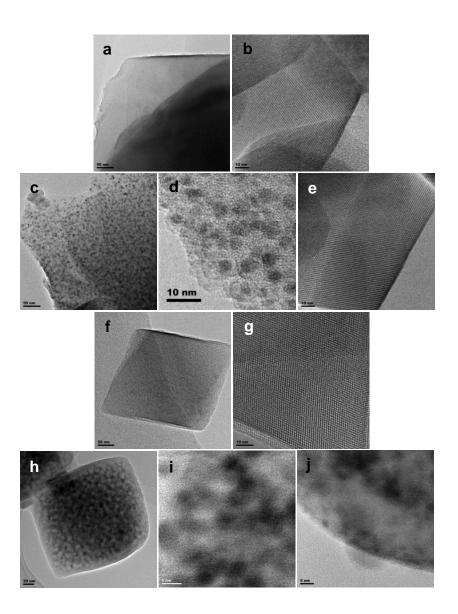

**Figure SI-4-1.** Diffuse-reflectance UV-vis spectra of  $(2NH_4^+, CdS)_{6.3}Y_{ITO}$  after three different types of treatment: ODC coating (black solid), after exposure to the atmosphere for 24 h (blue solid), and after immersion in the electrolyte solution for 12 h (pink solid), respectively. For comparison, the corresponding UV-vis spectra of  $(2H^+, CdS)_{6.3}Y_{ITO}$  after exposure to the atmosphere for 24 h (green dash dot) and after immersion in the electrolyte solution for 12 h (red dash and dot) are also shown.

SI-5. Stability of  $(CdS)_{6.3}Y_{ITO}$  and  $(PbS)_{6.7}Y_{ITO}$  after immersion in the electrolyte solution confrmed by by X-ray diffraction intensities.



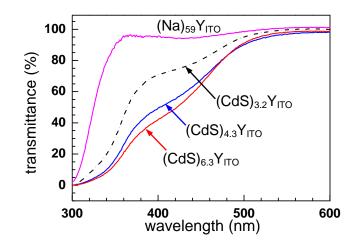
**Figure SI-5-1.** X-ray diffraction peaks at  $6.25^{\circ}$  arising from the diffraction by (111) plane of  $(CdS)_{6.3}Y_{ITO}$  (a) and  $(PbS)_{6.7}Y_{ITO}$  (b) after removal from the electrolyte solution for 12 h compared with those of the corresponding ODC-(CdS)\_{6.3}Y\_{ITO} (a) and ODC-(PbS)\_{6.7}Y\_{ITO} (b).

SI-6. Stability of  $(CdS)_{6.3}Y_{ITO}$  and  $(PbS)_{6.7}Y_{ITO}$  after immersion in the electrolyte solution confrmed by AFM investigation of the surfaces.



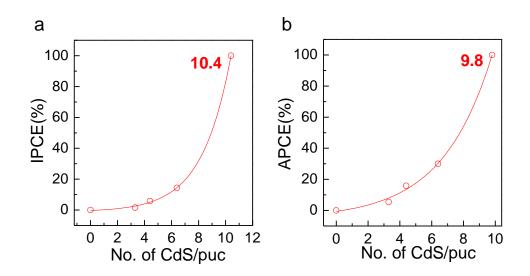

**Figure SI-6-1.** AFM images of  $(Na)_{59}Y_{ITO}$  (a),  $(CdS)_{6.3}Y_{ITO}$  (b), and  $(PbS)_{6.7}Y_{ITO}$  (c) in two different scales,  $10 \times 10 \ \mu\text{m}^2$  (left) and  $100 \times 100 \ \text{nm}^2$  (right).

#### SI-7. Characterization of (PbS)<sub>6.7</sub>Y<sub>ITO</sub> with transmission electron microscopy (TEM).


For the TEM analysis, the (PbS)<sub>6.7</sub>Y films were peeled off the ITO glass by scraping them with a razor blade in a glove box and the surfaces of the fragments were coated with ODC to preserve the QDs as such. The TEM images of the ODC-coated (PbS)<sub>6.7</sub>Y film fragments showed only lattice fringes of zeolite Y framework but not the isolated QDs (Figure SI-7-1, a and b). However, the TEM images of the ODC-coated fragments of (PbS)<sub>6.7</sub>Y film after immersion in the electrolyte solution for 12 h (Figure SI-7-1, c and d) show the presence of ~5 nm sized QDs on the surface, consistent with the observation of the exciton absorption in the diffuse reflectance UV-vis spectrum (Figure 2f in the text) and the globular PbS QDs observed by AFM (SI-6). The absence of the lattice fringes of the zeolite-Y framework on the surface further shows that the thin surface layers of (PbS)<sub>6.7</sub>Y<sub>ITO</sub> underwent framework decomposition during the formation of mesosized PbS QDs. In contrast to the surface, the internal areas of the (PbS)<sub>6.7</sub>Y<sub>ITO</sub> film remained intact (Figure SI-7-1, e) indicating that the structural decomposition accompanying the formation of PbS is limited to the very shallow (10-20 nm) surfaces of (PbS)<sub>6.7</sub>Y<sub>ITO</sub> film.

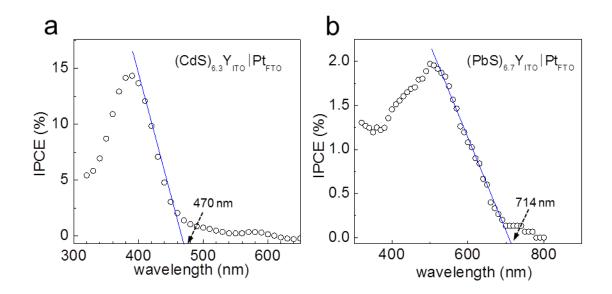
For comparison, we also obtained TEM images of ODC-coated 100-nm sized  $(PbS)_{6.7}Y$  crystals before (Figure SI-7-1, f and g) and after (Figure SI-7-1, h-j) exposure to the electrolyte solution for 12 h. The TEM images of ODC-coated  $(PbS)_{6.7}Y$  crystals, which were not exposed to the electrolyte solution, showed only the lattice fringes of the zeolite-Y framework but not the isolated PbS QDs. In contrast, the TEM images of ODC-coated  $(PbS)_{6.7}Y$  crystals which were exposed to the electrolyte solution showed the presence of mesosized PbS QDs in the entire mass and the zeolite Y framework has undergone complete framework destruction. This also shows that, for some unrevealed reasons, the  $(PbS)_{6.7}Y_{ITO}$  is much more stable in the electrolyte solution than the individual particles.




**Figure SI-7-1.** TEM images of zeolite films and zeolite crystals.  $(PbS)_{6.7}Y_{ITO}$  in different magnifications (a, b), a surface layer of  $(PbS)_{6.7}Y_{ITO}$  after immersion in the electrolyte solution for 12 h in two different magnifications (c, d), a deeper layer of  $(PbS)_{6.7}Y_{ITO}$  after immersion in the electrolyte solution for 12 h (e), 100-nm sized ODC- $(PbS)_{6.7}Y$  crystals (f, g), 100-nm sized ODC- $(PbS)_{6.7}Y$  crystals after immersion in the electrolyte solution for 12 h in different magnifications (h-j).

#### SI-8. Transmittance spectra of $(Na)_{59}Y_{ITO}$ and $(CdS)_nY_{ITO}$ (n = 3.2, 4.3, and 6.3)




**Figure SI-8.** Transmittance spectra of  $(Na)_{59}Y_{ITO}$  and  $(CdS)_nY_{ITO}$  (n = 3.2, 4.3, and 6.3) immersed in DMSO which is used as the index matching fluid.

SI-9. Extrapolated plots of IPCE (A) and APCE (B) with respect to the loaded number of CdS per unit cell

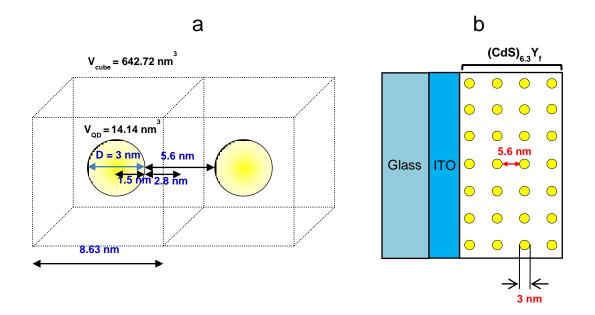


**Figure SI-9-1.** Plots of IPCE (a) and APCE (b) with respect to the loaded number of CdS per unit cell and the extrapolation.

SI-10. Estimation of band gap energies of interconnected QDs in  $(CdS)_{6.3}Y_{ITO}$  and  $(PbS)_{6.7}Y_{ITO}$ 



**Figure SI-10-1.** Estimation of band gap energies of interconnected QDs in  $(CdS)_{6.3}Y_{ITO}$  (a) and  $(PbS)_{6.7}Y_{ITO}$  (b).


#### SI-11. Basis for the calculation of the volume percent of 6.3 CdS in a unit cell.

- (1) Number of CdS per unit cell = 6.3
- (2) Density of CdS: 4.82 g/cm<sup>3</sup>
- (3) Molecular weight of CdS: 144.46 g/mole
- (4) Weight of 6.3 CdS: 1.51 X 10<sup>-21</sup> g
- (5) Volume of 6.3 CdS: 313 Å  $^3$

$$(1.51 \text{ X } 10^{-21} \text{ g})/\text{V} = 4.82 \text{ g/cm}^3$$
  
V = 313 X 10<sup>-24</sup> cm<sup>3</sup> (1 Å <sup>3</sup> = 10<sup>-24</sup> cm<sup>3</sup>)

- (6) Volume of a zeolite-Y unit cell: 14,349 Å  $^3$
- (7) Volume % of 6.3 CdS in a unit cell: (313/14,349) X 100 = 2.2 (%)

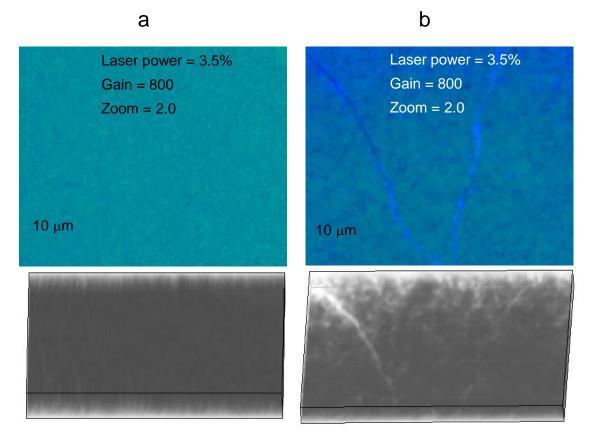
SI-12. Calculation of the interdot distance between the interconnected CdS QDs in  $(CdS)_{6.3}Y_{ITO}$ .



**Figure SI-12-1.** Schematic illustration of the basis for the calculation of the interdot distance between the interconnected CdS QDs in  $(Cd)_{6.3}Y_{ITO}$  (a) and the 2D drawing of  $(Cd)_{6.3}Y_{ITO}$  (B).

| D <sub>QD</sub> (nm) | r <sub>QD</sub> (nm) | $V_{QD}(nm^3)$ | $V_{cube} (nm^3)$ | Edge length (nm) | Inter QD $d_{edge-to-edge}$ |
|----------------------|----------------------|----------------|-------------------|------------------|-----------------------------|
| 3.0                  | 1.5                  | 14.14          | 642.72            | 8.63             | 5.6                         |

### SI-13. Electrolyte salt occlusion into zeolite-Y films upon immersion into the electrolyte solution


Table SI-13-1. Compositions of Zeolite Y films After Immersion in Various Electrolytes Used in This Study.

| Electrolytes              | Unit Cell Composition + Additional Salt                                    |      |
|---------------------------|----------------------------------------------------------------------------|------|
| None                      | Na <sub>70.2</sub> Al <sub>70.3</sub> Si <sub>121.7</sub> O <sub>384</sub> | -    |
| $Na_2S(0.1M) + NaOH(1 M)$ | $Na_{70.2}Al_{70.3}Si_{121.7}O_{384} + (Na_{4.5}S_{0.7})$                  | 0.1  |
| $Na_2S$ (0.1M)            | $Na_{70.2}Al_{70.3}Si_{121.7}O_{384} + (Na_{0.5}S_{0.8})$                  | -    |
| NaOH (1M)                 | $Na_{70.2}Al_{70.3}Si_{121.7}O_{384} + (Na_{3.8})$                         | -    |
| NaI (0.1M) + NaOH (1 M)   | $Na_{70.2}Al_{70.3}Si_{121.7}O_{384} + (Na_{4.6}I_{0.8})$                  | 0.03 |
| NaI (0.1M)                | $Na_{70.2}Al_{70.3}Si_{121.7}O_{384} + (Na_{1.0}I_{0.9})$                  | -    |
| TBAI(0.1M) + TBAOH(1 M)   | Na <sub>70.2</sub> Al <sub>70.3</sub> Si <sub>121.7</sub> O <sub>384</sub> | 0.0  |
| TBAI (0.1M)               | Na <sub>70.2</sub> Al <sub>70.3</sub> Si <sub>121.7</sub> O <sub>384</sub> | -    |

#### **Procedure**

- 1.  $Y_{ITO}$  films with the size of 2 × 0.5 cm<sup>2</sup> were dipped into each electrolyte solution for 10 min. 2.  $Y_{ITO}$  films were washed with pure water for 3 second.
- 3. The surfaces were immediately dried by blowing strong  $N_2$  flow.

SI-14. Laser scanning confocal microscope (LSCM) images of the fluorescein-stained zeolite Y films



**Figure SI-14-1.** Comparison of two zeolite Y films: the one that is widely used in this study (a) and the other that has deliberately produced microcracks (b). Top: 2D image, Bottom: 3D image

The LSCM measurements were performed on two types of  $Y_{ITO}$  (2 × 2 cm<sup>2</sup>), one that has been routinely used in this work, the other that have microcracks by genrating large amounts of CdS QDs. The films were immersed in a methanol solution of 2-(6-hydroxy-3-oxo-(3H)xanthen-9-yl) benzoic acid (fluorescein, 0.1M) for 4 days at room temperature. The zeolite-Y films were then washed with a stream of MeOH, dried by blowing N<sub>2</sub> gas, and kept at room temperature for 12 h.

The LSCM measurements were conducted using a LSM 5 Exciter (Carl Zeiss) with an  $Ar^+$  ion laser (488 nm) as the excitation source and with z-stack scan mode. The two types of  $Y_{ITO}$  films were measured under the same condition of the laser power of 3.5 % using Plan-Apochromat 40×/0.95 Korr M27 objective lens with the zoom at 2.0 and the master gain at 800. The 3D images were built using ZEN 2009 Light Edition software (Carl Zeiss).

## SI-15 Photovoltaic characteristics of $(CdS)_{6.3}Y_{\rm ITO}\,\big|\,Pt_{FTO}$ with various thickness.

\

| Thickness (µm) | $I_{sc} (mA/cm^2)^a$ | $V_{oc}(V)^{b}$ | $FF^{c}$ | $\eta \left(\%\right)^{d}$ |
|----------------|----------------------|-----------------|----------|----------------------------|
| 2500           | 0.30                 | 423             | 28       | 0.10                       |
| 1600           | 0.25                 | 411             | 30       | 0.07                       |
| 1000           | 0.17                 | 397             | 28       | 0.04                       |
| 500            | 0.10                 | 384             | 29       | 0.02                       |
| 350            | 0.07                 | 350             | 30       | ~0.01                      |

<sup>a</sup>Short circuit current. <sup>a</sup>Open circuit voltage. <sup>c</sup>Fill factor. <sup>d</sup>Efficiency.

# SI-16. Photovoltaic characteristics of $(CdS)_{6.3}Y_{ITO}$ | $Pt_{FTO}$ under different light intensities.

| Light Intensity | $I_{sc} (mA/cm^2)^a$ | $V_{oc}(V)^{b}$ | FF <sup>c</sup> | $\eta \left(\%\right)^{d}$ |
|-----------------|----------------------|-----------------|-----------------|----------------------------|
| 1.0 sun         | 0.30                 | 423             | 28              | 0.10                       |
| 0.5 sun         | 0.18                 | 415             | 30              | 0.13                       |
| 0.1 sun         | 0.05                 | 407             | 28              | 0.15                       |

<sup>a</sup>Short circuit current. <sup>a</sup>Open circuit voltage. <sup>c</sup>Fill factor. <sup>d</sup>Efficiency.