Supporting Information

Raman and Infrared Phonon Features in a Designed Cubic Polymorph of $\mathrm{CaTa}_{2} \mathrm{O}_{6}$

N.G. Teixeira, R.L. Moreira, R.P.S.M. Lobo, M.R.B. Andreeta, A.C. Hernandes and A. Dias
Micrographs of the single crystal sample used in the X-ray, infrared and Raman experimental setups are showed, aiming to give a better view of the used orientations in the polarized experiments. A summary of the individual Lorentz lines used in peak fitting of the Raman spectra for different scattering geometries complete this supplementary material.

Figure S , below, presents a $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ single crystal fiber mounted for the X-ray measurements. The parallelepiped (red) edges show the crystalline directions: the vertical axis, labeled as [001] (// z), and the perpendicular (a or b) directions of the cubic Pm3 symmetry. The face in the plane of the figure is normal to the direction $d^{\prime}=[110]$. This plane, called $d z$, contains the longitudinal z-axis and a transversal d-axis (// [110]).

Fig. S1: Crystallographic orientation of the $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ single crystal fiber. The crystal, already cut and polished, is $800 \mu \mathrm{~m}$ long with a $400 \mu \mathrm{~m}$ diameter.

Micro-infrared spectroscopic measurements of the single crystal fiber were done in the $d z$-plane, with or without appropriate polarizers for far and mid-infrared regions. The measuring region $(300 \mu \mathrm{~m} \times 300 \mu \mathrm{~m})$ and the crystal orientation are shown in Fig. S2.

Fig. S2: In-situ microphotography of the $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ fiber cut and polished in the $d z$-plane (the z-axis is along the horizontal direction). Polarized infrared measurements were done with the light electrical field parallel to the z-axis.

The Raman measurements were done on a (polished) transversal cross-section of the $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ crystal fibers. The fibers were cylindrical, with small facets which revealed to be parallel to the cubic unit cell edges (minor facets) or to the $\langle 110\rangle$ directions (major ones). Fig. S3 shows two micrographs with the (in-situ) crystal orientations for the polarized Raman experiments. In the left photography, note a natural $d z$-facet on the left (vertical direction) and the polished $d z$-surface (used for infrared measurements) on the right.

Fig. S3: In-situ micrographs of the oriented $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ sample for the Raman experiments. The four scattering geometries used are indicated by the arrows.

Table S 1 shows the obtained fitting parameters for the Raman spectra, in the four scattering configurations chosen (peak positions and half-width at half-maxima, HWHM, of the Lorentz lines are given in cm^{-1}). This table must be taken carefully, for it does not show the intensities. The leakage peaks are important to the fittings, but are weaker than the allowed ones. The code of colors for the irreducible representations is the same used in the figures of the paper.

Table S1- The depicted Raman modes of the $\mathrm{CaTa}_{2} \mathrm{O}_{6}$ single crystal fibers, in the four measured scattering configurations. The phonon wavenumbers and widths (HWHM) are in cm^{-1}. The individual peaks are in black $\left(\mathrm{A}_{\mathrm{g}}\right)$, blue $\left(\mathrm{E}_{\mathrm{g}}\right)$, red $\left(\mathrm{F}_{2 \mathrm{~g}}\right)$ and wine (IR modes).

	$z(x x) \bar{z}$	$z(x y) \bar{z}$	$z(d d) \bar{z}$	$z\left(d d^{\prime}\right) \bar{z}$	Attribution	Ferrari*
$\#$	$\mathrm{~A}_{\mathrm{g}}+\mathrm{E}_{\mathrm{g}}$	F_{g}	$\mathrm{A}_{\mathrm{g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{F}_{\mathrm{g}}$	E_{g}		
1	$127.5(10.2)$	-	$126.8(9.0)$	$131.5(12.9)$	A_{g}	118
2	-	$146.7(5.5)$	-	-	F_{g}	-
3	$167.1(17.0)$	-	$167.8(16.5)$	$167.8(16.5)$	E_{g}	167
4	-	$175.1(17.7)$	-	-	F_{g}	-
-	$191.5(16.1)$	-	$194.6(15.0)$	$190.3(10.5)$	$\mathrm{IR}\left(\mathrm{F}_{\mathrm{u}}\right)$	
5	-	$214.6(23.0)$	-	$212.8(48.5)$	F_{g}	
6	-	$217.8(22.8)$	-	-	F_{g}	-
7	$231.7(24.0)$	-	$227.2(19.0)$	-	A_{g}	227
8	$271.1(18.8)$	$272.9(18.5)$	$272.3(19.7)$	$272.3(19.7)$	E_{g}	270
9	-	$309.9(25.2)$	$305.5(16.3)$	-	F_{g}	
10	$317.0(23.5)$	-	$316.8(22.9)$	$316.8(22.9)$	E_{g}	317
11	$363.4(18.2)$	$360.0(9.4)$	$360.0(9.6)$	$363.0(14.7)$	F_{g}	372
12	$427.1(10.3)$	-	-	$425.5(10.7)$	F_{g}	-
13	$461.3(11.0)$	$463.7(3.0)$	$459.3(10.4)$	$459.3(10.4)$	E_{g}	463
14	$490.5(21.8)$	-	$485.9(17.2)$	$486.8(14.2)$	F_{g}	-
15	-	$565.2(10.9)$	$565.3(10.9)$	-	F_{g}	-
16	-	$579.1(12.7)$	-	-	F_{g}	
17	$596.9(18.2)$	$598.8(18.3)$	$590.5(21.8)$	$601.8(29.1)$	E_{g}	591
18	$645.4(40.6)$	$638.7(20.6)$	$641.8(28.7)$	$641.8(28.7)$	A_{g}	650
19	-	$667.3(11.5)$	$667.3(11.5)$	$667.8(18.8)$	F_{g}	-
20	$740.4(36.7)$	-	$741.6(29.9)$	$736.5(28.2)$	A_{g}	-
21	$843.8(42.4)$	-	$850.2(43.5)$	$856.4(88.1)$	A_{g}	856
-	$890.0(33.7)$	-	$900.9(31.7)$	-	$I R\left(\mathrm{~F}_{\mathrm{u}}\right)$	
-	$942.9(26.4)$	-	$948.8(20.4)$	-	$\mathrm{IR}\left(\mathrm{F}_{\mathrm{u}}\right)$	

*C. R. Ferrari et al. (ref. 3), J. Cryst. Growth 2004, 266, 475.

