Benzyl-Substituted Room Temperature Ionic

Liquids for $\mathrm{CO}_{2} / \mathrm{N}_{2}$ Separations

Shannon M. Mahurin ${ }^{1}$ *, Thomas Dai ${ }^{l}$, Josh Yeary ${ }^{1}$, Huimin Luo ${ }^{2}$, Sheng Dai ${ }^{1,3 *}$
${ }^{1}$ Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
${ }^{2}$ Energy and Transportation Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831
${ }^{3}$ Dept. of Chemistry, University of Tennessee, Knoxville, TN 37996

Synthesis of RTILs

The room temperature ionic liquids were synthesized according to the following procedures. The temperature at which decomposition of the liquid began, or the onset temperature, and NMR lines are also provided for all of the ionic liquids.

1-Benzyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BzMIM] [$\left.\mathrm{Tf}_{2} \mathrm{~N}\right]$ (a). From benzyl bromide ($5.08 \mathrm{~g}, 29.7 \mathrm{mmol}$), methylimidazole ($2.44 \mathrm{~g}, 29.7 \mathrm{mmol}$), and $\operatorname{LiNTf}_{2}(8.52 \mathrm{~g}$, $29.7 \mathrm{mmol}), 12.12 \mathrm{~g}(26.7 \mathrm{mmol})$ of [BzMIM] [$\left.\mathrm{Tf}_{2} \mathrm{~N}\right]$ was obtained as a yellow liquid (yield $90 \%) .{ }^{1} \mathrm{H}$-NMR data: $\delta, 8.72(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H})$, and $3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta, 135.75(\mathrm{CH}), 132.40(\mathrm{C}), 129.58(\mathrm{CH}), 128.75(\mathrm{CH}), 123.86(\mathrm{CH})$, $122.14(\mathrm{CH}), 119.73\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=321.2 \mathrm{~Hz}\right), 53.34\left(\mathrm{CH}_{2}\right)$, and $36.14\left(\mathrm{CH}_{3}\right) . \mathrm{T}_{\text {onset }}=413^{\circ} \mathrm{C}$ \mathbf{N}-Benzyl \mathbf{N}-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [BzMPyrr][Tf ${ }_{2} \mathrm{~N}$] (b). From benzyl bromide ($3.28 \mathrm{~g}, 19.2 \mathrm{mmol}$), 1-methylpyrrolidine ($1.63 \mathrm{~g}, 19.2 \mathrm{mmol}$), and LiNTf_{2} $(5.51 \mathrm{~g}, 19.2 \mathrm{mmol}), 6.07 \mathrm{~g}(13.3 \mathrm{mmol})$ of $[\mathrm{BzMPyrr}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$ was obtained as a yellow liquid (yield 69\%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data: $\delta, 7.46(\mathrm{~m}, 5 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}$, 3 H), and $2.24(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta, 132.00(\mathrm{CH}), 130.67(\mathrm{C}), 129.19(\mathrm{CH}), 127.30(\mathrm{CH})$, $119.61\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}\right.$ C-F $\left.=321.3 \mathrm{~Hz}\right), 66.76\left(\mathrm{CH}_{2}\right), 63.10\left(\mathrm{CH}_{2}\right), 47.40\left(\mathrm{CH}_{2}\right)$, and $20.72\left(\mathrm{CH}_{3}\right) . \mathrm{T}_{\text {onset }}$ $=412^{\circ} \mathrm{C}$
\mathbf{N}-Benzyl pyridinium bis(trifluoromethylsulfonyl)imide $\left[\mathrm{BzPy}^{2}\right]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$ (c). From benzyl bromide ($2.31 \mathrm{~g}, 13.5 \mathrm{mmol}$), pyridine ($1.07 \mathrm{~g}, 13.5 \mathrm{mmol}$), and $\operatorname{LiNTf}_{2}(3.88 \mathrm{~g}, 13.5 \mathrm{mmol})$, $5.39 \mathrm{~g}(12.0 \mathrm{mmol})$ of $[\mathrm{BzPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$ was obtained as a pale yellow liquid (yield $\left.89 \%\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$
data: $\delta, 8.78(\mathrm{~m}, 2 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H})$, and $5.78(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta$, $\delta, 145.95(\mathrm{CH}), 145.12(\mathrm{CH}), 144.10(\mathrm{CH}), 131.81(\mathrm{C}), 130.59(\mathrm{CH}), 128.65(\mathrm{CH}), 128.32(\mathrm{CH}), 119.74$ $\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=321.0 \mathrm{~Hz}\right)$, and $65.29\left(\mathrm{CH}_{2}\right) . \mathrm{T}_{\text {onset }}=389^{\circ} \mathrm{C}$
N-Benzyl 2- pyridinium bis(trifluoromethylsulfonyl)imide [Bz2MPy][Tf $\left.\mathrm{T}_{2} \mathrm{~N}\right]$ (d). From benzyl bromide ($2.48 \mathrm{~g}, 14.5 \mathrm{mmol}$), 2-picoline ($1.35 \mathrm{~g}, 14.5 \mathrm{mmole}$), and $\operatorname{LiNTf}_{2}(4.16 \mathrm{~g}, 14.5 \mathrm{mmol})$, $5.27 \mathrm{~g}(11.3 \mathrm{mmol})$ of $[\mathrm{Bz} 2 \mathrm{MPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$ was obtained as a yellow liquid (yield 78%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data: $\delta, 8.64(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H})$, and 2.76 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta, 155.57(\mathrm{C}), 145.65(\mathrm{CH}), 145.14(\mathrm{CH}), 130.91(\mathrm{C}), 130.44(\mathrm{CH}), 127.73$ $(\mathrm{CH}), 125.92(\mathrm{CH}), 119.60\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=324.0 \mathrm{~Hz}\right), 61.50\left(\mathrm{CH}_{2}\right)$ and $20.35\left(\mathrm{CH}_{3}\right) . \mathrm{T}_{\text {onset }}=403^{\circ} \mathrm{C}$
N-Benzyl 3- pyridinium bis(trifluoromethylsulfonyl)imide [Bz3MPy][Tf $\left.{ }_{2} \mathrm{~N}\right]$ (e). From benzyl bromide ($2.82 \mathrm{~g}, 16.5 \mathrm{mmol}$), 3-picoline ($1.54 \mathrm{~g}, 16.5 \mathrm{mmol}$), and $\operatorname{LiNTf}_{2}(4.73 \mathrm{~g}, 16.5 \mathrm{mmol})$ $6.46 \mathrm{~g}(13.9 \mathrm{mmol})$ of [Bz3MPy][Tf $\left.\mathrm{F}_{2} \mathrm{~N}\right]$ was obtained as a yellow liquid (yield 84%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data: $\delta, 8.63(\mathrm{~s}, 2 \mathrm{H}), 8.22(\mathrm{~d}, 1 \mathrm{H}), 7.85(\mathrm{t}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H})$ and $2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR: $\delta, 146.25(\mathrm{CH}), 143.46(\mathrm{CH}), 141.21(\mathrm{CH}), 140.27(\mathrm{CH}), 131.80(\mathrm{C}), 130.11(\mathrm{CH}), 129.61(\mathrm{CH})$, $129.11(\mathrm{CH}), 127.78(\mathrm{CH}), 119.64\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}\right.$ C-F $\left.=321.3 \mathrm{~Hz}\right), 65.29\left(\mathrm{CH}_{2}\right)$, and $18.16\left(\mathrm{CH}_{3}\right) . \mathrm{T}_{\text {onset }}=$ $401^{\circ} \mathrm{C}$
N-Benzyl 4- pyridinium bis(trifluoromethylsulfonyl)imide [Bz4MPy][Tf $\left.{ }_{2} \mathrm{~N}\right]$ (f). From benzyl bromide ($3.13 \mathrm{~g}, 18.3 \mathrm{mmol}$), 4-picoline ($1.70 \mathrm{~g}, 18.3 \mathrm{mmol}$), and $\operatorname{LiNTf}_{2}(5.25 \mathrm{~g}, 18.3 \mathrm{mmol})$ $7.41 \mathrm{~g}(13.1 \mathrm{mmol})$ of $[\mathrm{Bz} 4 \mathrm{MPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$ was obtained as a yellow liquid (yield $\left.87 \%\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ data: $\delta, 8.65(\mathrm{~d}, 2 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H})$, and $2.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta$, $160.00(\mathrm{C}), 143.00(\mathrm{CH}), 131.95(\mathrm{C}), 130.41(\mathrm{CH}), 129.58(\mathrm{CH}), 128.67(\mathrm{CH}), 119.65\left(\mathrm{CF}_{3}, \mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=\right.$ $321.3 \mathrm{~Hz}), 64.08\left(\mathrm{CH}_{2}\right)$ and $21.79\left(\mathrm{CH}_{3}\right) . \mathrm{T}_{\text {onset }}=420^{\circ} \mathrm{C}$

The viscosity values at different temperatures were measured and are shown in Table S1.

RTIL	Viscosity (cP)				
	$\mathbf{T = 2 9 8} \mathbf{~ K}$	$\mathbf{T = 3 0 3} \mathbf{~ K}$	$\mathbf{T = 3 1 3} \mathbf{~ K}$	$\mathbf{T = 3 2 3} \mathbf{~ K}$	$\mathbf{T}=\mathbf{3 3 3} \mathbf{~ K}$
$[\mathrm{Bz2MPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$	174	127	70	42	28
$[\mathrm{Bz3MPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$	160	104	58	36	25
$[\mathrm{Bz} 4 \mathrm{MPy}]\left[\mathrm{Tf}_{2} \mathrm{~N}\right]$	132	96	55	34	23
$[\mathrm{BzPy}]$	84	62	36	23	16
$[$ BzMPyrr $]$	353	247	133	77	49
$[$ BzMIM $]$	61	48	26	17	12

Table S1. Shows the viscosity values for the room-temperature ionic liquids at different temperatures.

