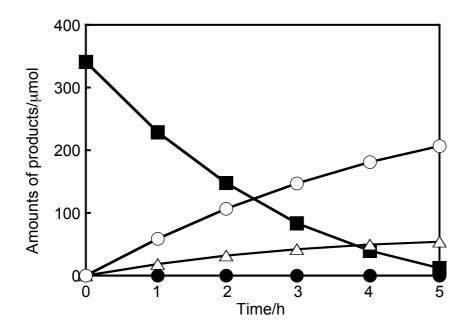
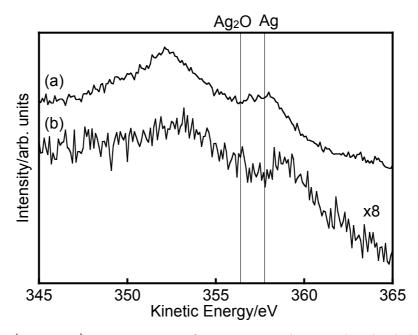
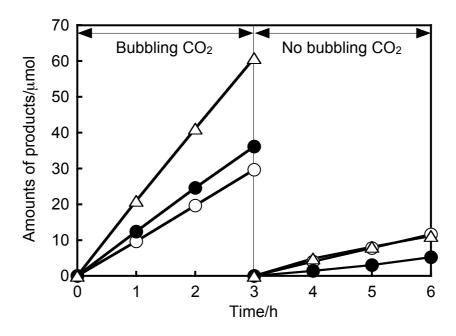
## **Electronic Supplementary Information**


## Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> (A=Ca, Sr, and Ba) Using Water as a Reducing Reagent

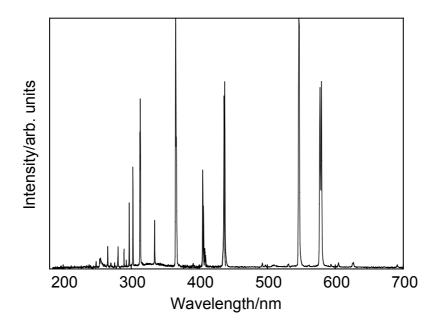
Kosuke Iizuka,<sup>+</sup> Tomoaki Wato,<sup>+</sup> Yugo Miseki,<sup>+</sup>Kenji Saito,<sup>+,+</sup> and Akihiko Kudo<sup>\*,+,+</sup>


<sup>+</sup>Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

<sup>†</sup>Division of Photocatalyst for Energy and Environment, Research Institute of Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan


E-mail: a-kudo@rs.kagu.tus.ac.jp




**Figure S1.** Decomposition of HCOOH over a bare  $BaLa_4Ti_4O_{15}$  photocatalyst in an aqueous medium. Catalyst: 0.3 g, water: 360 ml, Ar flow system (15 mL min<sup>-1</sup>), a 400W high pressure mercury lamp, an inner irradiation quartz cell, HCOOH ( $\blacksquare$ ),  $H_2(O)$ ,  $O_2(\bullet)$ ,  $CO(\triangle)$ .



**Figure S2.** Ag $(M_4N_{4,5}N_{4,5})$  Auger spectra of BaLa<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> photocatalyst loaded with Ag (2 wt%) by a liquid-phase chemical reduction method (a) before and (b) after 20 hours of photocatalytic reaction. The kinetic energy due to Ag and Ag<sub>2</sub>O was obtained from reference 52.



**Figure S3.** Photocatalytic CO<sub>2</sub> reduction over Ag(2 wt%)/BaLa<sub>4</sub>Ti<sub>4</sub>O<sub>15</sub> with and without bubbling CO<sub>2</sub> gas. Catalyst: 0.3 g, water: 350 ml, CO<sub>2</sub> flow system (15 mL min<sup>-1</sup>), a 400W high pressure mercury lamp, an inner irradiation quartz cell, H<sub>2</sub> ( $\bigcirc$ ), O<sub>2</sub> ( $\bigcirc$ ), CO ( $\triangle$ ).



**Figure S4.** A spectrum of incident light from a light source of a 400 W high-pressure mercury lamp + a quartz cell.