Supporting Information

The role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in *Daphnia magna*

Cheng Tan^{1,2}, Wen-Hong Fan¹ and Wen-Xiong Wang^{2,*}

¹Department of Environmental Science and Engineering, Beihang University, Beijing 100083, China ²Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong

Number of Pages: 7 Number of Tables: 1 (Table S1) Number of Figures: 9 (Figure S1 to Figure S9)

Detailed Method:

Quantify nano-TiO₂ concentration in daphnids

After exposure, for each replicate, 20 daphnids were removed and rinsed in M7 medium for about 2 min. The daphnids were subsequently dried in an oven at 80 °C to a constant weight, and then digested in 4 mL concentrated HNO₃ with the addition of 1 mL of hydrogen peroxide to aid tissue digestion. The digests were evaporated to dryness at 110 °C. The TiO₂ concentrations in the digested samples were then determined using the method described by Zhang et al (24). In brief, TiO₂ released by digestion were decomposed into titanium (IV) ion by heating with 1 ml of the sulphuric acid-ammonium sulphate solution. After cooling down, the above solution was transferred quantitatively to a 25 ml volumetric flask. TiO₂ concentration in digested samples was determined by ICP-AES (IRIS Intrepid-II). The recovery for this TiO₂ quantification technique was ranged from 88% to 107%.

(24) Zhang, X.; Sun, H.; Zhang, Z.; Niu, Q.; Chen, Y.; Crittenden, J.C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. *Chemosphere*, **, 2007**, *67*, 160 – 166.

Experiment	Purpose	Exp. Time	Dep. Time	Main results	Compare with dissolved phase
Uptake	Quantify the influx rate of Cd and Zn adsorbed on nano-TiO ₂ in <i>D</i> . <i>magna</i> .	3 h	none	(k _u : L/g/h) Cd: 5.07±0.79 Zn: 8.37±0.97	Cd: 80.6 times higher Zn: 185 times higher (26)
AE	Quantify the influences of nano-TiO ₂ concentrations on Cd and Zn assimilation efficiency in <i>D. magna</i> .	15 min	48 h	(AE: %) Cd: 44.5±2.4-24.6±3.7 Zn: 51.8±5.0-30.4±3.4	
Efflux	Quantify the efflux rate of Cd and Zn adsorbed on nano-TiO ₂ in <i>D</i> . <i>magna</i> .	3 d	7 d	(k _e : /d) Cd: 0.0377±0.008 0.0383±0.018 Zn: 0.087±0.019 0.091±0.022	Cd: 70% lower Zn: 62% lower

Table S1. Experimental purposes, time conditions and main results

a.*Exp.=Exposure and Dep.=Depuration.

b. Values in table S1 are 95% confidence intervals.

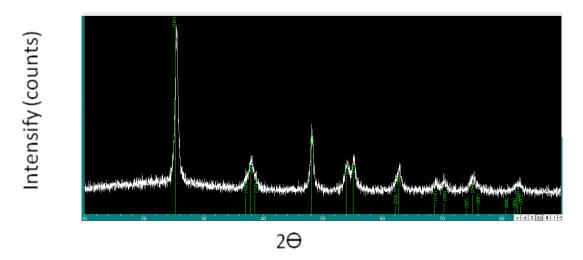


Figure S1. X-ray diffraction (XRD) pattern of purchased commercial titanium dioxide nanoparticles (white curve) compared with standard reference data for titanium dioxide of anatase (green lines, number: 21-1272, space group: 2/m/2).

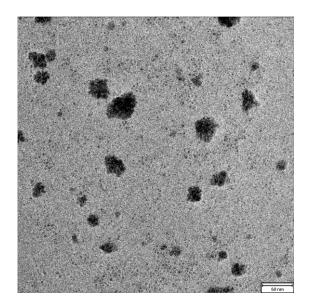


Figure S2. Transmission electron microscopy (TEM) images of titanium dioxide nanoparticles in the SM7 medium.

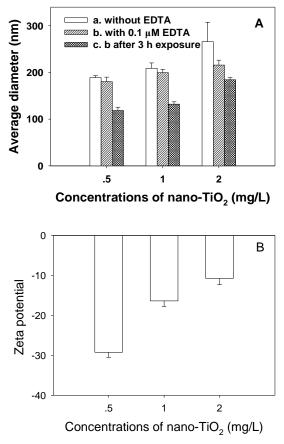


Figure S3. (A) Average diameters of nano-TiO₂ (0.5 to 2 mg/L) in simplified Elendt M7 medium without EDTA, with 0.1 μ M EDTA, and with 0.1 μ M EDTA after 3 h exposure according to the DLS data. (B) Zeta potential of nano-TiO₂ (0.5 to 2 mg/L) in simplified Elendt M7 medium.

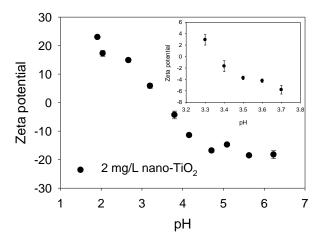


Figure S4. The relationship between zeta potential and pH of 2 mg/L nano-TiO₂ in simplified Elendt M7 medium.

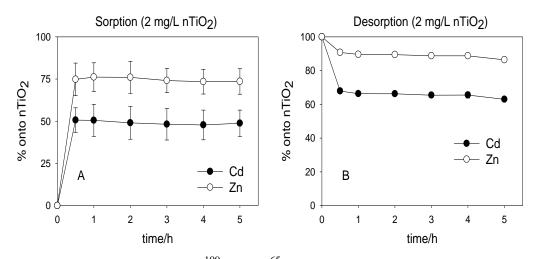


Figure S5. (A) Sorption kinetics of ¹⁰⁹Cd and ⁶⁵Zn on nano-TiO₂. (B) Desorption kinetics of ¹⁰⁹Cd and ⁶⁵Zn from nano-TiO₂. Values are mean \pm SD (n=3).

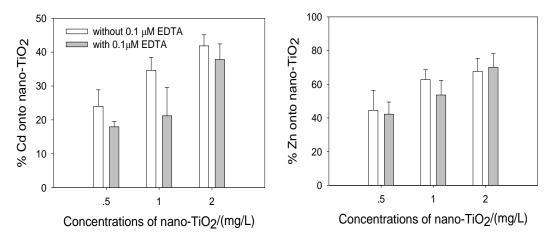


Figure S6. The percentages of Cd (A) and Zn (B) adsorbed onto nano-TiO₂ in simplified Elendt M7 medium with and without $0.1 \mu M$ EDTA. Values are mean \pm SD (n=3).

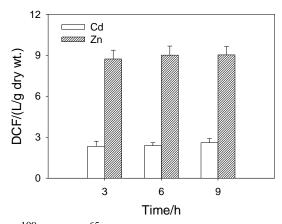


Figure S7. The uptake of ¹⁰⁹Cd and ⁶⁵Zn adsorbed on 1 mg/L nano-TiO₂ in *D.magna* during the 9-h exposure, and the exposure medium was renewed at 3 and 6 h. Values are mean \pm SD (n=3).

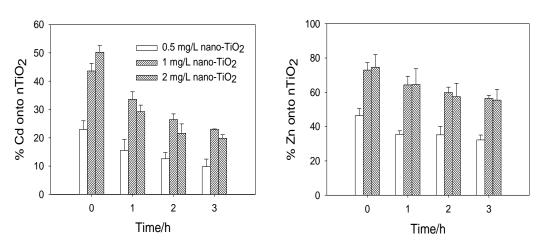


Figure S8. (A) and (B) Percentages of Cd and Zn adsorbed on nano-TiO₂ (0.5, 1, and 2 mg/L) during the 3-h exposure in simplified Elendt M7 medium containing 0.1 μ M EDTA. Values are mean \pm SD (n=3).

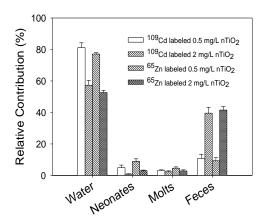


Figure S9. The relative contributions of metal loss from *D. magna* during the 7-day depuration period. Values are mean \pm SD (n=3).