Supplementary Information

Molecular determinants of ligand binding modes in the histamine H₄ receptor: Linking ligand-based 3D-QSAR models to *in silico* guided receptor mutagenesis studies

Enade P. Istyastono^{‡*}, Saskia Nijmeijer^{‡*}, Herman D. Lim[¶], Andrea C. van de Stolpe[‡], Luc Roumen[‡], Albert J. Kooistra[‡], Henry F. Vischer[‡], Iwan J.P. de Esch[‡], Rob Leurs[‡], Chris de Graaf^{‡**}

[‡]Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Griffin Discoveries BV, Department of Medicinal Chemistry, Room P-246, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands

Contents

1.	Title page	S 1
2.	Purity data for compounds 2, 5, and 6a-l as determined by LCMS	S2
3.	HRMS data for compounds 2, 5, and 6a-l as determined by LCMS	S3
4.	Value of the most influential descriptors for equations 1-5.	S4
5.	Alignment of compounds 2, 5, and 6a-l used in 3D-QSAR	S5
6.	The frequency of the ligand forming hydrogen bond to $D^{3.32}$ in 1 ns MD	
	simulations	S6
7.	Comparison of ligand binding modes in ADRB2 and H1R crystal structure	es and
	H ₄ R models	S7
8.	References Supplementary Information	S 8

Purity data for compounds 2, 5, 6a-l as determined by LCMS.

Compound	Retention time (min)	Purity ^b
2	2.40	100.0
5	2.79	96.5
6a	2.48	98.6
6b	2.64	99.0
6c	2.45	95.4
6d	3.00	98.6
6e	12.54 ^c	96.8
6f	2.73	97.0
6g	2.95	100.0
6h	2.57	99.7
6i	2.39	98.3
6j	2.85	97.9
6k	2.57	98.4
61	2.69	98.9

Supplementary Table 1: Purity and retention times of the synthesised compounds determined by analytical HPLC-MS.^a

^a The conditions can be found in the experimental section of the main article; ^b The purities were calculated as the percentage peak area of the analyzed compound by UV detection.

^c different method:

LCMS analysis of compound 6^{e} was performed with a Shimadzu LC-8A preparative liquid chromatograph pump system with a Shimadzu SPD-10AV UV–vis detector with the MS detection performed with a Shimadzu LCMS-2010 liquid chromatograph–mass spectrometer. using an XBrigde column (C18, 5 µm, 4,6 x 100 mm). An aqueous buffer (pH 8) of 0.04% NH₄HCO₃ (solvent A) and a mixture of 90% MeCN and 10% of a 0.4% NH₄HCO₃ buffer (pH 8, solvent B) were used. The runs started with 5% B with a linear gradient to 90% B in 10 minutes, then continuing for 10 minutes with 90% B and finally a linear gradient to 5% B in 10 minutes. Total run time 30 minutes.

HRMS data for compounds 1, 8, 9a-l.

Compound	MF	MW	MW	
_		Calc.[M+1]	Found [M+1]	
2	$C_{14}H_{17}ClN_4S$	309.0940	309.0928	
5	$C_{20}H_{27}ClN_4S$	391.1723	391.1698	
6a	$C_{19}H_{26}N_4S$	343.1956	343.1937	
6b	$C_{20}H_{28}N_4S$	357.2113	357.2093	
6c	$C_{16}H_{28}N_4S$	309.2113	309.2090	
6d	$C_{20}H_{26}Cl_2N_4S$	425.1335	425.1321	
6e	$C_{18}H_{25}ClN_4S$	365.1566	365.1547	
6f	$C_{21}H_{23}ClN_4S$	399.1410	399.1385	
6g	$C_{21}H_{22}Cl_2N_4S$	433.1020	433.0981	
6h	$C_{18}H_{30}N_4S$	335.2269	335.2245	
6i	$C_{16}H_{28}N_4S$	309.2113	309.2087	
6j	$C_{18}H_{24}Cl_2N_4S$	399.1177	399.1152	
6k	$C_{21}H_{27}N_4S$	382.2065	382.2048	
61	$C_{20}H_{27}N_5O_2S$	402.1963	402.1944	

Supplementary Table 2: HRMS data for compounds 1, 8, 9a-l.^a

^a The conditions can be found in the experimental section of the main article.

Value of the most influential descriptors for equations 1-5.

Supplementary	Table 3:	Value	of the	most	influential	descriptors	for	equations
1 and 2								

Cmpd	diameter	BCUT_SMR_0	vdw_area	E_strain
2	14.000	-2.256	288.752	32.970
5	14.000	-2.513	362.434	12.681
6a	13.000	-2.262	328.333	45.480
6b	13.000	-2.513	344.141	37.308
6c	12.000	-2.347	308.107	23.685
6d	14.000	-2.528	380.728	28.092
6e	14.000	-2.346	358.017	28.542
6f	14.000	-2.256	378.243	34.826
6g	14.000	-2.256	396.536	34.201
6h	12.000	-2.529	312.524	43.572
6i	11.000	-2.390	315.008	43.662
6j	14.000	-2.346	376.311	27.665
6k	15.000	-2.528	368.583	28.796
61	15.000	-2.528	372.991	26.652

Supplementary Table 4: Value of the most influential descriptors for equations 3-5

Cmpd	DRY.8331	O.6874	DRY.8195	DRY.3376	DRY.9361
2	0.180	3.618	-2.738	-11.144	-7.416
5	0.180	3.154	0.180	-10.979	0.180
6a	-4.234	2.744	-1.630	-6.631	0.180
6b	0.180	1.909	-4.011	-6.664	-7.573
6c	-4.168	3.628	-1.589	-2.093	0.180
6d	0.180	3.780	-4.085	-11.243	-7.598
6e	-0.316	1.304	-4.251	-11.037	-2.614
6f	-2.440	0.872	-6.127	-11.136	-5.193
6g	-2.416	2.066	-6.259	-11.301	-5.185
6h	0.180	-0.371	-2.449	-1.928	-7.433
6i	-4.151	1.268	-1.482	-1.217	0.180
6j	-0.308	3.583	-4.275	-11.177	-2.639
6k	0.180	2.145	-4.019	-16.566	-7.573
61	0.180	3.545	-4.085	-13.549	-7.606

Compound	Binding Mode		
_	Ι	Π	
Clobenpropit (2)	98.5% ^a	97.0% ^b	
VUF5228 (6)	0% ^c	98.8% ^d	

Supplementary Table 4. The frequency of the ligand forming hydrogen bond to $D^{3.32}$ in 1 ns MD simulations

Molecular dynamics simulations starting from binding modes depicted in Fig. $5A^a$, $5C^b$, Fig. $5B^c$, and Fig. $5D^d$

Supplementary Figure 1: Alignment of compounds 2, 5, and 6a-l used in 3D-QSAR

Supplementary Figure 2: Comparison of: A) carazalol (yellow carbon atoms) bound adrenergic beta-2 receptor (ADRB2) crystal structure¹; B) doxepin (green) bound histamine H1 receptor (H₁R) crystal structure²; C-D) VUF5228 (cpd 5, magenta) bound H₄R homology models; E-F) clobenpropit (cpd 2, orange) bound H₄R homology models.

References Supplementary Information

1. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. *Science* **2007**, 318, 1258-65.

2. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. *Nature* **2011**, 475, 65-70.