# Supporting information

|         | 2003          | 2004          | 2005       | 2006         | 2007          |
|---------|---------------|---------------|------------|--------------|---------------|
| Field 1 | Sugar beet    | Winter Wheat  | Set-aside  | Winter wheat | oilseed rape  |
| Field 2 | Spring Barley | Spring Barley | Potatoes   | Winter wheat | Sugar beet    |
| Field 3 | Spring Barley | Spring Barley | Sugar beet | Winter wheat | Oilseed rape  |
| Field 4 | Potatoes      | Winter Wheat  | Set-aside  | Winter wheat | oilseed rape  |
| Field 5 | Sugar beet    | Winter Barley | Potatoes   | Winter wheat | Potatoes      |
| Field 6 | Potatoes      | Winter Wheat  | Sugar beet | Winter wheat | Spring Barley |

| Table S.1 Crop rotation in the six fields over five years (2003-2007) | Table S.1 | <b>Crop rotation</b> | n in the six fields | over five years | (2003-2007) |
|-----------------------------------------------------------------------|-----------|----------------------|---------------------|-----------------|-------------|
|-----------------------------------------------------------------------|-----------|----------------------|---------------------|-----------------|-------------|

| Сгор          | Planting<br>date | Harvesting<br>date | Tillage date         | Tillage methods                          |
|---------------|------------------|--------------------|----------------------|------------------------------------------|
| Sugar beet    | 28th April       | 17th Nov           | 15th March           | Plough ( 20cm )                          |
| Spring barley | Tst Mar T/th Aug |                    | 15th Feb<br>20th Feb | Plough ( 20cm)<br>Power Harrowing (20cm) |
| Winter barley | 15th Dec         | 17th Aug           | 20th Nov<br>10th Dec | Plough (20cm)<br>Power Harrowing(20cm)   |
| Potato        | 5th April        | 3rd Oct 20-Mar     |                      | Plough (30cm)                            |
| Oilseed rape  | 30th Aug         | 17th Aug           | 20th Aug<br>25th Aug | Plough ( 20cm)<br>Power harrowing (20cm) |
| Winter wheat  | 30th Sep         | 17th Aug           | 15th Sep             | Plough (20cm)                            |

# Table S.2 Summary for the field operations during crop rotation (2003-2007)

|                                                    |                      |                     |          | -          |  |  |  |  |
|----------------------------------------------------|----------------------|---------------------|----------|------------|--|--|--|--|
|                                                    |                      | op year 2003        |          | _          |  |  |  |  |
|                                                    | Sugar beet           | Spring barl         | ey       | Potato     |  |  |  |  |
| Area %                                             | 26.98%               | 44.36%              |          | 28.66%     |  |  |  |  |
| N (t/ha)                                           | 1.27E-01             | 1.38E-01            |          | 1.71E-01   |  |  |  |  |
| $P_2O_5$ (t/ha)                                    | 3.63E-02             | 2.34E-02            |          | 1.29E-01   |  |  |  |  |
| $K_2O(t/ha)$                                       | 1.68E-01             | 4.68E-02            |          | 2.69E-01   |  |  |  |  |
| MgO (t/ha)                                         | 8.01E-02             | 5.77E-03            |          | 1.29E-02   |  |  |  |  |
| <b>SO<sub>3</sub> (t/ha)</b>                       | 1.04E-02             | 7.41E-02            |          | 0.0        |  |  |  |  |
| Na <sub>2</sub> O (t/ha)                           | 2.60E-01             | 0.0                 |          | 0.0        |  |  |  |  |
| Limestone (t/ha)                                   | 5.13E-03             | 4.06E-03            |          | 0.0        |  |  |  |  |
| Crop year 2004                                     |                      |                     |          |            |  |  |  |  |
|                                                    | Winter Wheat         | Spring barley       | Win      | ter barley |  |  |  |  |
| Area %                                             | 35.73%               | 44.36%              |          | 19.91%     |  |  |  |  |
| N (t/ha)                                           | 2.15E-01             | 1.18E-01            |          | 2.15E-01   |  |  |  |  |
| $P_2O_5$ (t/ha)                                    | 7.30E-03             | 2.34E-02            |          | 0.0        |  |  |  |  |
| $K_2O$ (t/ha)                                      | 1.46E-02             | 4.67E-02            |          | 0.0        |  |  |  |  |
| MgO (t/ha)                                         | 1.80E-03             | 5.76E-03            |          | 0.0        |  |  |  |  |
| $SO_3$ (t/ha)                                      | 4.81E-02             | 5.61E-02            |          | 4.46E-02   |  |  |  |  |
| $Na_2O(t/ha)$                                      | 0.0                  | 0.0                 |          | 0.0        |  |  |  |  |
| Limestone (t/ha)                                   | 1.27E-03             | 4.05E-03            |          | 0.0        |  |  |  |  |
| Liniestone (vila)                                  |                      | op year 2005        |          | 0.0        |  |  |  |  |
| Set-aside         Potato         Sugar beet        |                      |                     |          |            |  |  |  |  |
| Area %                                             | 23.25%               | 49.30%              | Bug      | 27.45%     |  |  |  |  |
| N (t/ha)                                           | 0.0                  | 2.07E-01            |          | 7.87E-02   |  |  |  |  |
| $P_2O_5$ (t/ha)                                    | 0.0                  | 1.97E-01            |          | 4.93E-02   |  |  |  |  |
|                                                    | 0.0                  | 2.97E-01            |          | 6.95E-02   |  |  |  |  |
| $K_2O(t/ha)$                                       | 0.0                  | 6.73E-02            |          | 6.36E-02   |  |  |  |  |
| MgO (t/ha)                                         |                      |                     |          |            |  |  |  |  |
| $SO_3(t/ha)$                                       | 0.0                  | 0.0                 |          | 0.0        |  |  |  |  |
| $Na_2O(t/ha)$                                      | 0.0                  | 0.0                 |          | 2.00E-01   |  |  |  |  |
| Limestone (t/ha)                                   | 0.0                  | 0.0                 |          | 0.0        |  |  |  |  |
| A 61                                               | <b>1</b> V           | 2006 Winter wheat   |          |            |  |  |  |  |
| Area %<br>N (t/ha)                                 |                      | <b>00%</b><br>08.55 |          |            |  |  |  |  |
|                                                    |                      | 4.84                |          |            |  |  |  |  |
| $P_2O_5$ (t/ha)                                    |                      |                     |          |            |  |  |  |  |
| $K_2O(t/ha)$                                       |                      | 8.80                |          |            |  |  |  |  |
| MgO (t/ha)                                         |                      | 2.20                |          |            |  |  |  |  |
| $SO_3(t/ha)$                                       |                      | 27.02               |          |            |  |  |  |  |
| Limestone (t/ha)                                   |                      | 9.83                |          |            |  |  |  |  |
|                                                    |                      | op year 2007        | 1 4      | D 4 4      |  |  |  |  |
| • •                                                |                      |                     | ar beet  | Potato     |  |  |  |  |
| Area %                                             | 13.60%               |                     | 31.87%   | 19.44%     |  |  |  |  |
| N (t/ha)                                           | 9.86E-02             |                     | .03E-01  | 2.74E-01   |  |  |  |  |
| P <sub>2</sub> O <sub>5</sub> (t/ha)               | 2.08E-02             | 3.68E-02            | 1.77E-02 | 8.98E-02   |  |  |  |  |
| $K_2O(t/ha)$                                       | 3.78E-02             | 3.68E-02            | 9.46E-02 | 2.70E-01   |  |  |  |  |
| MgO (t/ha)                                         |                      |                     |          | 3.48E-02   |  |  |  |  |
|                                                    | 8.56E-03             | 0.0                 | 5.77E-02 | 3.40E-02   |  |  |  |  |
| 0                                                  | 8.56E-03<br>7.13E-02 | 0.0 3<br>8.93E-02   | 0.0      | 0.0        |  |  |  |  |
| SO <sub>3</sub> (t/ha)<br>Na <sub>2</sub> O (t/ha) |                      | 8.93E-02            |          |            |  |  |  |  |

Table S.3 Fertilizer overall application rate<sup>1</sup> at Heygates Farm during crop rotation

**Note:** 1. Overall application rate is "calculated as the total quantity of nutrient divided by the total extent of area (including any areas without application of the fertilizer)" [1]

Table S.4 C-content for wheat grain

|                                              | Wheat flour     | Wheat feed | Wheat grain |
|----------------------------------------------|-----------------|------------|-------------|
| <b>Proportion</b> (% of harvested grain)     | 77.00%          | 23.00%     | 100.00%     |
| Moisture content (%)                         | 14.00%          | 12.77%     | 14.50%      |
| Starch (% of dry basis )                     | 88.95%          | 63.47%     | 83.09%      |
| <b>Protein(% of dry basis</b> ) <sup>2</sup> | 11.05%          | 17.16%     | 12.45%      |
| Oil (% of dry basis )                        | $NI^1$          | 7.76%      | 1.78%       |
| Fiber (% of dry basis )                      | $NI^1$          | 7.72%      | 1.78%       |
| Ash (% of dry basis )                        | $\mathbf{NI}^1$ | 3.90%      | 0.90%       |
| C content (% of dry basis )                  | 45.56%          | 47.09%     | 45.91%      |

Notes:

1. NI=No information.

2. In Heygates lab tests, total N was analyzed, then protein content was estimated from equation %Protein =% Nitrogen × NF. Where NF =Nitrogen Factor; NF <sub>FLOUR</sub>=5.75; NF<sub>FEED</sub>=6.25.

The theoretical C sequestration was calculated according to the lab-derived composition of the wheat flour and wheat feed produced from flour milling at Heygates Ltd. The C contained in wheat protein was estimated as 54.55% based on the formula  $C_{16}H_{24}O_5N_4$  [2]. Composition of oil was derived from the Phyllis database (76% C content dry basis) [3]. C content in fiber was estimated on the basis of typical composition of wheat fiber presented by Knudsen [4] where the C component in each anhydrous sugar monomer was calculated from its formula and lignin was assumed to contain 60% C [3]. Overall CO<sub>2</sub> 'sequestered' into the wheat grain was estimated as 1.47kg CO<sub>2</sub>/kg fresh grain (moisture content 14.5%).

## Table S.5 Data source

| Unit processes                                               | Data sources                                                                                                   |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| WBF production                                               |                                                                                                                |
| Wheat farming                                                | Heygates Ltd                                                                                                   |
| Wheat flour milling                                          | Heygates Ltd                                                                                                   |
| WBF production                                               | Greenlight Product Ltd                                                                                         |
| PVOH production                                              | [5-7]                                                                                                          |
| Transportation                                               | Greenlight Product Ltd and feedstock suppliers                                                                 |
| WBF case study                                               |                                                                                                                |
| Extruded HDPE and LDPE resin<br>and expandable PS production | EU average data [8]                                                                                            |
| Transformation of LDPE and expandable PS into foam           | EU average EPS transformation data [9]                                                                         |
| Cardboard production                                         | Box Factory<br>EU average data [10]                                                                            |
| Coolbox case study                                           | Brunel University, Hydropac Ltd, Foam Engineers Ltd                                                            |
| Display board case study                                     | Caledonian Industries Ltd and assumptions                                                                      |
| Construction case studies                                    | Cordek Ltd, Brunel University and assumptions                                                                  |
| End-of-life                                                  |                                                                                                                |
| PE/EPS 100% close-loop recycling                             | Ecoinvent database v 2.0, Nextek Ltd                                                                           |
| PE/EPS 100% landfill                                         | Ecoinvent database v 2.0                                                                                       |
| PE/EPS 100% incineration                                     | Ecoinvent database (v 2.0) with electricity and thermal energy export                                          |
| WBF home and industrial composting                           | Lab-determined WBF composition and meta-analysis derived composting model [11]                                 |
| WBF landfill                                                 | Lab-determined WBF composition and meta-analysis derived landfill model [11]                                   |
| WBF anaerobic digestion (AD)                                 | A commercial AD plant in the UK, laboratory research on WBF biodegradability and energy recovery under AD [12] |

| Trace gas<br>emission/leaching Highly sensitive factors |                               | References |  |
|---------------------------------------------------------|-------------------------------|------------|--|
| emission/leaching                                       | Soil clay content /texture    |            |  |
|                                                         | Soil organic C                | -          |  |
|                                                         |                               | -          |  |
|                                                         | Annual temperature            | -          |  |
| N <sub>2</sub> O                                        | Soil pH                       | -          |  |
| 1.20                                                    | Annual precipitation          | [13-15]    |  |
|                                                         | Soil temperature              |            |  |
|                                                         | Soil nitrate                  | -          |  |
|                                                         | Fertilizer type               | -          |  |
|                                                         | Water management              |            |  |
|                                                         | Annual precipitation          |            |  |
| $N_2$                                                   | Soil pH                       | [13]       |  |
| - 12                                                    | Annual temperature            | [10]       |  |
|                                                         | Soil organic C                |            |  |
|                                                         | Soil organic C                | [13, 16]   |  |
| <u></u>                                                 | Soil clay content /texture    |            |  |
| CO <sub>2</sub>                                         | Annual temperature            |            |  |
|                                                         | Crop rotation crop residue    |            |  |
|                                                         | Annual precipitation          |            |  |
|                                                         | Soil texture/clay content     |            |  |
| CII                                                     | Soil pH                       | [16, 17]   |  |
| CH <sub>4</sub>                                         | N fertilizer application rate | - [16, 17] |  |
|                                                         | Crop rotation                 |            |  |
| NO <sub>3</sub> -                                       | Initial organic carbon        | [13, 18]   |  |

## Table S.6 Sensitive factors affecting DNDC-simulated emissions

### Table S.7 IPCC vs. DNDC

|                                                                                           | IPCC Tier 1                                                              | DNDC                                                                                                                                                    |  |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Approach classification                                                                   | Empirical model                                                          | Process-based model                                                                                                                                     |  |  |
| Application                                                                               | National GHGs inventory                                                  | Site specific & national GHGs inventory                                                                                                                 |  |  |
| N <sub>2</sub> O emission pathway                                                         | Direct emissions<br>Indirect emissions (air<br>decomposition & leaching) | Direct field emissions                                                                                                                                  |  |  |
| Factors considered                                                                        | <ol> <li>Fertilizer input</li> <li>Crop residue</li> </ol>               | <ol> <li>Fertilizer type and input</li> <li>Crop rotation</li> <li>Daily climate</li> <li>Soil property and texture</li> <li>Farm management</li> </ol> |  |  |
| Uncertainty                                                                               | Large degree of uncertainty                                              | Uncertainties caused by variability of input data                                                                                                       |  |  |
| Simulated results<br>(average of 6 fields)<br>kg N <sub>2</sub> O/kg fresh wheat<br>grain | Direct N <sub>2</sub> O 5.86 E-04<br>Total emissions 7.55 E-04           | Direct N <sub>2</sub> O 1.43E-04                                                                                                                        |  |  |

|                       |                   |         | <b>DUL 14</b> |         | 50.10   | <b>T</b> 211 1 4 | T-11 1 # |         |
|-----------------------|-------------------|---------|---------------|---------|---------|------------------|----------|---------|
|                       |                   | Average | Filed 1       | Filed 2 | Filed 3 | Filed 4          | Filed 5  | Filed 6 |
|                       | DNDC              | -0.75   | -0.89         | -0.50   | -0.96   | -0.89            | -0.54    | -0.70   |
| 1kg<br>Wheat<br>flour | IPCC-direct       | -0.61   | -0.76         | -0.37   | -0.83   | -0.77            | -0.40    | -0.58   |
|                       | IPCC-total        | -0.56   | -0.72         | -0.32   | -0.78   | -0.73            | -0.35    | -0.52   |
|                       | DNDC              | 0.24    | 0.20          | 0.31    | 0.18    | 0.20             | 0.30     | 0.25    |
| WBF<br>coolbox        | IPCC-direct       | 0.28    | 0.24          | 0.35    | 0.22    | 0.24             | 0.34     | 0.29    |
|                       | <b>IPCC-total</b> | 0.29    | 0.25          | 0.37    | 0.23    | 0.25             | 0.36     | 0.31    |
| WBF<br>refractory     | DNDC              | 83.81   | 56.43         | 130.34  | 43.40   | 56.81            | 123.15   | 91.99   |
| lining<br>former      | IPCC-direct       | 108.61  | 80.59         | 155.22  | 67.44   | 79.47            | 148.75   | 116.09  |
|                       | <b>IPCC-total</b> | 118.06  | 89.30         | 165.00  | 77.05   | 87.68            | 158.80   | 125.93  |
| WBF<br>display        | DNDC              | 0.59    | 0.50          | 0.76    | 0.45    | 0.50             | 0.73     | 0.62    |
| board                 | IPCC-direct       | 0.68    | 0.58          | 0.85    | 0.54    | 0.58             | 0.82     | 0.71    |
|                       | <b>IPCC-total</b> | 0.72    | 0.61          | 0.88    | 0.57    | 0.61             | 0.86     | 0.74    |

Table S.8 Characterized 'cradle-factory-gate' GWP100 profiles for wheat flour and WBF products (kg CO<sub>2</sub> eq per unit product)

| Whole life cycle with diverse end-of-life |            |              |           |                               |                         |           |  |  |
|-------------------------------------------|------------|--------------|-----------|-------------------------------|-------------------------|-----------|--|--|
|                                           | Refractory |              |           | ctory lining fo<br>virgin EPS | ining former<br>gin EPS |           |  |  |
|                                           | Landfill   | Incineration | Recycling | Landfill                      | Incineration            | Recycling |  |  |
| WBF AD scenario                           | I          | I            | I         |                               | I                       | I         |  |  |
| WBF-Average                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 1                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 2                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 3                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 4                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 5                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 6                               |            |              |           |                               |                         |           |  |  |
| WBF landfill scenario                     | I          | I            |           |                               |                         |           |  |  |
| WBF-Average                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 1                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 2                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 3                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 4                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 5                               |            |              |           |                               |                         |           |  |  |
| WBF-Field 6                               |            |              |           |                               |                         |           |  |  |

Table S.9 Sensitivity analysis on N<sub>2</sub>O modeling approaches.

Notes:

=WBFs with IPCC & DNDC model deliver lower GWP<sub>100</sub> impact than petrochemical polymer

 $= WBFs with IPCC \& DNDC model deliver higher GWP_{100} impact than petrochemical polymer$  $= WBFs with DNDC model deliver lower GWP_{100} impact than petrochemical but with IPCC Tier 1 approach deliver$ higher GWP<sub>100</sub> impact scores

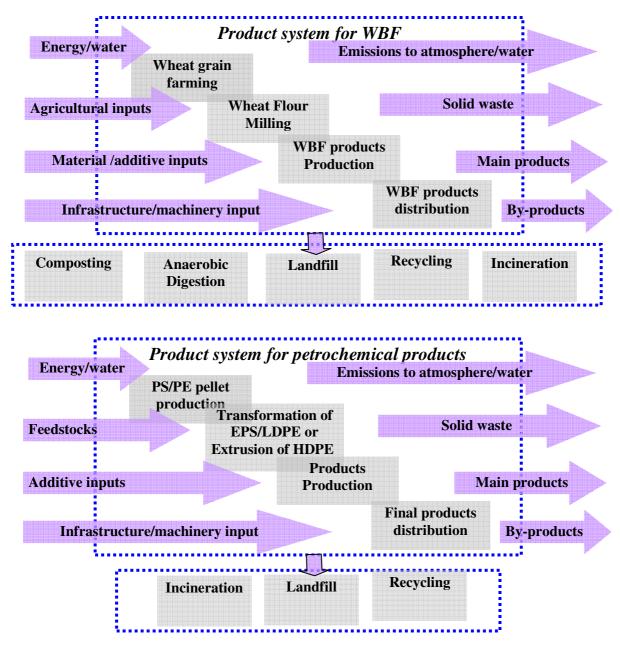



Figure S.1 Product system and system boundary for WBF and petrochemical products

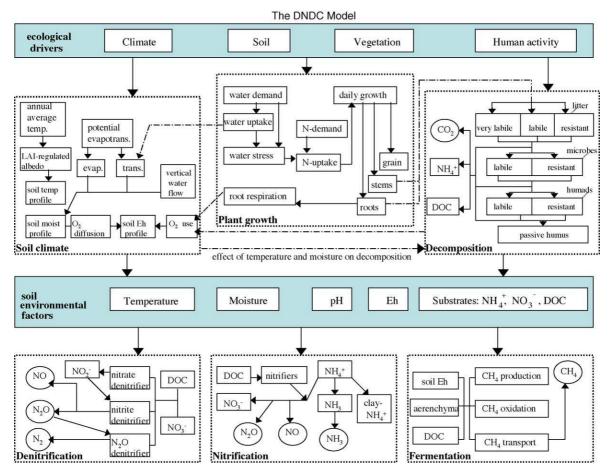



Figure S.2 Structure of DNDC model [18]

The DNDC model comprises two interacting components - the first comprises 3 sub-models (soil climate, plant growth and decomposition) and predicts soil environmental variables based on ecological drivers; the second component consists of nitrification, denitrification and fermentation sub-models simulating microbial activity and trace gas fluxes and N leaching.

The six sub-models play different parts and interact with each other. The soil climate submodel integrates climate, soil properties and  $O_2$  profile to simulate soil temperature and moisture [13, 19]. The climate, soil, crop parameters and field operations are integrated in the plant-growth sub-model to estimate crop growth, and its effects on soil temperature, moisture, available N and DOC etc. [20]. The decomposition sub-model mainly models 4 pools of soil organic carbon - microbial biomass, plant residues, active humus and passive humus; in addition, N dynamics during decomposition of organic matter in soil are simulated also (*e.g.* nitrogen mineralized enters the inorganic nitrogen pool as NH<sub>4</sub><sup>+</sup> which is either nitrified to NO<sup>3-</sup> or is removed via crop-uptake, leaching or volatilization) [19, 21]. The denitrification sub-model is activated by increase in soil moisture or decrease in oxygen level from events like rainfall, flooding, and freezing temperatures (below  $-5^{\circ}$ C) [21]; when these events occur, the production, consumption and diffusion of NO and N<sub>2</sub>O are simulated. Another main source of NO and N<sub>2</sub>O, nitrification, is included as a sub-model and the nitrification-induced NO and N<sub>2</sub>O is calculated as a function of predicted nitrification rate and temperature and is influenced by the soil environmental variables. In addition, the NH<sub>4</sub><sup>+</sup>/NH<sub>3</sub> equilibrium and functions for NH<sub>3</sub> production and volatilization are also included in the nitrification model [19]. The release of CH<sub>4</sub> is modelled in a fermentation sub-model, where CH<sub>4</sub> production, oxidation, and transport under submerged conditions is calculated based on fermentation equations [19].

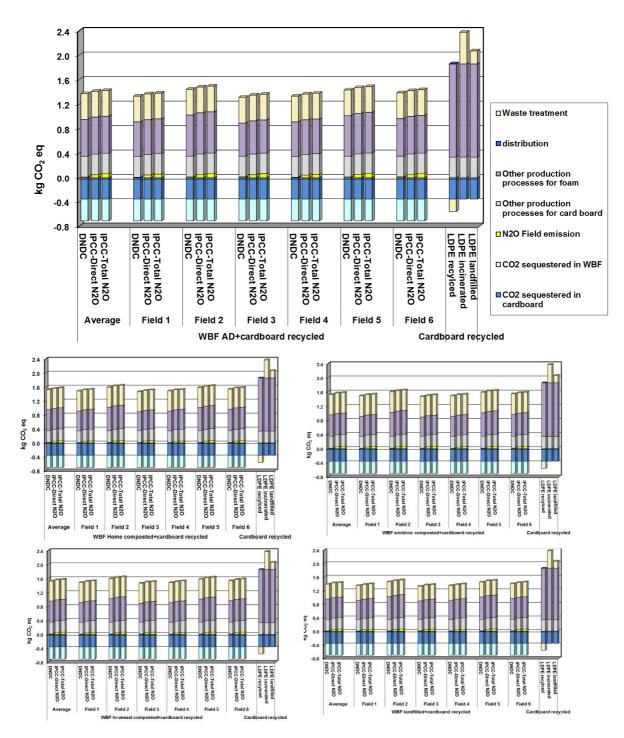



Figure S.3 Comparison of DNDC and IPCC modeling approach - characterized GWP<sub>100</sub> profiles for life cycle of coolbox (unit: per coolbox)

#### References

1. *The British survey of fertiliser practice-fertiliser use on farm crops for crop year 2006*; Department for Envionment Food and Rural Affairs: London, UK, 2007.

2. Rittmann, B. E.; McCarty, P. L., *Environmental biotechnology: Principles and applications*. McGraw-Hill Int. Editions, London.: 2001.

3. Phyllis, database for biomass and waste Website; http://www.ecn.nl/phyllis/.

4. Knudsen, K. E. B., Carbohydrate and lignin contents of plant materials used in animal feeding. *Animal Feed Science and Technology* **1997**, *67*, (4), 319-338.

5. Finch, C. A., *Polyvinyl alcohol : properties and applications* John Wiley & Sons Ltd.: London, England, 1973.

6. Finch, C. A., *Polyvinyl Alcohol-developments*. John Wiley&Sons Ltd: Chichester, England, 1992.

7. Shah, N., Polyvinyl Alcohol production process; London, 2009 (pers. comm.)

8. Eco-profiles of the European Plastics Industry;

http://lca.plasticseurope.org/main2.htm.

9. Life cycle assessment of industrial use of expanded polystyrene packaging in Europe - case study: packaging systems for TV sets; European Manufacturers of Expanded Polystyrene: Brussels, 2001.

10. *European database for corrugated board life cycle studies*; European Federation of Corrugated Board Manufacturer: Brussels; European Association of Makers of Corrugated Base Papers: Paris; European Containerboard Organisation: Brussels, 2006.

Guo, M. Life Cycle Assessment (LCA) of Light-weight Eco-composites. Ph.D.
 Dissertation, Imperial College London, London, UK, 2010.

12. Guo, M.; Trzcinski, A. P.; Stuckey, D. C.; Murphy, R. J., Anaerobic digestion of starch–polyvinyl alcohol biopolymer packaging: Biodegradability and environmental impact assessment. *Bioresource Technology* **2011**, *102*, (24), 11137-11146.

13. Li, C. S.; Frolking, S.; Frolking, T. A., A Model of Nitrous-Oxide Evolution from Soil Driven by Rainfall Events .1. Model Structure and Sensitivity. *Journal of Geophysical Research-Atmospheres* **1992**, *97*, (D9), 9759-9776.

Beheydt, D.; Boeckx, P.; Sleutel, S.; Li, C. S.; Van Cleemput, O., Validation of
DNDC for 22 long-term N2O field emission measurements. *Atmospheric Environment* 2007, 41, (29), 6196-6211.

15. Abdalla, M.; Wattenbach, M.; Smith, P.; Ambus, P.; Jones, M.; Williams, M., Application of the DNDC model to predict emissions of N2O from Irish agriculture. *Geoderma* **2009**, *151*, (3-4), 327-337.

16. Li, C. S.; Mosier, A.; Wassmann, R.; Cai, Z.; Zheng, X.; Huang, Y.; Tsuruta, H.; Boonjawat, J.; Lantin, R., Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. *Global Biogeochemical Cycles* **2004**, *18*, (1), GB1043.

17. Babu, Y. J.; Li, C.; Frolking, S.; Nayak, D. R.; Adhya, T. K., Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of india. *Nutrient Cycling in Agroecosystems* **2006**, *74*, (2), 157-174.

18. Li, C. S.; Farahbakhshazad, N.; Jaynes, D. B.; Dinnes, D. L.; Salas, W.; McLaughlin,
D., Modeling nitrate leaching with a biogeochemical model modified based on observations
in a row-crop field in Iowa. *Ecological Modelling* 2006, *196*, (1-2), 116-130.

19. Li, C. S., Modeling trace gas emissions from agricultural ecosystems. *Nutrient Cycling in Agroecosystems* **2000**, *58*, (1-3), 259-276.

20. Li, C. S.; Frolking, S.; Harriss, R., Modeling Carbon Biogeochemistry in Agricultural Soils. *Global Biogeochemical Cycles* **1994**, *8*, (3), 237-254.

21. Li, C.; Zhuang, Y.; Cao, M.; Crill, P.; Dai, Z.; Frolking, S.; Moore, B.; Salas, W.; Song, W.; Wang, X., Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. *Nutrient Cycling in Agroecosystems* **2001**, *60*, (1), 159-175.