Dephosphorylation reactions with deferoxamine, a potential

chemical nuclease

Elisa S. Orth^{\dagger}, Michelle Medeiros^{\dagger}, Tiago Bortolotto^{\ddagger}, Hernán Terenzi^{\ddagger}, Anthony J.

Kirby[§] and Faruk Nome^{\dagger}*.

[†] INCT-Catálise, Departamento de Química, Universidade Federal de Santa Catarina,

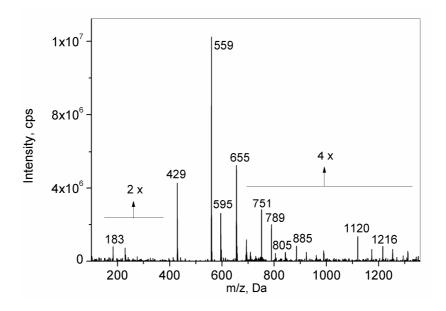
Campus Universitário – Trindade, 88040-900 Florianópolis, SC, Brasil^{, ‡} Departamento

de Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário -

Trindade, 88040-900 Florianópolis, SC, Brasil. § University Chemical Laboratory,

Cambridge CB2 1EW, UK.

Electronic Supporting Information


1. Kinetic data	S2
Table S.1. Rate constants as a function of pH for the reaction of 0.01M DFO with BDNPP at 25.0°C in water, $\mu = 1.0$ M (KCl).	S2
2. ESI-MS spectrometry	S 3
Figure S2 . ESI-MS (-) after 30 min of reaction of BDNPP with DFO in aqueous solution at pH 10 and 25°C.	S 3
Scheme S3. ESI-MS/MS fragment assignments for BDNPP of m/z 429, DFO of m/z 559 and the proposed phosphorylated intermediates of m/z 805 and m/z 885.	S 3
Figure S4. ESI-MS/MS of the reagent BDNPP of m/z 429.	S5
Figure S5. ESI-MS/MS of the reagent DFO of m/z 559.	S 5

1. Kinetic data

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
8.010.05768.510.1859.040.627	
8.510.1859.040.627	
9.04 0.627	
9.30 1.22	
9.52 1.69	
9.70 2.10	
9.80 2.45	
9.98 2.75	
10.2 3.08	
10.3 3.39	
10.5 3.61	
10.6 3.68	
10.9 3.82	
11.1 3.89	
11.3 3.89	
11.5 3.90	

Table S.1. Rate constants as a function of pH for the reaction of **DFO** with **BDNPP** at 25.0°C in water, $\mu = 1.0$ M (KCl).

2. ESI-MS spectrometry

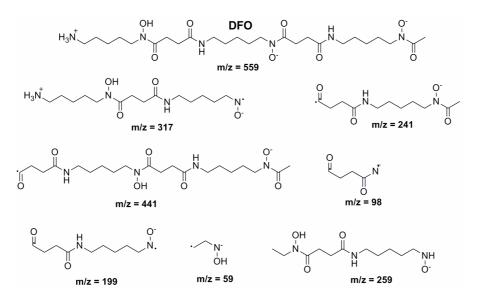
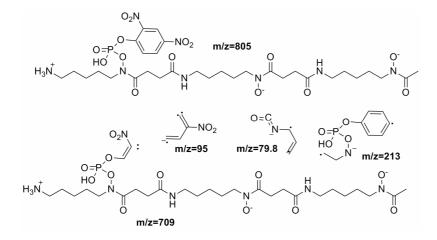
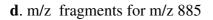
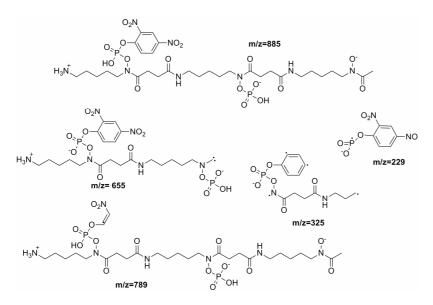


Figure S2. ESI-MS (-) after 30 min of reaction of **BDNPP** with **DFO** in aqueous solution at pH 10 and 25°C.


Scheme S3. ESI-MS/MS fragment assignments for **BDNPP** of m/z 429, **DFO** of m/z 559 and the proposed phosphorylated intermediates of m/z 805 and m/z 885.




b. m/z fragments for **DFO** of m/z 559

c. m/z fragments for m/z 805

The reactant **BDNPP** of m/z 429 dissociates to the fragments of m/z 245, 215, 183, 153, 137, 123, 109, 94.9 and 78.8 (**Figure S4, Scheme S3**), which are mainly due to loses of the nitro groups and ring opening reactions. Furthermore, **DFO** of m/z 559 dissociates to the fragments of m/z 441, 317, 259, 241, 199, 161, 155, 136, 97.9 and 58.9 (**Figure S5, Scheme S3**) and the fragments are consistent with multiple cleavages of the **DFO** anion, consistent with its complex and relatively large structure. The ESI-MS/MS of **BDNPP** and **DFO** were helpful in providing information about the nature of the phosphorylated intermediates.

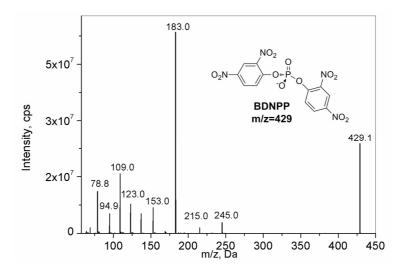


Figure S4. ESI-MS/MS of the reagent BDNPP of m/z 429.

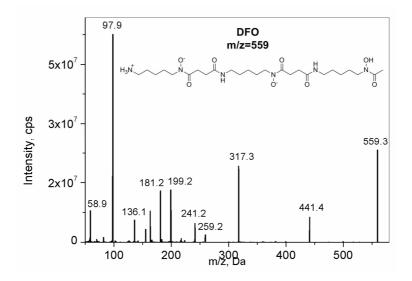


Figure S5. ESI-MS/MS of the reagent DFO of m/z 559.