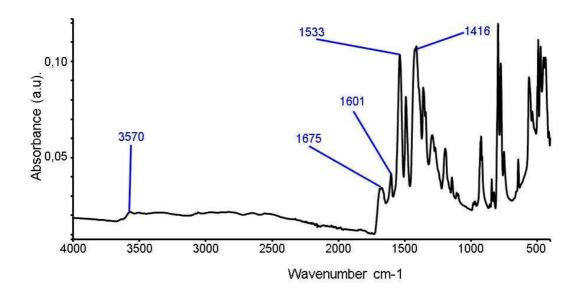
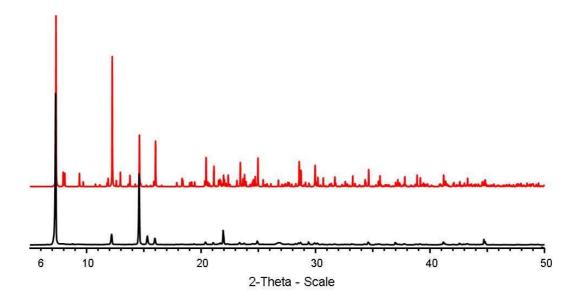
Water free neodymium 2,6-naphthalenedicarboxylates coordination complexes and their application as catalysts for isoprene polymerization.


Inês Rodrigues, Ionut Mihalcea, Christophe Volkringer, Thierry Loiseau,^{*} Marc Visseaux

Contribution from Unité de Catalyse et Chimie du Solide (UCCS) – UMR CNRS 8181, Université de Lille Nord de France, USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France.

^{*} To whom correspondence should be addressed. E-mail: thierry.loiseau@ensc-lille.fr

SUPPLEMENTARY INFORMATION


To be submitted to Inorg. Chem. Revised version november 22, 2011 Infrared analysis was carried out on a Perkin Elmer Spectrum 2 equipped with a single reflection diamond module (ATR). IR spectrum was recorded in the 400-4000 cm⁻¹ range, at 4 cm⁻¹ resolution.

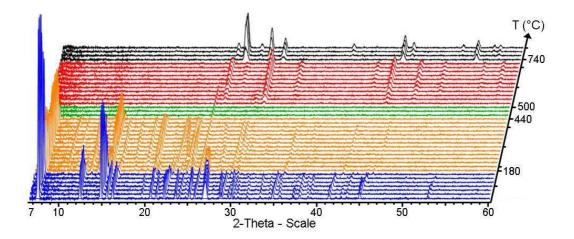

Compound 1

Figure S1a: Infrared spectrum of Nd₂(2,6-ndc)₃(H₂O)₃·H₂O (1)

Infrared spectrum of Nd₂(2,6-ndc)₃(H₂O)₃ (1) shows a very broad band of absorption in the $3500 - 2500 \text{ cm}^{-1}$ range, indicating the presence of hydrogen bonds between the coordinating water and the free water molecules. For the coordinated species, the asymmetric stretching $(v_{O-H asym})$ has been assigned at 3570 cm^{-1} , the $v_{O-H sym}$ occurs in the range of $3500 - 3000 \text{ cm}^{-1}$ as a low intensity broad band and the peak at 1601 cm⁻¹ has been assigned to the δ_{H-O-H} bending. The $v_{COO asym}$ stretching vibrations of carboxylate arms linked to Neodymium were observed at 1533 cm⁻¹. The intense peak appearing at 1416 cm⁻¹ has been assigned to the C=C ring vibration of the 2,6-ndc ligand. The peak localized at 1675 cm⁻¹ should correspond to DMF ($v_{C=O}$) remaining after the washing procedure.

Figure S1b: Calculated (top) and experimental (bottom) X-ray diffraction powder patterns of $Nd_2(2,6-ndc)_3(H_2O)_3 \cdot H_2O$ (1; copper radiation).

Figure S1c: X-ray thermodiffraction patterns of $Nd_2(2,6-ndc)_3(H_2O)_3 \cdot H_2O(1)$ under air atmosphere (copper radiation).

Compound 3

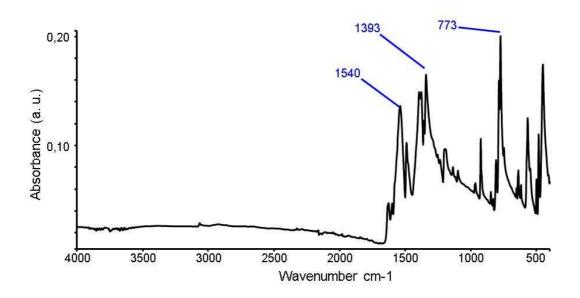
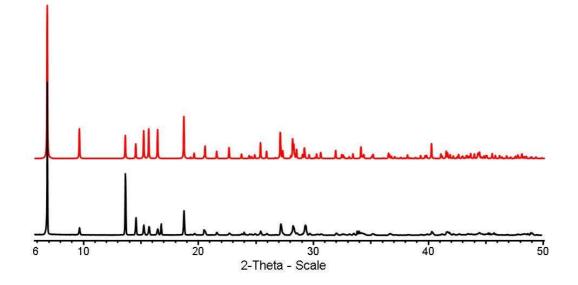
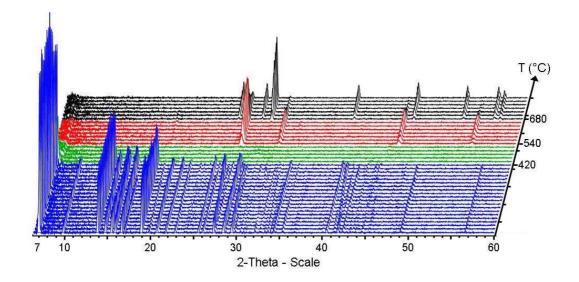




Figure S2a: Infrared spectrum of Nd(2,6-ndc)(form) (3)

Infrared spectrum of Nd(2,6-ndc)(form) (**3**) confirm the presence of coordinating carboxylate functions (v_{coo} asym at 1540 cm⁻¹). The Nd-O related vibrations give absorbance in the domain 800-400 cm⁻¹. In our case only the peak appearing at 773 cm⁻¹ can be assigned to Nd-O asymmetric stretching vibration (v_{Nd-O} asym). The intense peak at 1393 cm⁻¹ can be attributed to the C=C ring vibration.

Figure S2b: Calculated (top) and experimental (bottom) X-ray diffraction powder patterns of Nd(2,6-ndc)(form) (**3**; copper radiation).

Figure S2c: X-ray thermodiffraction patterns of Nd(2,6-ndc)(form) (**3**) under air atmosphere (copper radiation).

Compound 4

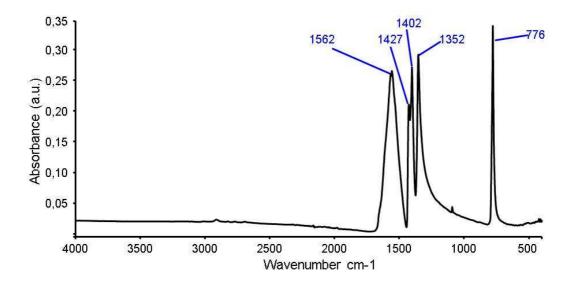
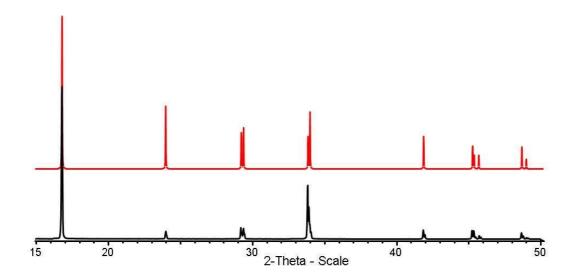
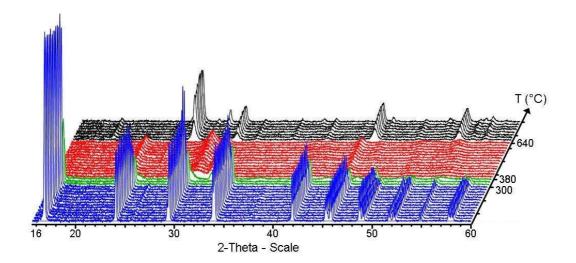




Figure S3a: Infrared spectrum of Nd(form)₃ (4)

Infrared spectrum of Nd(form)₃ (**4**) shows a broad band centered at 1562 cm⁻¹ and a sharper one at 1427 assigned respectively to the asymmetric (v_{COO} as) and symmetric (v_{COO} sy) stretching of the carboxylate function linked to Nd³⁺. The vibrational modes of C-H are localized at 1402 and 1352 cm⁻¹. The intense peak observed at 776 cm⁻¹ corresponds to Nd-O asymmetric stretching vibration (v_{Nd-O} asym).

Figure S3b: Calculated (top) and experimental (bottom) X-ray diffraction powder patterns of Nd(form)₃ (4; copper radiation).

Figure S3c: X-ray thermodiffraction patterns of Nd(form)₃ (**4**) under air atmosphere (copper radiation).