Supporting Information

Symmetrization in a Phosphinidene-Bridged Complex to give a Diphosphanediyl Derivative with a Metal-Centered Reactivity.

M. Angeles Alvarez, M. Esther García, * Daniel García-Vivó, Alberto Ramos, Miguel A. Ruiz,* and Jaime Suárez.

Contents

1. General Procedures and Starting Compounds S3
2. Synthesis and analytical data of the New Compounds S3
2.1. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\kappa^{1}, \eta^{5}: \kappa^{1}, \eta^{5}-\left(C_{5} H_{4}\right) P P\left(C_{5} H_{4}\right)\right\}\left(\eta^{6}-\text { HMes }^{*}\right)_{2}\right]$ (2)2.2. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\kappa^{1}, \eta^{5}: \kappa^{1}, \eta^{5}-\left(C_{5} \mathrm{H}_{4}\right) P P\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right\}(H)_{2}\left(\eta^{6}-\mathrm{HMes}^{*}\right)_{2}\right]\left(B F_{4}\right)_{2}(\mathbf{3})$.2.3. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\kappa^{1}, \eta^{5}: \kappa^{1}, \eta^{5}-\left(\mathrm{C}_{5} H_{4}\right) \operatorname{PP}\left(C_{5} H_{4}\right)\right\}(H)\left(\eta^{6}-\mathrm{HMes}^{*}\right)_{2}\right]\left(B F_{4}\right)(4)$.2.4. Preparation of $\left[M o\left\{\kappa^{1}, \eta^{5}-P H\left(C_{5} H_{4}\right)\right\}\left(\eta^{6}-H M e s^{*}\right)\right]$ (5).
3. X-ray Structure Determination of 2. S5
4. X-ray Structure Determination of $3 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. S5
5. CV measurements S6
6. DFT analysis of compound 2 S7
7. References S16

1. General Procedures and Starting Materials

All manipulations and reactions were carried out under a nitrogen (99.995\%) atmosphere using standard Schlenk techniques. All solvents were dried and purified according to literature procedures, ${ }^{1}$ and distilled prior to use. Petroleum ether refers to that fraction distilling in the range $338-343 \mathrm{~K}$. Compound $\left[\mathrm{Mo}_{2} \mathrm{Cp}\left(\mu-\kappa^{1}: \kappa^{1}, \eta^{5}\right.\right.$ $\left.\mathrm{PC}_{5} \mathrm{H}_{4}\right)(\mathrm{CO})_{2}\left(\eta^{6}\right.$-HMes*) ${ }^{*}$ (1) $\left(\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right.$; Mes* $\left.=2,4,6-\mathrm{C}_{6} \mathrm{H}_{2}{ }^{t} \mathrm{Bu}_{3}\right)$ was prepared in situ as described previously. ${ }^{2}$ All other reagents were obtained from the usual commercial suppliers and used as received. Chromatographic separations were carried out using jacketed columns cooled by tap water (ca. 288 K). Commercial aluminium oxide (Aldrich, activity I, 150 mesh) was degassed under vacuum prior to use. The latter was mixed under nitrogen with the appropriate amount of water to reach the activity desired. Nuclear Magnetic Resonance (NMR) spectra were routinely recorded at 290 K in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions unless otherwise is stated. Chemical shifts (δ) are given in ppm , relative to internal tetramethylsilane (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) or external 85% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. Coupling constants (J) are given in Hz . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances of the new compounds were assigned using a combination of standard DEPT, COSY, HSQC and NOESY experiments. This allowed an unequivocal assignment of all proton and carbon resonances.

2. Preparative, Spectroscopic and Microanalytical Data for New Compounds

2.1. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\kappa^{1}, \eta^{5}: \kappa^{1}, \eta^{5}-\left(\mathbf{C}_{5} \mathbf{H}_{4}\right) \mathbf{P P}\left(\mathbf{C}_{5} \mathbf{H}_{4}\right)\right\}\left(\eta^{6}-\mathrm{HMes}^{*}\right)_{2}\right]$ (2). A tetrahydrofuran solution (5 mL) of compound $\mathbf{1}(0.040 \mathrm{~g}, 0.062 \mathrm{mmol})$ was stirred at 318 K for 20 min under a CO atmosphere to give a brown solution. The solvent was then removed under vacuum, the residue was extracted with petroleum ether (this leaving a poorly soluble residue of $\left.\left[\mathrm{Mo}_{2} \mathrm{Cp}_{2}(\mathrm{CO})_{6}\right]\right)$ and the extracts were chromatographed on alumina (activity IV) at 288 K. Elution with dichloromethane/petroleum ether (1/8) gave a green fraction yielding, after removal of solvents under vacuum, compound $\mathbf{2}$ as a purple microcrystalline solid ($0.024 \mathrm{~g}, 88 \%$). The crystals used in the X-ray study were grown by the slow diffusion of layers of diethyl ether and petroleum ether into a concentrated solution of the complex in dichloromethane at 253 K . Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{68} \mathrm{Mo}_{2} \mathrm{P}_{2}\left(874.9 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C}, 63.15 ; \mathrm{H}$, 7.83. Found: C, 62.86; H, 7.77. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.49 MHz): $\delta 54.3$ (s). ${ }^{1} \mathrm{H}$ NMR (300.13 MHz): $\delta 5.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 4.24(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $1.20\left(\mathrm{~s}, 54 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.47 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 110.7$ [AXX' false dd, apparent $\left.J_{\mathrm{CP}}=30,25, C^{1}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 103.8\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right], 87.3\left[\mathrm{~s}, \mathrm{C}^{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 91.6\left[\mathrm{AXX}^{\prime}\right.$ false $\left.\mathrm{t}, J_{\mathrm{CP}}+J_{\mathrm{CP}}{ }^{\prime}=21, \mathrm{C}^{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 88.0\left[\mathrm{AXX}^{\prime}\right.$ false $\left.\mathrm{t}, J_{\mathrm{CP}}+J_{\mathrm{CP}}=10, \mathrm{C}^{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 86.1$
$\left[\mathrm{AXX}^{\prime}\right.$ false $\left.\left.\mathrm{t}, J_{\mathrm{CP}}+J_{\mathrm{CP}}=33, \mathrm{C}^{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 73.0\left[\mathrm{~s}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right], 34.5\left[\mathrm{~s}, \mathrm{C}^{1}{ }^{\mathrm{t}}{ }^{\mathrm{Bu}}\right)\right], 32.1[\mathrm{~s}$, $\left.\mathrm{C}^{2}\left({ }^{t} \mathrm{Bu}\right)\right]$.

2.2. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\kappa^{1}, \eta^{5}: \kappa^{1}, \eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{PP}\left(\mathrm{C}_{5} \mathbf{H}_{4}\right)\right\}(\mathrm{H})_{2}\left(\eta^{6}-\mathrm{HMes}^{*}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$

(3). Method A: A diethyl ether solution of HBF_{4} ($12 \mu \mathrm{~L}$ of a 54% solution, 0.088 mmol) was added to a dichloromethane solution (4 mL) of compound $2(0.035 \mathrm{~g}, 0.040 \mathrm{mmol})$ previously cooled at 213 K , and the mixture was stirred for 1 min to give a brown solution. The solvent was then removed under vacuum, and the residue was washed with diethyl ether ($2 \times 3 \mathrm{~mL}$) and petroleum ether ($2 \times 3 \mathrm{~mL}$) to give compound $\mathbf{3}$ as a pale yellow microcrystalline solid ($0.040 \mathrm{~g}, 96 \%$). The crystals used in the X-ray study were grown by the slow diffusion of a layer of toluene into a concentrated solution of the complex in dichloromethane at 273 K . Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Mo}_{2} \mathrm{P}_{2}(1050.5 \mathrm{~g}$ mol^{-1}): C, $52.59 ; \mathrm{H}, 6.72$. Found: C, $52.31 ; \mathrm{H}, 6.80 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.49 MHz): δ $112.5(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR (300.09 MHz): $\delta 6.24,6.17\left(2 \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.90\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right.$ and $\mathrm{C}_{5} \mathrm{H}_{4}$), $4.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.29\left(\mathrm{~s}, 54 \mathrm{H},{ }^{t} \mathrm{Bu}\right),-7.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Mo})$.

Method B: A dichloromethane solution of $\left[\mathrm{FeCp}_{2}\right]\left(\mathrm{BF}_{4}\right)(40 \mu \mathrm{~L}$ of a 2 M solution, 0.080 $\mathrm{mmol})$ was added to a dichloromethane solution (4 mL) of compound $2(0.035 \mathrm{~g}, 0.040$ mmol) previously cooled at 213 K , and the mixture was stirred for 1 min to give a brown solution. The solvent was then removed under vacuum, and the residue was washed with toluene ($2 \times 3 \mathrm{~mL}$) and petroleum ether $(2 \times 3 \mathrm{~mL})$ to remove ferrocene from it. The residue was then extracted with dichloromethane and filtered with a canula. Removal of the solvent from the filtrate gave compound $\mathbf{3}$ as a pale yellow microcrystalline solid $(0.033 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for this material were identical to those of the material obtained through the method A (see below).

2.3. Preparation of $\left[\mathrm{Mo}_{2}\left\{\mu-\boldsymbol{\kappa}^{1}, \boldsymbol{\eta}^{5}: \boldsymbol{\kappa}^{1}, \boldsymbol{\eta}^{\mathbf{5}}-\left(\mathbf{C}_{5} \mathbf{H}_{4}\right) \mathbf{P P}\left(\mathbf{C}_{5} \mathbf{H}_{4}\right)\right\}(\mathbf{H})\left(\boldsymbol{\eta}^{6}-\mathbf{H M e s}^{*}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)$

(4). A dichloromethane solution of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{~L}$ of a 2 M solution, 0.040 mmol$)$ was added to a dichloromethane solution (4 mL) of compound $\mathbf{2}(0.035 \mathrm{~g}, 0.040 \mathrm{mmol})$ previously cooled at 213 K , to give a dark violet solution. The solvent was then removed under vacuum, and the residue was washed with diethyl ether ($2 \times 3 \mathrm{~mL}$) and petroleum ether (4 mL) to give compound $\mathbf{4}$ as a black solid ($0.037 \mathrm{~g}, 95 \%$). Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{BF}_{4} \mathrm{Mo}_{2} \mathrm{P}_{2}\left(962.7 \mathrm{~g} \mathrm{~mol}^{-1}\right.$): C, $57.39 ; \mathrm{H}, 7.22$. Found: $\mathrm{C}, 57.46 ; \mathrm{H}$, $7.28 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($161.98 \mathrm{MHz}, 233 \mathrm{~K}$): $\delta 130.9\left[\mathrm{~d}, J_{\mathrm{PP}}=272, \mathrm{P}-\mathrm{Mo}-\mathrm{H}\right], 40.0\left[\mathrm{~d}, J_{\mathrm{PP}}\right.$ $=272, \mathrm{P}-\mathrm{Mo}] .{ }^{1} \mathrm{H}$ NMR ($400.13 \mathrm{MHz}, 233 \mathrm{~K}$): $\delta 6.29\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}^{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 5.82(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.63\left(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 5.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.00,4.81(2 \mathrm{~m}, 2 \times 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 4.66,4.48\left(2 \mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.26,1.19\left(2 \mathrm{~s}, 2 \times 27 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$, -6.35 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Mo}$). A 2D-NOESY spectrum displayed only a single crosspeak involving the resonance at -6.35 ppm , this revealing a intense NOE effect from the resonance at $\delta_{\mathrm{H}}=6.29 \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.61 \mathrm{MHz}, 233 \mathrm{~K}) \delta 123.3,106.8[2 \mathrm{~s}$,
$\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right], 101.4\left[\mathrm{~d}, J_{\mathrm{CP}}=19, \mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 96.2\left[\mathrm{~d}, J_{\mathrm{CP}}=16, \mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 91.3\left[\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $\left.28, \mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 88.3-87.5\left[\mathrm{~m}, 4 \mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 86.4\left[\mathrm{~s}, \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right], 85.5\left[\mathrm{~d}, J_{\mathrm{CP}}=29\right.$, $\left.\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right], 75.2$ [s, $\left.\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)\right], 35.7,34.7$ [2s, $\left.\mathrm{C}^{1}\left({ }^{t} \mathrm{Bu}\right)\right], 31.6,31.3$ [2s, $\left.\mathrm{C}^{2}\left({ }^{t} \mathrm{Bu}\right)\right]$. The resonances for the $\mathrm{C}^{1}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ carbon atoms could not be identified in the spectrum.
2.4. Preparation of $\left[\mathbf{M o}\left\{\boldsymbol{\kappa}^{1}, \eta^{5}-\mathbf{P H}\left(\mathbf{C}_{5} \mathbf{H}_{4}\right)\right\}\left(\boldsymbol{\eta}^{6}\right.\right.$-HMes*)] (5). A dichloromethane solution of $\left[\mathrm{CoCp}_{2}\right](40 \mu \mathrm{~L}$ of a 2 M solution, 0.080 mmol$)$ was added to a dichloromethane solution (4 mL) of compound $3(0.042 \mathrm{~g}, 0.040 \mathrm{mmol}$) previously cooled at 213 K , and the mixture was stirred for 1 min to give an orange solution. The solvent was then removed under vacuum, the residue was extracted with toluene/petroleum ether ($1 / 2$) and the extract was filtered with a canula. Removal of solvents from the filtrate gave compound $\mathbf{5}$ as a pale orange microcrystalline solid ($0.031 \mathrm{~g}, 89 \%$). No elemental analysis was obtained for this material due to its high sensitivity to air. ${ }^{31} \mathrm{P}$ NMR (121.49 MHz): $\delta-49.6$ (d, $J_{\mathrm{HP}}=144$). ${ }^{1} \mathrm{H}$ NMR (300.13 $\mathrm{MHz}): \delta 5.15,5.02,4.81,4.49\left(4 \mathrm{~m}, 4 \times 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.69\left(\mathrm{~d}, J_{\mathrm{HP}}=2,3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 2.07(\mathrm{~d}$, $\left.J_{\mathrm{HP}}=144,1 \mathrm{H}, \mathrm{H}-\mathrm{P}\right), 1.16\left(\mathrm{~s}, 27 \mathrm{H},{ }^{t} \mathrm{Bu}\right)$.
3. X-ray Structure Determination of 2. The X-ray intensity data were collected on a Kappa-Appex-II Bruker diffractometer using graphite-monochromated Mo-K α radiation at 100 K . The software APEX^{3} was used for collecting frames with ω / ϕ scans measurement method. The Bruker SAINT ${ }^{4}$ software was used for the data reduction, and a multi-scan absorption correction was applied with SADABS. ${ }^{5}$ Using the program suite WinGX, ${ }^{6}$ the structure was solved by Patterson interpretation and phase expansion, and refined with full-matrix least squares on F^{2} using SHELXL97. ${ }^{7}$ During the solution process, the compound was found to be placed on the symmetry operation $-x+1,-y+1,-$ $\mathrm{z}+1$. During the refinement stages, the unit " $\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{P}$ " was found to be disordered and the best solution was obtained by modelling the disorder over two positions with $\mathrm{C}(1)$ and $\mathrm{C}(3)$ belonging to both parts, and with occupancy $0.8 / 0.2$. All the positional parameters and the anisotropic temperature factors of all the non-H atoms were refined anisotropically, except for the carbon atoms $\mathrm{C}(2), \mathrm{C}(4)$ and $\mathrm{C}(5)$, which were refined isotropically to prevent their temperature factors from becoming non-positive definite. All hydrogen atoms were geometrically placed and refined using a riding model.
4. X-ray Structure Determination of 3•2CH $\mathbf{2}_{2} \mathbf{C l}_{2}$. Data collection was performed at 150 K on an Oxford Diffraction Xcalibur Nova single crystal diffractometer, using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$). Images were collected at a 63 mm fixed crystal-detector distance, using the oscillation method, with 1° oscillation and a exposure time per image of 1.5 s . Data collection strategy was calculated with the program CrysAlis Pro CCD. ${ }^{8}$ Data reduction and cell refinement was performed with the program CrysAlis Pro

RED. ${ }^{8}$ An empirical absorption correction was applied using the SCALE3 ABSPACK algorithm as implemented in the program CrysAlis Pro RED. Using the program suite WinGX, ${ }^{6}$ the structure was solved by Patterson interpretation and phase expansion, and refined with full-matrix least squares on F^{2} using SHELXL97. ${ }^{7}$ During the solution process, the compound was found to be placed on the symmetry operation $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$ and to crystallize with two molecules of dichloromethane. All nonhydrogen atoms were refined anisotropically and all hydrogen atoms (except the hydride $\mathrm{H}(1)$) were geometrically placed and refined using a riding model. The $\mathrm{H}(1)$ atom could not be located in the final difference map; then, plausible positions were investigated by a potential energy minima search using the program HYDEX. ${ }^{9}$ Only one minimum was found at sensible distances from the $\mathrm{Mo}(1)$ atom, at approximately 1.80 \AA, in agreement with the solution structure, therefore that position was assigned to the hydride ligand. The $\mathrm{H}(1)$ atom was then refined isotropically using a restraint in the $\mathrm{Mo}(1)-\mathrm{H}(1)$ bond (to $1.80 \AA$), it reaching a satisfactory refinement.
5. CV measurements. Cyclic Voltammetry experiments were performed in an airtight custom-made electrolytic cell using a Pt working electrode, an Ag wire reference electrode and a Pt wire auxiliary electrode. $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ was used as the supporting electrolyte (0.1 M solutions). The analyte concentrations in a typical experiment were ca. $10^{-3} \mathrm{M}$ in dichloromethane. The $E_{1 / 2}$ values were calculated from the average of the catodic and anodic potentials. All the potentials were referenced versus the ferrocene/ferrocenium couple $\left(\left[\mathrm{FeCp}_{2}\right]^{0 /+}\right)$, used as internal reference in all the experiments. The figure below shown a typical CV diagram for compound 2.

Figure S1. CV of compound 2 recorded at $200 \mathrm{mV} \mathrm{s}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, from -1.38 to +0.12 V , starting at -1.88 V , relative to the $\left[\mathrm{FeCp}_{2}\right]^{0 /+}$ couple, with sweeping towards positive potentials.
6. DFT analysis of compound 2. All computations were carried out using the GAUSSIAN03 package, ${ }^{10}$ in which the hybrid method B3LYP was applied with the Becke three parameters exchange functional ${ }^{11}$ and the Lee-Yang-Parr correlation functional. ${ }^{12}$ Effective core potentials (ECP) and their associated double- ζ LANL2DZ basis set were used for the metal atoms. ${ }^{13}$ The light elements ($\mathrm{P}, \mathrm{O}, \mathrm{C}$ and H) were described with $6-31 \mathrm{G}^{*}$ basis. ${ }^{14}$ Geometry optimization was performed under no symmetry restrictions, using initial coordinates derived from X-ray data of the complex, and a frequency analysis was performed to ensure that a minimum structure with no imaginary frequencies was achieved. For interpretation purposes, Mulliken charges were computed as usually, ${ }^{15}$ and natural population analysis (NPA) charges were derived from the natural bond order (NBO) analysis of the data. ${ }^{16}$ Molecular orbitals were visualized using the Molekel program. ${ }^{17}$

Optimized geometry.

Figure S2
Table S1: X-ray Structural Data and DFT-Optimized Geometries for Compound 2 (distances in \AA, angles in deg.).

Parameter	Optimized	X-Ray
$\mathrm{Mo}(1)-\mathrm{P}(5)$	2.672	2.607
$\mathrm{Mo}(70)-\mathrm{P}(63)$	2.672	2.607
$\mathrm{P}(5)-\mathrm{P}(63)$	2.241	2.203
$\mathrm{P}(5)-\mathrm{C}(2)$	1.795	1.809
$\mathrm{P}(63)-\mathrm{C}(60)$	1.794	1.809
$\mathrm{Mo}(1)-\mathrm{P}(5)-\mathrm{P}(63)$	107.3	104.5
$\mathrm{Mo}(70)-\mathrm{P}(63)-\mathrm{P}(5)$	107.3	104.5
$\mathrm{Mo}(1)-\mathrm{P}(5)-\mathrm{C}(2)$	54.9	55.5
$\mathrm{Mo}(70)-\mathrm{P}(63)-\mathrm{C}(60)$	54.9	55.5
$\mathrm{C}(2)-\mathrm{P}(5)-\mathrm{P}(63)$	101.2	98.2
$\mathrm{C}(60)-\mathrm{P}(63)-\mathrm{P}(5)$	101.2	98.2

Table S2: Selected molecular orbitals of compound 2.

Contributions (\%): $\operatorname{Mo}(1) 8, \operatorname{Mo}(70) 8, \mathrm{P}(5) 10, \mathrm{P}(63) 10, \mathrm{C}(2) 1, \mathrm{C}(60) 1$, Other 62

LUMO 202
-1.09

Contributions (\%): $\operatorname{Mo}(1) 17, \operatorname{Mo}(70) 17, \mathrm{P}(5) 13, \mathrm{P}(63) 13, \mathrm{C}(2) 3, \mathrm{C}(60)$ 3, Other 34

HOMO 201
-4.00
L.P. Mo's

Contributions (\%): $\operatorname{Mo}(1) 33, \operatorname{Mo}(70) 33, \mathrm{P}(5) 3, \mathrm{P}(63) 3, \mathrm{C}(2) 0, \mathrm{C}(60) 0$, Other 28

Contributions (\%): $\operatorname{Mo}(1) 31, \operatorname{Mo}(70) 31, \mathrm{P}(5) 1, \mathrm{P}(63) 1, \mathrm{C}(2) 1, \mathrm{C}(60) 1$, Other 34

MO 199
-4.20
L.P. Mo's

Contributions (\%): $\operatorname{Mo}(1) 24, \operatorname{Mo}(70) 24, \mathrm{P}(5) 4, \mathrm{P}(63) 4, \mathrm{C}(2) 0, \mathrm{C}(60) 0$, Other 44

MO 198
-4.39
L.P. Mo's

Contributions (\%): $\operatorname{Mo}(1) 26, \operatorname{Mo}(70) 26, \mathrm{P}(5) 3, \mathrm{P}(63) 3, \mathrm{C}(2) 0, \mathrm{C}(60) 0$, Other 42

MO 197
-4.96
$\sigma_{\text {Mo-P }}+$ LP P

Contributions (\%): $\operatorname{Mo}(1) 18, \operatorname{Mo}(70) 18, \mathrm{P}(5) 19, \mathrm{P}(63) 19, \mathrm{C}(2) 2, \mathrm{C}(60)$ 2, Other 22

MO 196
-5.97
$\sigma_{\mathrm{Mo}-\mathrm{P}}+\pi_{\mathrm{P}-\mathrm{P}}$

Contributions (\%): $\operatorname{Mo}(1) 17, \operatorname{Mo}(70) 17, \mathrm{P}(5) 16, \mathrm{P}(63) 16, \mathrm{C}(2) 3, \mathrm{C}(60) 3$, Other 28
-6.06

LP P

Contributions (\%): $\operatorname{Mo}(1) 9, \operatorname{Mo}(70) 9, \mathrm{P}(5) 29, \mathrm{P}(63) 29, \mathrm{C}(2) 2, \mathrm{C}(60) 2$, Other 18

MO 186
-8.01
$\sigma_{\mathrm{P}-\mathrm{C}}+\mathrm{LP}$ P

MO 181
-9.36
$\sigma_{\mathrm{P}-\mathrm{P}}+\sigma_{\mathrm{P}-\mathrm{C}}$

Contributions (\%): $\operatorname{Mo}(1) 1, \operatorname{Mo}(70) 1, \mathrm{P}(5) 22, \mathrm{P}(63) 22, \mathrm{C}(2) 6, \mathrm{C}(60) 6$, Other 42

Contributions (\%): $\operatorname{Mo}(1) 8, \operatorname{Mo}(70) 8, \mathrm{P}(5) 12, \mathrm{P}(63) 12, \mathrm{C}(2) 2, \mathrm{C}(60) 2$, Other 56

MO 113
-13.01
$\sigma_{\mathrm{P}-\mathrm{P}}+\sigma_{\mathrm{C}-\mathrm{C}}$

MO 102
-15.43
$\sigma_{\text {P-C }}$

Contributions (\%): $\operatorname{Mo}(1) 1, \operatorname{Mo}(70) 1, \mathrm{P}(5) 9, \mathrm{P}(63) 9, \mathrm{C}(2) 5, \mathrm{C}(60) 5$, Other 70

MO 95
-16.74
$\sigma_{\mathrm{P}-\mathrm{P}}+\sigma_{\mathrm{P}-\mathrm{C}}$

Contributions (\%): $\operatorname{Mo}(1) 2, \operatorname{Mo}(70) 2, \mathrm{P}(5) 13, \mathrm{P}(63) 13, \mathrm{C}(2) 9, \mathrm{C}(60) 9$, Other 52

Contributions (\%): $\operatorname{Mo}(1) 1, \operatorname{Mo}(70) 1, \mathrm{P}(5) 22, \mathrm{P}(63) 22, \mathrm{C}(2) 4, \mathrm{C}(60) 4$, Other 46

Table S3: Cartesian coordinates for the optimized geometry of compound 2.

Mo	3.13163	0.04256	0.60807
C	1.31872	-0.04386	1.85646
C	3.32688	0.09963	2.98920
H	4.22243	-0.15471	3.54126
P	0.61726	-0.84105	0.40983
C	2.31113	-0.80407	2.59450
H	2.28398	-1.86895	2.78075
C	2.95889	1.41932	2.56701
H	3.54035	2.31651	2.73765
C	1.71615	1.35408	1.89840
H	1.17859	2.18170	1.45971
C	4.75887	1.21614	-0.44659
H	5.08178	2.22276	-0.21744
C	3.73854	1.03772	-1.44550
C	3.34543	-0.29825	-1.70388
H	2.52102	-0.46043	-2.38352
C	3.90132	-1.43991	-1.03446
C	4.96182	-1.19666	-0.11008
H	5.43104	-2.04165	0.37312
C	5.45239	0.11165	0.14299
C	3.28522	2.23452	-2.29931
C	4.49065	2.67203	-3.17069
H	5.33628	3.00025	-2.55575
H	4.20633	3.50623	-3.82383
H	4.83682	1.84759	-3.80503
C	2.83986	3.42145	-1.41828
H	1.95600	3.15327	-0.83202
H	2.59004	4.28300	-2.04984
H	3.62532	3.74157	-0.72485
C	2.12121	1.87123	-3.24019
H	2.40708	1.10234	-3.96726
H	1.82006	2.75950	-3.80778
H	1.24732	1.51816	-2.68417
C	3.57838	-2.88993	-1.44960
C	4.79402	-3.43671	-2.24149
H	5.69788	-3.46715	-1.62239
H	5.00734	-2.81035	-3.11574
H	4.59515	-4.45605	-2.59533
C	2.34077	-2.97387	-2.36422
H	2.13140	-4.02391	-2.59944
H	2.49669	-2.45343	-3.31604
H	1.45338	-2.55499	-1.88026
C	3.32918	-3.79160	-0.22145
H	4.18042	-3.79771	0.46810
H	3.16357	-4.82681	-0.54507
H	2.44791	-3.45452	0.33228
C	6.72633	0.34094	0.98384
C	7.06883	-0.86274	1.88613
H	7.31960	-1.75670	1.30542
H	6.24090	-1.11385	2.55800
H	7.94382	-0.62432	2.50141
C	7.88504	0.53478	-0.02928
H	8.83530	0.68198	0.49899
H	7.71185	1.40859	-0.66722
H	7.98906	-0.34070	-0.68014
C	6.64729	1.59723	1.87761
H	5.85725	1.50625	2.62863
H	6.46610	2.51093	1.30312
H	7.59930	1.73254	2.40428
C	-1.31834	0.04382	-1.85605

C	-3.32629	-0.09927	-2.98920
H	-4.22171	0.15527	-3.54139
P	-0.61706	0.84087	-0.40930
C	-2.31048	0.80423	-2.59425
H	-2.28314	1.86913	-2.78037
C	-2.95861	-1.41905	-2.56702
H	-3.54017	-2.31613	-2.73784
C	-1.71598	-1.35405	-1.89815
H	-1.17864	-2.18178	-1.45939
Mo	-3.13150	-0.04243	-0.60799
C	-4.75852	-1.21632	0.44659
H	-5.08113	-2.22308	0.21762
C	-3.73841	-1.03742	1.44565
C	-3.34573	0.29872	1.70386
H	-2.52148	0.46125	2.38362
C	-3.90177	1.44009	1.03410
C	-4.96211	1.19635	0.10963
H	-5.43150	2.04111	-0.37380
C	-5.45236	-0.11213	-0.14316
C	-3.28504	-2.23394	2.29985
C	-4.49073	-2.67174	3.17072
H	-5.33595	-3.00035	2.55543
H	-4.20641	-3.50575	3.82411
H	-4.83749	-1.84734	3.80478
C	-2.83885	-3.42083	1.41919
H	-1.95472	-3.15246	0.83343
H	-2.58917	-4.28227	2.05097
H	-3.62382	-3.74120	0.72531
C	-2.12162	-1.87013	3.24126
H	-2.40815	-1.10131	3.96814
H	-1.82040	-2.75825	3.80906
H	-1.24760	-1.51676	2.68564
C	-3.57929	2.89027	1.44904
C	-4.79517	3.43684	2.24072
H	-5.69899	3.46680	1.62155
H	-5.00831	2.81063	3.11512
H	-4.59667	4.45634	2.59431
C	-2.34175	2.97473	2.36372
H	-2.13273	4.02487	2.59880
H	-2.49757	2.45439	3.31562
H	-1.45422	2.55603	1.87986
C	-3.33025	3.79178	0.22074
H	-4.18160	3.79787	-0.46867
H	-3.16455	4.82702	0.54422
H	-2.44906	3.45461	-0.33307
C	-6.72609	-0.34204	-0.98415
C	-7.06955	0.86185	-1.88579
H	-7.32085	1.75534	-1.30457
H	-6.24190	1.11386	-2.55766
H	-7.94446	0.62313	-2.50108
C	-7.88464	-0.53735	0.02887
H	-8.83481	-0.68486	-0.49948
H	-7.71085	-1.41147	0.66624
H	-7.98925	0.33762	0.68032
C	-6.64607	-1.59776	-1.87864
H	-5.85663	-1.50538	-2.63011
H	-6.46337	-2.51156	-1.30479
H	-7.59825	-1.73391	-2.40480

Table S4: Mulliken charges of compound 2.

1	Mo	-0.094376
2	C	-0.251441
3	C	-0.145527
4	H	0.152535
5	P	0.139012
6	C	-0.167214
7	H	0.168057
8	C	-0.133042
9	H	0.159001
0	C	-0.159778
11	H	0.179276
12	C	-0.313020
13	H	0.132780
14	C	0.183619
15	C	-0.273000
16	H	0.160339
17	C	0.109641
18	C	-0.242851
19	H	0.141768
20	C	0.196112
21	C	0.043403
22	C	-0.441121
23	H	0.139347
24	H	0.138304
25	H	0.147792
26	C	-0.461058
27	H	0.188489
28	H	0.133161
29	H	0.141244
30	C	-0.485786
31	H	0.139681
32	H	0.136487
33	H	0.195545
34	C	0.048593
35	C	-0.439670
36	H	0.138255
37	H	0.146995
38	H	0.137078
39	C	-0.479650
40	H	0.137346
41	H	0.142188
42	H	0.183924
43	C	-0.461110
44	H	0.141978
45	H	0.131848
46	H	0.189069
47	C	0.044354
48	C	-0.473650
49	H	0.149179
50	H	0.168074
51	H	0.143214
52	C	-0.441611
53	H	0.140240
54	H	0.150871
55	H	0.153151
56	C	-0.462851
57	H	0.161949
58	H	0.150763
59	H	0.142110
60	C	-0.251446

Table S5: NPA charges of compound 2.

Mo	1	0.01748	H	67	0.26321
C	2	-0.39136	C	68	-0.28100
C	3	-0.25682	H	69	0.27405
H	4	0.25970	Mo	70	0.01751
P	5	0.29624	C	71	-0.25890
C	6	-0.27904	H	72	0.25570
H	7	0.27180	C	73	-0.04517
C	8	-0.24900	C	74	-0.21801
H	9	0.26321	H	75	0.26637
C	10	-0.28099	C	76	-0.06602
H	11	0.27405	C	77	-0.23009
C	12	-0.25891	H	78	0.25954
H	13	0.25571	C	79	-0.02875
C	14	-0.04514	C	80	-0.05258
C	15	-0.21804	C	81	-0.65752
H	16	0.26637	H	82	0.22625
C	17	-0.06596	H	83	0.22982
C	18	-0.23007	H	84	0.23221
H	19	0.25953	C	85	-0.05861
C	20	-0.02877	H	86	0.24623
C	21	-0.05258	H	87	0.22724
C	22	-0.65752	H	88	0.22095
H	23	0.22625	C	89	-0.67182
H	24	0.22982	H	90	0.22684
H	25	0.23221	H	91	0.23313
C	26	-0.65861	H	92	0.24568
H	27	0.24622	C	93	-0.05077
H	28	0.22725	C	94	-0.65744
H	29	0.22095	H	95	0.22592
C	30	-0.67182	H	96	0.23165
H	31	0.22684	H	97	0.22892
H	32	0.23312	C	98	-0.66995
H	33	0.24568	H	99	0.23342
C	34	-0.05077	H	100	0.22746
C	35	-0.65744	H	101	0.24193
H	36	0.22592	C	102	-0.65885
H	37	0.23165	H	103	0.22170
H	38	0.22893	H	104	0.22634
C	39	-0.66995	H	105	0.24576
H	40	0.23342	C	106	-0.05497
H	41	0.22746	C	107	-0.66930
H	42	0.24192	H	108	0.22987
C	43	-0.65885	H	109	0.23395
H	44	0.22170	H	110	0.23568
H	45	0.22634	C	111	-0.65767
H	46	0.24576	H	112	0.23005
C	47	-0.05497	H	113	0.23330
C	48	-0.66928	H	114	0.23464
H	49	0.22986	C	115	-0.65897
H	50	0.23394	H	116	0.22929
H	51	0.23567	H	117	0.22762
C	52	-0.65767	H	118	0.23265
H	53	0.23005	$=$	$=$	= = = = =
H	54	0.23331		* T	al 0
H	55	0.23464			
C	56	-0.65899			
H	57	0.22930			
H	58	0.22762			
H	59	0.23266			
C	60	-0.39138			
C	61	-0.25682			
H	62	0.25970			
P	63	0.29626			
C	64	-0.27904			
H	65	0.27180			
C	66	-0.24899			

7. References

(1) Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals, 5th Edition; ButterworthHeinemann: Oxford, U.K., 2003.
(2) Amor, I.; García, M. E.; Ruiz, M. A.; Sáez, D.; Hamidov, H.; Jeffery, J. C. Organometallics 2006, 25, 4857.
(3) APEX 2, version 2.0-1; Bruker AXS Inc: Madison, WI, 2005.
(4) SMART \& SAINT Software Reference Manuals, Version 5.051 (Windows NT Version); Bruker Analytical X-ray Instruments: Madison, WI, 1998.
(5) Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 1996.
(6) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
(7) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
(8) CrysAlis Pro; Oxford Diffraction Ltd.: Oxford, U. K., 2006.
(9) Orpen, A. G. J. Chem. Soc., Dalton Trans. 1980, 2509.
(10) Gaussian 03, Revision B.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
(11) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(12) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, $37,785$.
(13) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(14) (a) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. (b) Petersson, G. A.; AlLaham, M. A. J. Chem. Phys. 1991, 94, 6081. (c) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
(15) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.
(16) (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. (b) Reed, A. E.; Curtis, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(17) Portmann, S.; Lüthi, H. P. MOLEKEL: An Interactive Molecular Graphics Tool. CHIMIA 2000, 54, 766.

