Supporting Information for:

Cooperative Hydrogen-bonding Effects in Silanediol Catalysis

Ngon T. Tran, Sean O. Wilson, Annaliese K. Franz*
Department of Chemistry, One Shields Avenue, University of California, Davis, CA 95616

I. General Information S2
II. Preparation of Silanediol Catalysts S2
III. Michael Reactions with trans- β-Nitrostyrene S6
IV. NMR Studies of Monosilanol and Silanediols S10
V. Preliminary Kinetic Studies S16
VI. Crystallographic Data S17
VII. Computational Studies of Silanol Acidity S20
VIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S33

I. General Information

Instruments and Analyses. All nuclear magnetic resonance (NMR) spectra were obtained on Varian Mercury Plus 300 (300 MHz for ${ }^{1} \mathrm{H}$; 75 MHz for ${ }^{13} \mathrm{C}$; and 282 MHz for ${ }^{19} \mathrm{~F}$), Varian Inova $400\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$; 100 MHz for ${ }^{13} \mathrm{C}$), and/or Varian VNMRS $600\left(600 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H} ; 119$ MHz for ${ }^{29} \mathrm{Si}$) at room temperature. Chemicals shifts were reported in parts per million (δ scale), and referenced according the following standards: tetramethylsilane internal standard for ${ }^{1} \mathrm{H}$ signals in chloroform, benzene residual solvent ($\delta 7.16$) for ${ }^{1} \mathrm{H}$ signals in benzene, deuterated chloroform, or benzene carbon resonances (middle peak is $\delta 77.1$ or $\delta 128.1$, respectively) for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ signals, trifluoromethylbenzene external standard (peak is $\delta-62.7$ in $\mathrm{C}_{6} \mathrm{D}_{6}$) for ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ signals, and tetramethylsilane external standard in CDCl_{3} for ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ signals. Coupling constants were reported in Hertz (Hz) and multiplicities were reported as follows: singlet (s), broad singlet (br s), doublet (d), triplet (t), quartet (q), octet (o), and multiplet (m).

Materials and Purification. Dichloromethane (DCM), hexane, ethyl acetate (EtOAc), toluene (PhMe), and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were obtained from EMD Chemicals. Magnesium turnings, 1,2dibromoethane, palladium on carbon ($5 \mathrm{wt} \%$), anhydrous magnesium sulfate, boron trichloride (1.0 M in DCM), and 2-mesitylmagnesium bromide solution (1.0 M in $\mathrm{Et}_{2} \mathrm{O}$) were acquired from Sigma Aldrich. Indole, n-butyllithium (1.6 M in hexanes), 1,3-bis(trifluoromethyl)benzene, lithium aluminum hydride (4.0 M in $\mathrm{Et}_{2} \mathrm{O}$), and trichlorosilane were purchased from Acros Organics. Trans- β-nitrostyrene was purchased from Alfa-Aesar. 1-Bromonaphthalene was obtained from Eastman Kodak Company. All chemicals were used as purchased, without further purification. n-Butyllithium was titrated before use with diphenylacetic acid to obtain accurate concentration for reactions. Reactions were analyzed by thin layer chromatography (TLC) on EMD glass plates that were pre-coated with silica gel $60 \mathrm{~F}_{254}$, and the reactions were purified by column chromatography using Acros silica gel $60 \AA(0.035-0.070 \mathrm{~mm})$ or Sigma Aldrich silica gel $150 \AA$ grade 62 ($60-200$ mesh).

II. Preparation of Silanols and Silanediol Catalysts

General Procedures and Physical State of Silanediol Catalysts

Triphenylsilanol and silanediol catalysts 1-4 were synthesized according to procedures previously reported in the literature, which ensure access to pure and dry silanediols that do not contain trace HCl. ${ }^{1,2,3,4,5}$ Silanediol 1 was synthesized by two different methods (A and B, see

[^0]procedures below). Method A is used to prepare silanediol 1 from the di-(1-naphthyl)silane precursor, and method B is an alternate, shorter procedure to synthesize di-(1-naphthyl)silane. Silanediol 1 was evaluated as a catalyst in reactions in powdered, microcrystalline and macrocrystalline form. Triphenylsilanol and silanediol 2 were evaluated as catalysts in reactions in microcrystalline as well as macrocrystalline forms. Herein, microcrystalline is defined as needle-shaped crystal with width and length sizes of $<0.1 \mathrm{~mm}$ and macrocrystalline is defined as block-shaped crystal with dimensions $>0.2 \mathrm{~mm}$. The microcrystalline form was obtained by slow evaporation from dichloromethane and the macrocrystalline form was obtained by growing crystals from slow evaporation from benzene. Silanediol catalyst 4 is a viscous film, and this form was used for all Michael reactions and binding studies. Spectral data for all silanediols is consistent with literature data. ${ }^{1}$ Copies of all ${ }^{1} \mathrm{H}$ spectra are included to confirm purity.

Spectral data for $\mathrm{Ph}_{3} \mathrm{SiOH}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.63(\mathrm{dt}, J=6.4,1.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.17(\mathrm{tt}, J$ $=7.2,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~m}, 6 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$.

Spectral data for dimesitylsilanediol (2): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H})$.

Spectral data for 4-fluorophenylmesitylsilanediol (3): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (dd, J $=9.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=9.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29$ ($\mathrm{s}, 3 \mathrm{H}$).

Spectral data for (2,6-bis-(trifluoromethyl)phenyl)(mesityl)silanediol (4): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.91(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, $2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.

Procedure for the Synthesis of Silanediol 1 (Method A)

1-Naphthylsilane. ${ }^{6}$ An oven-dried, round-bottom flask was charged with $\mathrm{Mg}(0.969 \mathrm{~g}, 39.88$ mmol, 2.01 equiv), anhydrous diethyl ether (20 mL), and a stirbar. After purging with argon for $15 \mathrm{~min}, 1,2$-dibromoethane ($0.02 \mathrm{~mL}, 0.23 \mathrm{mmol}, 0.01$ equiv) was added and the reaction was allowed to stir at room temperature until it became a faint cloudy mixture. At which point, 1bromonaphthalene ($2.78 \mathrm{~mL}, 19.87 \mathrm{mmol}, 1.00$ equiv) was added and the reaction was allowed to stir for 2 h at reflux. Upon cooling to room temperature, the aryl Grignard reagent was transferred by syringe to a round-bottom flask containing $\mathrm{HSiCl}_{3}(2.05 \mathrm{~mL}, 20.31 \mathrm{mmol}, 1.02$

[^1]equiv) in anhydrous diethyl ether (20 mL). After stirring at room temperature for 1 h , the reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{LiAlH}_{4}\left(4.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 15.0 \mathrm{~mL}, 60.0 \mathrm{mmol}, 3.02$ equiv) was added dropwise. The reaction was allowed to stir while warming up to room temperature over 2 h . Then the reaction was cooled to $-78^{\circ} \mathrm{C}$ before the addition of 10 mL of Rochelle's salt (NaKtartrate, sat. aq.) and the resulting mixture was filtered over celite and washed with diethyl ether ($5 \times 15 \mathrm{~mL}$). The filtrate was concentrated in vacuo, and purification by distillation to afford 1-naphthylsilane ($1.939 \mathrm{~g}, 62 \%$) as a colorless oil. Spectra matched the previously reported values. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92$ (br d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.77(\mathrm{~m}, 4 \mathrm{H}), 7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס $137.5,136.9,133.1,131.1,129.0,128.0,127.4,126.6,126.1,125.4,{ }^{29}$ Si NMR (119 MHz, CDCl_{3}): $\delta-61.6$.

Di-(1-naphthyl)silane. ${ }^{7}$ 1-Naphthylsilane ($1.939 \mathrm{~g}, 12.25 \mathrm{mmol}, 1.00$ equiv) was dissolved in hexanes (15 mL) and the resulting solution was purged with argon. Under positive argon pressure, BCl_{3} (1.0 M in $\mathrm{DCM}, 12.25 \mathrm{~mL}, 12.25 \mathrm{mmol}, 1.00$ equiv) was added dropwise. After 18 h , the solvent was removed in vacuo and the chloro(1-naphthyl)silane was transferred into another round bottom flask using anhydrous diethyl ether (20 mL). After purging with argon for 15 min and cooling to $0^{\circ} \mathrm{C}$, 1-naphthylmagnesium bromide was added dropwise. [Prepared according to the procedure described above using $\mathrm{Mg}(0.628 \mathrm{~g}, 25.82 \mathrm{mmol}, 2.11$ equiv $)$ and 1bromonaphthalene ($1.80 \mathrm{~mL}, 12.87 \mathrm{mmol}, 1.05$ equiv).] After stirring for 3 h at room temperature, the reaction was quenched with 10 mL of sat. aq. NaHCO_{3}. The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$), and the combined organic layer was washed with brine (2 x 5 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo to give a pale yellow film. The crude product was purified using column chromatography with hexanes to yield 1.792 g of silane (51%) as a white crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~m}, 2 \mathrm{H}), 7.83$ (br $\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=6.6$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 137.6, 137.0, 133.3, 131.1, 129.8, 129.0, 128.1, 126.5, 126.0, 125.5; ${ }^{29} \mathrm{Si}$ NMR (119 MHz, CDCl_{3}): $\delta-38.7$.

Di-(1-naphthyl)silanediol (1). ${ }^{\mathbf{8 . 9}}{ }^{\text {To a mixture containing } \mathrm{Pd} / \mathrm{C}(5 \mathrm{wt} \%, 0.662 \mathrm{~g}, 0.31 \mathrm{mmol}, 0.05)}$ equiv), deionized water ($0.57 \mathrm{~mL}, 32 \mathrm{mmol}, 5.0$ equiv) and anhydrous diethyl ether (10 mL), was added di-(1-naphthyl)silane ($1.792 \mathrm{~g}, 6.30 \mathrm{mmol}, 1.0$ equiv). The hydrogen gas that formed

[^2]was allowed to escape through a vent needle. After stirring for 18 h at room temperature, the Pd / C was removed by filtration and the filtrate was dried over MgSO_{4}. The crude product was purified by column chromatography (10:1 hexanes/diethyl ether) to afford di-(1naphthyl)silanediol (1) as a white powder ($0.782 \mathrm{~g}, 39 \%$). Spectra matched the previously reported values ${ }^{9}$ and showed that the silanediol did not contain any water or trace HCl in the sample, which is possible when preparing the catalyst directly from the silyl chloride. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $136.8,135.8,133.5,132.8,131.5,129.0,128.5,126.6,125.9,125.3$; ${ }^{29}$ Si NMR (119 MHz, CDCl_{3}): $\delta-25.2$. Microcrystalline and macrocrystalline forms of silanediol 1 were grown by dissolving the silanediol in either dichloromethane or a $1: 1$ mixture of dichloromethane/diethyl ether, and allowing the solvent to slowly evaporate. A suitable crystal of the latter was used for X-ray structure analysis. Co-crystals of silanediol $\mathbf{1}$ with diethyl ether were grown from slow evaporation of the silanediol in a 1:10 mixture of dichloromethane/diethyl ether solvents.

Procedure for the Synthesis of Silanediol 1 (Method B)

Di-(1-naphthyl)silanediol (1). ${ }^{\mathbf{8 9}}$ An alternate procedure was used for the di-(1-naphthyl)silane and then hydrolysis was performed using the same procedure as described above in Method A. 1-Bromonaphthalene ($1.49 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) and magnesium ($485 \mathrm{mg}, 10 \mathrm{mmol}, 2$ equiv) were added to an Ar purged, oven dried round-bottom flask. The mixture was diluted with 20 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$ and heated at reflux for 3 h . Then the reaction was allowed to cool to room temperature and transferred to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$, Ar purged solution of trichlorosilane $(0.5 \mathrm{~mL}, 5$ $\mathrm{mmol}, 1$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The mixture was allowed to warm to room temperature over 12 h. The solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of lithium aluminum hydride solution (4.0 M in $\mathrm{Et}_{2} \mathrm{O}, 1.25 \mathrm{~mL}, 5 \mathrm{mmol}, 1$ equiv) was added dropwise. The solution was allowed to warm to room temperature. The reaction was once again cooled to $-78{ }^{\circ} \mathrm{C}$ and quenched with Rochelle's salt (NaKtartrate, sat. aq.), filtered over celite, and washed with $\mathrm{Et}_{2} \mathrm{O}$ ($5 \times 15 \mathrm{~mL}$). The product was concentrated in vacuo. Hydrolysis to the silanediol was carried out using Pd/C and water according to the procedure described above.

III. Michael Additions with trans- β-Nitrostyrene

3-(2-nitro-1-phenylethyl)-1H-indole (9). trans- β-Nitrostyrene ($56 \mathrm{mg}, 0.375 \mathrm{mmol}, 1 \mathrm{equiv}$), catalyst ($0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1.0 mL of DCM were added to a vial containing a stirbar and stirred at room temperature. After 10 min , indole $7(67 \mathrm{mg}, 0.563 \mathrm{mmol}, 1.5$ equiv) was added, immediately followed by an additional 0.1 mL of anhydrous DCM. The reaction was stirred at room temperature for 24 h and then the product was purified by loading directly onto silica gel for flash chromatography (5% to $20 \% \mathrm{EtOAc} / \mathrm{hexanes} \mathrm{)} \mathrm{to} \mathrm{give} \mathrm{product} \mathrm{(see} \mathrm{Table} \mathrm{S1}$ for yields and replicates of reactions performed). As silica gel can also promote formation of the product, it is important to load on to silica gel and purify immediately to avoid any effect on product yield and get accurate comparisons of catalytic activity. Spectral data are consistent with literature data. ${ }^{10}$ Solution phase reactions were performed with two or more replicates and an average of the yields was reported (Table S1). ${ }^{11}$ Spectral data for 9: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.05(\mathrm{ddd}, J=8.0,7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, \mathrm{J}=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=$ $12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,136.7,129.2,128.0,127.8,126.3$, 122.9, 121.9, 120.2, 119.2, 114.5, 111.7, 79.8, 41.8.

Table S1. Yields with standard deviation for indole addition to trans- β-nitrostyrene (Table 1)

entry	catalyst	replicates	yield in DCM (\%)	average yield with std dev $(\%)$
1	none	2	12,8	10.0 ± 2.0
2	$\mathrm{Ph}_{3} \mathrm{SiOH}$	3	$11,12,8$	10.3 ± 2.1
3	$\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{OH})_{2}$	3	13,25	19.0 ± 8.5
4	$\mathbf{1}$	4	$40,40,25,25$	32.5 ± 8.7
5	$\mathbf{2}$	2	45,35	40.0 ± 7.1
6	$\mathbf{3}$	2	75,61	68.0 ± 9.9
7	$\mathbf{4}$	2	92,91	91.5 ± 0.7
8	silica gel	2	83,99	91 ± 11.3

Reactions were performed according to the procedure described above and purified directly on silica gel for flash chromatography (5% to $20 \% \mathrm{EtOAc} /$ hexanes).

[^3]

1-Methyl-3-(2-nitro-1-phenylethyl)-indole. trans- β-Nitrostyrene ($56 \mathrm{mg}, 0.375 \mathrm{mmol}, 1$ equiv), silanediol $4(0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, and 0.1 mL of anhydrous DCM was added to a vial containing a stirbar and stirred at room temperature. After $10 \mathrm{~min}, 1$-methylindole ($67 \mathrm{mg}, 0.563$ $\mathrm{mmol}, 1.5$ equiv) was added immediately followed by 0.1 mL of anhydrous DCM. The reaction was stirred at room temperature for 24 h and then the product was purified by loading directly onto silica gel for flash chromatography (5% to $20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give product in 99% yield. As silica gel can also promote this reaction, it is important to load on to silica gel and purify immediately to avoid any effect on product yield. Spectral data are consistent with literature data. ${ }^{12}$ Spectral data: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.33$ $(\mathrm{m}, 7 \mathrm{H}), 7.05$ (ddd, $J=8.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=$ $12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=12.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $139.7,137.5,129.2,128.0,127.8,126.8,126.6,122.5,119.7,119.2,113.0,109.8,79.8,41.8$, 33.0.

3-Methoxy- N, N-dimethyl-4-(2-nitro-1-phenylethyl)aniline (11). ${ }^{13}$ trans- β-Nitrostyrene (56 $\mathrm{mg}, 0.375 \mathrm{mmol}$, 1 equiv), catalyst ($0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%$), and 0.2 mL of anhydrous DCM were added to a vial containing a stirbar and stirred at room temperature. After $10 \mathrm{~min}, \mathrm{~N}, \mathrm{~N}-$ dimethyl- m-anisidine ($82 \mu \mathrm{~L}, 0.563 \mathrm{mmol}, 1.5$ equiv) was added immediately followed by 0.1 mL of anhydrous DCM. The reaction was stirred at room temperature for either 24 or 48 h and then the product was purified by loading directly onto silica gel for flash chromatography (15% EtOAc/hexanes) to give product (see Table S 2 for yields and replicates of reactions performed). Solution phase reactions were performed with two or more replicates and an average of the yields was reported (Table S2). All solution phase yields were an average of two or more replicates. Spectral data are consistent with literature data. ${ }^{141} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.19(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=9.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7$, 151.3, 139.8, 129.1, 128.7, 127.9, 127.0, 115.4, 104.6, 96.2, 78.3, 55.3, 43.0, 40.6.

[^4]Table S2. Yields with standard deviation for addition of N, N-dimethyl- m-anisidine to trans- β-nitrostyrene (Table 3)

entry	catalyst	replicates	yield in $\mathrm{DCM}(\%)$	average yield with std. dev. (\%)
1	none	2	5,4	4.5 ± 0.7
2	$\mathrm{Ph}_{3} \mathrm{SiOH}$	2	2,16	9.0 ± 9.9
3	$\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{OH})_{2}$	2	4,3	3.5 ± 0.7
4	$\mathbf{1}$	3	$11,31,19$	20.3 ± 10.1
5	$\mathbf{2}$	2	29,18	23.5 ± 7.8
6	$\mathbf{4}$	2	38,41	39.5 ± 2.1
7	silica gel	2	82,94	88.0 ± 8.5

Reactions were performed according to the procedure described above and purified directly on silica gel using flash chromatography ($15 \% \mathrm{EtOAc} / \mathrm{hexanes}$).

General Procedure for Solvent-Free Reactions. trans- β-Nitrostyrene ($56 \mathrm{mg}, 0.375 \mathrm{mmol}, 1$ equiv) and catalyst ($0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were added to a vial containing a stir-bar at room temperature. After stirring for ten minutes, the nucleophile was added to the reaction. The mixture of solids turns into an oil over time as the reaction proceeds. The reaction was stirred for 24 h , at which point it was diluted and purified by loading directly on silica gel for flash chromatography ($15 \% \mathrm{EtOAc} /$ hexanes).

Table S3. Yields with standard deviation for the solvent-free indole addition to trans- β nitrostyrene (Table 1)

entry	catalyst	replicates	solvent free yields (\%)	average with std. dev. $(\%)$
1	none	1	32	-
2	$\mathrm{Ph}_{3} \mathrm{SiOH}$	1	45	-
3	$\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{OH})_{2}$	1	52	-
4	$\mathbf{1}$	2	75,54	64.5 ± 14.8
5	$\mathbf{2}$	1	73	-
6	$\mathbf{3}$	1	83	-
7	$\mathbf{4}$	1	92 (run for 4 h)	-
8	silica gel	1	78	-

Reactions were performed according to the procedure described above and purified directly on silica gel using flash chromatography (5% to $20 \% \mathrm{EtOAc} /$ hexanes).

Temperature and Concentration Effects on Reaction (Table 2). trans- β-Nitrostyrene (56 mg , $0.375 \mathrm{mmol}, 1$ equiv), silanediol $4(0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was added to a vial containing a stirbar. To the mixture was added one-half of the total amount of anhydrous DCM that is needed to obtain the desired concentration and the mixture was stirred at the indicated temperature. After 10 min , indole ($67 \mathrm{mg}, 0.563 \mathrm{mmol}, 1.5$ equiv) was added immediately followed by the second half of anhydrous DCM. The reaction was stirred at the indicated temperature for 24 h and then the product was purified by loading directly onto silica gel for flash chromatography (5% to 20% EtOAc/hexanes) to give product in the indicated yield.

Effects of Water on Reaction and Comparison of Spectra Containing Water or HCl

The route used for the synthesis of silanediols is important to obtain pure, stable silanediols that are effective hydrogen-bonding catalysts. A trace amount of HCl can be produced upon hydrolysis of a silyl chloride, which can be readily removed upon simple workup with NaHCO_{3} or upon column chromatography. The presence of HCl does not provide an accurate assessment of silanediol catalytic activity. Our synthetic route described here utilizes a silane precursor to avoid production of HCl . The presence of HCl can be detected by NMR spectroscopy due to a sharp peak at 1.6 ppm (in d-chloroform), compared to a broad peak with water. The SiOH peak also remains sharp with HCl , but is broad in the presence of water. See Figure S 1 for a comparison of spectra. The effect of water and HCl on silanediol catalysis is presented below in Table S4.

General procedure for additive studies (Table S4). The procedure for the preparation of 3-(2-nitro-1-phenylethyl)- 1 H -indole (9) above was used except water one or more equiv. of water (relative to the nitrostyrene) was added and the reaction mixture was allowed to stir for 15 min before the addition of indole for entries 2, 6, and 7. For entries 3 and 4, the procedure for 3-(2-nitro-1-phenylethyl)- 1 H -indole (9) above was also used with catalyst $\mathbf{1}$ pre-treated with HCl as follows: Catalyst $\mathbf{1}(0.075 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ was dissolved in chloroform (1 mL) and allowed to stir in a biphasic mixture with $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq}, 0.1 \mathrm{~mL})$ for 0.5 h . At which point, the aqueous layer was removed and the organic phase was concentrated under vacuum and dried in vacuo for 4 d (entry 3) or 6 h (entry 4). The NMR spectra of silanediol comparing water and $\mathrm{HCl}(\mathrm{aq})$ in CDCl_{3} is shown in Figure S 1 .

Table S4. Yields with standard deviation for indole addition to trans-β-nitrostyrene with either water or HCl additive.

entry	catalyst	additive a	yield in DCM (\%)
1	$\mathbf{1}$	none	33
2	$\mathbf{1}$	$\mathrm{H}_{2} \mathrm{O}(1$ equiv)	35
3	$\mathbf{1}$	HCl	65
4	$\mathbf{1}$	HCl	99
5	$\mathbf{4}$	none	92
6	$\mathbf{4}$	$\mathrm{H}_{2} \mathrm{O}(1$ equiv)	68
7	$\mathbf{4}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{xs})$	57
equivalents relative to nitrostyrene			

Figure S1. Comparison of NMR spectra (in d-chloroform, 400 MHz NMR) for di-(1naphthyl)silanediol (1): a) pure and dry silanediol; b) silanediol with $\mathrm{H}_{2} \mathrm{O}$ added; c) silanediol with $\mathrm{HCl}(\mathrm{aq})$ added. The SiOH peak is sharp in a pure sample, but becomes broad in the presence of water; the SiOH peak is also sharp when $\mathrm{HCl}(\mathrm{aq})$ is added.

IV. NMR Studies on Silanols and Silanediols ${ }^{8,1,15}$

NMR binding studies were performed at several silanediol concentrations with several Lewis bases. For each NMR binding study at 0.01 M concentration of silanediol, two stock solutions were each made by dissolving 0.06 mmol of silanediol in 6.0 mL of deuterated solvent $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ or $\left.\mathrm{CDCl}_{3}\right)$. A Lewis base ($0.30 \mathrm{mmol}, 5$ equiv) was added to only one of the stock solutions. Then different volumes of each stock solution were mixed to make 0.6 mL of solution with the desired equivalents of Lewis base. The NMR spectrum of each solution was recorded after eight scans at room temperature. The binding constant was determined by fitting a nonlinear curve with Microsoft Excel Solver with the model equation below. ${ }^{16,17}$ No constraints

[^5]were used, and the only variable being changed/optimized by the Solver is K_{a}. There was negligible self-association at 10 mM in $\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3}.
$$
\Delta \delta_{i}=\delta_{\text {obs }, i}-\delta_{\text {free }}=\frac{C}{R_{0}} \Delta \delta
$$
where
$$
C=\frac{\left(K_{a} R_{0}+1+K_{a} S_{0}\right) \pm \sqrt{\left(K_{a} R_{0}+1+K_{a} S_{0}\right)^{2}-4 K_{a}^{2} R_{0} S_{0}}}{2 K_{a}}
$$
$\Delta \delta=\delta_{\text {complex }}-\delta_{\text {free }} ; \delta_{\text {complex }}=$ chemical shift (ppm) of hydroxyl proton in the bound Lewis base (substrate), or the chemical shift where the binding curve levels off and it is estimated by extrapolation of the binding curve; $\delta_{\text {free }}=$ chemical shift of hydroxyl proton of unbound state (e.g. no Lewis base added); $\Delta \delta_{i}=$ the observed changed in chemical shift at i equivalence of Lewis base; $\delta_{\text {obs }, i}=$ chemical shift of hydroxyl proton at i equivalence of Lewis base; $R_{0}=$ initial concentration of silanediol (or receptor) in M; $S_{0}=$ initial concentration of Lewis base (or substrate) in M , and $K_{a}=$ binding constant in M^{-1}.

The above steps were repeated for the binding studies at 0.40 M concentration of silanediol, except 40 times as much solutes were used to prepare the stock solutions. Based on an the NMR shift data, which indicates that the cyclic dimeric form of silanediol interacts with trans- β-nitrostyrene at these concentrations, we crudely estimate the binding constant at 0.40 M using the above procedures.

Self-association constants for silanediols were determined based on the procedures outlined for the monomer-dimer equilibrium model in reference 15 . The association constant was determined by fitting a nonlinear curve with Microsoft Excel Solver with the model equation below. ${ }^{18,5}$ No constraints were used, and the only variables being optimized by the Solver are K and δ_{2}.

$$
\delta_{\operatorname{cosk}}=\frac{[U] \delta_{1}+2 K[U]^{2} \delta_{2}}{[U]_{T}}
$$

where $[U]_{T}$ is the total concentration of silanediol in M^{-1}, $[U]$ is the concentration in M^{-1} of the monomer at a given concentration $[U]_{T}$ and is estimated by

$$
[U]=\frac{\sqrt{8 K[U]_{T}+1}-1}{4 K}
$$

and K is the association constant in $\mathrm{M}^{-1} . \delta_{1}$ is the chemical shift in ppm of the hydroxyl proton of the monomeric form and it is determined at concentration below the level of silanediol selfassociation (e.g. $\leq 0.01 \mathrm{M}$). δ_{2} is the chemical shift in ppm of the hydroxyl proton of the dimeric form.

[^6]

Figure S2. Comparison of binding affinity of silanediol 4 to Lewis bases. All binding studies were performed in $\mathrm{C}_{6} \mathrm{D}_{6}$, except for $n-\mathrm{Bu}_{4} \mathrm{NOAc}$, which was performed in CDCl_{3} due to solubility reasons.

Figure S3. Spectra and binding curve for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2} 4$ as a 10 mM solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ with trans- β nitrostyrene $\left(\mathrm{K}_{\mathrm{a}} \leq 6.5 \pm 5.2 \mathrm{M}^{-1}\right)$. A shift of 0.06 ppm is observed for hydroxy protons (indicated with *) when 5.0 equivalents of trans- β-nitrostyrene are added.

Figure S4. Spectra and binding curve for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2}(4)$ as a 400 mM solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ with trans-β-nitrostyrene $\left(\mathrm{K}_{\mathrm{a}}=11.9 \pm 0.1 \mathrm{M}^{-1}\right)$. A shift of 0.48 ppm is observed for hydroxy protons (indicated with $*$) when 5.0 equivalents of trans- β-nitrostyrene are added.

Figure S5. Spectra and binding curve for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2}(\mathbf{4})$ as a 10 mM solution in CDCl_{3} with $n \mathrm{Bu}_{4} \mathrm{NOAc}\left(\mathrm{K}_{\mathrm{a}}=357.2 \pm 46 \mathrm{M}^{-1}\right)$. A shift of 3.91 ppm is observed for hydroxy protons (indicated with $*$) when 5.0 equivalents of $n \mathrm{Bu}_{4} \mathrm{NOAc}$ are added.

Figure S6. Spectra and binding curve for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2}(4)$ as a 400 mM solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ with DMF $\left(\mathrm{K}_{\mathrm{a}}=1434.1 \pm 50 \mathrm{M}^{-1}\right)$. A shift of 2.64 ppm is observed for hydroxy protons (indicated with $\left.*\right)$ when 5.0 equivalents of DMF are added.

Figure S7. Spectra and binding curve for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2} 4$ as a 10 mM solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ with DMF $\left(\mathrm{K}_{\mathrm{a}}\right.$ $=90.8 \pm 0.4 \mathrm{M}^{-1}$). A shift of 2.51 ppm is observed for hydroxy protons (indicated with $*$) when 5.0 equivalents of DMF are added. Figures reproduced from literature (Tran, N. T.; Min, T.; Franz, A. K. Chem. Eur. J. 2011, 17, 9897-9900) and provided here for comparison and to construct Figure S2.

Figure S8. Self-association of silanediols and triphenolsilanol. $\mathrm{Ar}=2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{3}$. Similar curves were obtained for CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ except the hydroxy shifts were not as prominent.

$\begin{array}{lllllllllll} & 3.9 & 3.7 & 3.5 & 3.3 & 3.1 & \begin{array}{l}2.9 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 2.7 & 2.5 & 2.3 & 2.1 \\ & & & 1.9\end{array}$

Figure S9. Spectra of self-recognition for $\mathrm{Mes}_{2} \mathrm{Si}(\mathrm{OH})_{2}(\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(\mathrm{~K}_{\mathrm{a}}=7.7 \pm 1.5 \mathrm{M}^{-1}\right)$. A shift of 1.67 ppm is observed for hydroxy protons (indicated with *) at 0.80 M .

Figure S10. Spectra of self-association for $\left(2,6-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{MesSi}(\mathrm{OH})_{2}(4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(\mathrm{~K}_{\mathrm{a}}=4.6 \pm 2.4 \mathrm{M}^{-1}\right)$. A shift of 1.63 ppm is observed for hydroxy protons (indicated with *) at 0.80 M .

Figure S11. Spectra of self-association for $\mathrm{Ph}_{3} \mathrm{SiOH}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. A shift of 1.59 ppm is observed for hydroxy protons (indicated with *) at 0.80 M .

Figure S12. Spectra of $\mathrm{Mes}_{2} \mathrm{Si}(\mathrm{OH})_{2}$ (2) binding with indole (8) in $\mathrm{C}_{6} \mathrm{D}_{6}$. A shift of 0.30 ppm and broadening is observed for NH protons (indicated with *).

V. Preliminary Kinetic Studies

Kinetic studies of hydrogen-bonding catalyst systems in the literature have been used to elucidate reaction mechanisms and improve catalyst design. ${ }^{19}$ We hypothesized that the reaction would be second order in catalyst if the cyclic dimer (observed by X-ray and indicated by NMR binding) was the primary active species and only activates nitrostyrene in a $2: 1$ complex. ${ }^{20}$

Preliminary kinetic studies were performed and setup using the indole addition procedure as described according to the general procedure indicated above. Aliquots ($5 \mu \mathrm{~L}$) were removed from the reaction and diluted to 1.5 mL with a $10 \% \mathrm{iPrOH} / \mathrm{Hexanes}$ mixture. The progress of the reaction was monitored by concentration of products, determined by HPLC peak height in relation to a calibration curve. ${ }^{1} \mathrm{H}$ NMR was not used due to high concentrations of reactants and non-ideal separation of diagnostic peaks. The calibration curve was created by diluting 44 mg of silanediol 4 in 25 mL of $10 \% \mathrm{iPrOH} /$ hexanes, and then five other samples were created by consecutive two-fold dilutions. HPLC analysis was performed using a Chiralpak AD-H column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=14.8,16.3 \mathrm{~min}$.

The preliminary data here indicates that the indole addition reaction is first-order (1.36) in catalyst under these conditions. Because the cyclic dimer provides a cluster with two hydrogenbonding sites, the first-order rates may suggest that the cyclic dimer can activate two molecules of reactant at the current concentration. More detailed kinetic studies are underway.

Figure S13. A) Initial rate study for the addition of indole to trans- β-nitrostyrene gives first order (1.36) in silanediol catalyst 4. B) Proposed mechanism for activation of nitrostyrene via cyclic dimer and additional hydrogen-bonding complexes that may complicate kinetic studies.

B

[^7]
VI. Crystallography Data

The structural data provided here demonstrates that the crystal structure of di-(1naphthyl)silanediol (1) is a linear hydrogen-bonding network (Figure S14) that blocks the free H bond donor sites from intermolecular interactions with Lewis basic molecules. Due to lower solubility, the silanediol cannot as easily access what is presumed to be a more active cyclic dimer that displays H -bond donors to interact with Lewis bases. This hypothesis partially explains why di-(1-naphthyl)silanediol (1) exhibits similar reactivity to the less acidic dimesitylsilanediol, which has similar hydrogen-bonding patterns. ${ }^{1}$

Crystal Structure Collection and Determination. Crystals were grown from slow evaporation of silanediol (and one equivalent of Lewis base) from benzene or dichloromethane. Suitable crystals were mounted on glass fibers with silicone grease and placed in the cold N_{2} stream of a Bruker SMART Apex II diffractometer with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=$ $0.71073 \AA$) at $90(2) \mathrm{K} .{ }^{21}$ Reflections were integrated and corrected for Lorentz and polarization effects, and absorption was corrected by using Blessing's method ${ }^{22}$ with the program SADABS. ${ }^{23}$ Structures were solved by direct methods and refined using all data (based on F^{2}) and the software SHELXTL 6.1. ${ }^{24,25,26}$ All non-hydrogen atoms were refined anisotropically. In general, as many hydrogen atoms were located on a difference map as possible and then the missing hydrogen atoms were added geometrically. The position and thermal parameters of hydrogen atoms were allowed to refine freely.

Figure S14. Asymmetric unit contains a cyclic dimer cluster supramolecular motif and intermolecular hydrogen bonding with diethyl ether. Selected hydrogens in thermal displacement plot, which shows 35\% probability displacement ellipsoids for nonhydrogens, are omitted for clarity.

[^8]Table S5. Crystal data and structure refinement for di(1-naphthyl)silanediol (1) with diethyl ether solvate.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color and habit
Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections ($\mathrm{I}>2$ sigma(I))
Completeness to theta $=27.51^{\circ}$
Absorption correction
Max. and min. transmission
Solution method
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

```
NT105
C24 H26 O3 Si
390.54
90(2) K
0.71073 A
Triclinic
P-1
a=8.1046(8) \AA < <=80.0010(10)
```



```
c}=16.2436(16)\AA \gamma=83.3600(10) . .
2062.2(3) A }\mp@subsup{}{}{3
4
1.258 Mg/m
0.136 mm
832
0.33\times0.30\times0.25 mm}\mp@subsup{}{}{3
colorless block
Bruker SMART 1000
2.96 to 27.510
-10<=h<=10,-20<=k<=20, -20<=l<=21
19660
9180[R(int) = 0.0313]
7432
96.7 %
Semi-empirical from equivalents
0.9667 and 0.9570
SHELXS-97 (Sheldrick, 2008)
SHELXL-97 (Sheldrick, 2008)
9180 / 0 / 713
1.023
R1 = 0.0378,wR2 = 0.0985
R1 = 0.0497,wR2 = 0.1078
0.437 and -0.311 e. . }\mp@subsup{}{}{-3
```

Table S6. Hydrogen bonds for NT105 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(21)-\mathrm{H}(21 \mathrm{~A}) \ldots \mathrm{O}(1)$	$0.83(2)$	$1.95(2)$	$2.7690(15)$	$166.7(19)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(22)$	$0.83(2)$	$1.96(2)$	$2.7754(15)$	$167(2)$
$\mathrm{O}(22)-\mathrm{H}(22 \mathrm{~A}) \ldots \mathrm{O}(52)$	$0.84(2)$	$1.80(2)$	$2.6310(15)$	$174.1(19)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(42)$	$0.76(2)$	$1.96(2)$	$2.7120(14)$	$174(2)$

Figure S15. Asymmetric unit repeated three times to show polymeric supramolecular assembly and intermolecular hydrogen bonding. Selected hydrogens in ORTEP figure, which shows 35\% probability displacement ellipsoids for nonhydrogens, are omitted for clarity.

Table S7. Crystal data and structure refinement for di(1-naphthyl)silanediol (1).

Identification code
NT107
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color and habit
Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections ($\mathrm{I}>2$ sigma(I))
Completeness to theta $=27.51^{\circ}$
Absorption correction
Max. and min. transmission
Solution method
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C20 H16 O2 Si
316.42

90(2) K
$0.71073 \AA$
Monoclinic
P 21/c
$\begin{array}{ll}\mathrm{a}=9.389(3) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=19.374(6) \AA & \beta=93.933(4)^{\circ} . \\ \mathrm{c}=8.611(3) \AA & \gamma=90^{\circ} .\end{array}$
$1562.8(9) \AA^{3}$
4
$1.345 \mathrm{Mg} / \mathrm{m}^{3}$
$0.157 \mathrm{~mm}^{-1}$
664
$0.47 \times 0.16 \times 0.09 \mathrm{~mm}^{3}$
colorless plate
Bruker SMART 1000
3.03 to 27.51°.
$-11<=\mathrm{h}<=12,-25<=\mathrm{k}<=24,-11<=\mathrm{l}<=11$
14440
$3538[\mathrm{R}(\mathrm{int})=0.0412]$
2672
98.7 \%

Semi-empirical from equivalents
0.9854 and 0.9290

SHELXS-97 (Sheldrick, 2008)
SHELXL-97 (Sheldrick, 2008)
3538 / 0 / 272
1.033
$\mathrm{R} 1=0.0360$, wR2 $=0.0829$
$\mathrm{R} 1=0.0585, \mathrm{wR} 2=0.0961$
0.332 and $-0.310 \mathrm{e} . \AA^{-3}$

Table S8. Hydrogen bonds for NT107 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 1$	$0.81(3)$	$2.00(3)$	$2.8070(19)$	$171(2)$

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x},-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$

VII. Computational Studies of Silanol Acidity ${ }^{1,27}$

A. Description of Gas-phase Acidity ($\Delta \boldsymbol{H}_{\text {acid }}$)

All calculations were conducted using Gaussian03 programs. The geometry of each species in equation (1) was optimized with the B3LYP/6-31+G(d) method. The deprotonated forms of the acid (HA) and $\mathrm{H}_{2} \mathrm{O}$ were used as the initial guesses for the geometry optimizations of their conjugate bases (e.g. A^{-}and OH^{-}). The initial guesses for [$\mathrm{A}^{-\cdots} \mathrm{H}_{2} \mathrm{O}$] and $\left[\mathrm{HO}^{\left.-\cdots \mathrm{H}_{2} \mathrm{O}\right]}\right.$ complexes involve adding one $\mathrm{H}_{2} \mathrm{O}$ molecule to each optimized geometry of a conjugate base such that the hydrogen of $\mathrm{H}_{2} \mathrm{O}$ faces and is at approximately $1.63 \AA$ away from the negatively charged atom (the deprotonated atom of the acid). To confirm that an optimized geometry is a real minimum on the potential energy surface, frequency calculation using B3LYP/6-31+G(d) was conducted to ensure that there is no imaginary frequency. Zero-point vibrational corrections were obtained as unscaled frequencies. Gas-phase acidity was determined from the free energies obtained at the B3LYP/6-31+G(d) level and equation (2). All gas-phase calculations correspond to the reference state, 1 atm and 298 K .

B. Description of $\mathbf{p} \boldsymbol{K}_{\mathrm{a}}{ }^{1,26}$

Since gas-phase geometries usually do not change significantly upon solvation, the optimized gas-phase geometries from above were used for all solution-phase calculations. Single-point solution-phase free energies of $\mathrm{HA}, \mathrm{H}_{2} \mathrm{O},\left[\mathrm{A}^{\left.-\cdots \mathrm{H}_{2} \mathrm{O}\right]}\right.$ and $\left[\mathrm{HO}^{\cdots} \mathrm{H}_{2} \mathrm{O}\right]$ were determined by using the HF/6-31+G(d,p) method and PCM solvation model that has the following modified parameters: $\mathrm{TSARE}=0.4$, radii $=$ bondi, and alpha $=1.00$. These free energies correspond to the reference state, $1 \mathrm{~mol} / \mathrm{L}$ and 298 K .

The $\mathrm{p} K_{\mathrm{a}}$ values for a series of reference acids, including three silanols, were determined using a semi-empirical method. First, $\Delta G_{\text {exchange }}$ was calculated from the solution-phase Gibbs free energies from above and equation (1). Then, $\Delta G_{\text {exchange }}$ was used in equation (3) to determine computational $\mathrm{p} K_{\mathrm{a}}(\mathrm{B} 3 \mathrm{LYP})$. The least squares linear regression equation (4a) was obtained by using Microsoft Excel to make a graph of $\mathrm{p} K_{\mathrm{a}}$ (B3LYP) versus experimental $\mathrm{p} K_{\mathrm{a}}$ (see Figure S25). Since there were several large deviations from the linear regression equation (see Figure S25 and Table S1), $\mathrm{p} K_{\mathrm{a}}$ values were also calculated using only electronic energies. By computing $\Delta H_{\text {exchange }}$ and using $\Delta H_{\text {exchange }}$ in place of $\Delta G_{\text {exchange }}$ in the above steps, we identified that there was a better correlation with electronic energies (see least squares linear regression equation in Figure S26 and Table S1). Using the latter method, we calculated $\mathrm{p} K_{\mathrm{a}}$ values for unknown silanols in Table 1, (Figures S25 and S26 and Table S1).
(1) $\mathrm{HA}+\left[\mathrm{HO}^{\cdots} \mathrm{H}_{2} \mathrm{O}\right] \Leftrightarrow\left[\mathrm{A}^{\left.-\cdots \mathrm{H}_{2} \mathrm{O}\right]+\mathrm{H}_{2} \mathrm{O}}\right.$
(2) HA (g) $\rightarrow \mathrm{A}^{-}(\mathrm{g})+\mathrm{H}^{+}(\mathrm{g})$
(3) $\mathrm{p} K_{\mathrm{a}}(\mathrm{B} 3 \mathrm{LYP})=15.1-\Delta G_{\text {exchange }} /(2.303 * 298.15 * 1.9858775 * 1000)$
(4) linear regression equations
a. $\mathrm{p} K_{\mathrm{a}}(\mathrm{EXP})=\mathrm{p} K_{\mathrm{a}}(\mathrm{B} 3 \mathrm{LYP}) * 2.315-16.891$ for $\Delta G_{\text {exchange }}$
b. $\mathrm{p} K_{\mathrm{a}}(\mathrm{EXP})=\mathrm{p} K_{\mathrm{a}}(\mathrm{B} 3 \mathrm{LYP}) * 0.4911+7.2871$ for $\Delta H_{\text {exchange }}$

[^9]
Di-(1-naphthyl)silanediol

B3LYP/6-31+G(d)
HF $=-1211.870486$ hartrees $(-760460.84866986 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.304829$ (Hartree/Particle)
Sum of electronic and zero-point Energies =
-1211.565657 hartrees ($-760269.56542407 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1211.614193 hartrees $(-760300.02224943 \mathrm{kcal} / \mathrm{mol})$

HF/6-31+G(d,p)//B3LYP/6-31+G(d)
$\mathrm{HF}=-1205.5562811$ hartrees $(-756498.621953061 \mathrm{kcal} / \mathrm{mol})$
Zero-point correction $=0.323388$ (Hartree $/$ Particle $)$
Sum of electronic and zero-point Energies $=-1205.232893$ hartrees $(-756295.69268643 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies $=-1205.276672$ hartrees $(-756323.16444672 \mathrm{kcal} / \mathrm{mol})$

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	0.000215	-0.015405	1.736585
2	8	-0.374910	-1.357447	2.663895
3	8	0.374785	1.308907	2.689298
4	6	-1.506319	0.568249	0.772857
5	6	-1.978082	1.855670	1.000301
6	6	-3.118043	2.365314	0.331689
7	6	-3.792741	1.581375	-0.575788
8	6	-3.360084	0.255932	-0.852791
9	6	-4.050830	-0.563072	-1.788205
10	6	-3.630104	-1.847790	-2.053144
11	6	-2.493335	-2.366700	-1.387373
12	6	-1.803139	-1.596356	-0.474835
13	6	-2.205016	-0.263126	-0.173022
14	6	1.507258	-0.581165	0.762954
15	6	1.981560	-1.871017	0.970646
16	6	3.122643	-2.368052	0.294512
17	6	3.796005	-1.568881	-0.600569
18	6	3.360673	-0.240255	-0.857382
19	6	4.049980	0.594355	-1.779972
20	6	3.626588	1.882051	-2.025504
21	6	2.488421	2.388289	-1.352417
22	6	1.799614	1. 602693	-0.451914
23	6	2.204345	0.265956	-0.170083
24	1	-1.219147	-1.332364	3.136245
25	1	1. 221855	1.277965	3.156203
26	1	-1.461325	2.493837	1.711514
27	1	-3.454246	3.377949	0.540400
28	1	-4.668551	1.964919	-1.095458
29	1	-4.922818	-0.153540	-2.294078
30	1	-4.166275	-2.463647	-2.770608
31	1	-2.161227	-3.380071	-1.598319
32	1	-0.935954	-2.017494	0.023797
33	1	1.466043	-2.521078	1.671915
34	1	3.460838	-3.383087	0.487763
35	1	4.672809	-1.942581	-1.125706
36	1	4.922997	0.194384	-2.291693
37	1	4.161629	2.509862	-2.733386
38	1	2.154015	3.403926	-1.548293
39	1	0.930991	2.014190	0.052212

B3LYP/6-31+G(d)
$\mathrm{HF}=-1211.3169808$ hartrees $(-760113.518621808 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.292099$ (Hartree/Particle)
Sum of electronic and zero-point Energies =
-1211.024882 hartrees ($-759930.22370382 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1211.073049 hartrees ($-759960.44897799 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angst		
Number	Number	X	Y	Z
1	14	-0.062423	-0.327166	1.769217
2	8	-0.672270	-1.557371	2.539316
3	8	0.638076	0.889549	2.756678
4	6	-1.313430	0.678453	0.691565
5	6	-1.184040	2.056845	0.579022
6	6	-2.025591	2.838073	-0.252879
7	6	-3.020041	2.239717	-0.994401
8	6	-3.228137	0.835973	-0.908088
9	6	-4.264529	0.193968	-1.643211
10	6	-4.478673	-1.163375	-1.530221
11	6	-3.667537	-1.935086	-0.660667
12	6	-2.651184	-1.344419	0.062618
13	6	-2.381376	0.053099	-0.047094
14	6	1.338424	-0.856996	0.544198
15	6	1.317289	-2.202060	0.194679
16	6	2.224320	-2.763485	-0.738575
17	6	3.178550	-1.974415	-1.341500
18	6	3.272957	-0.594095	-1.015530
19	6	4.263156	0.237327	-1.611140
20	6	4.367047	1.571214	-1.279431
21	6	3.482118	2.126577	-0.321995
22	6	2.509686	1.346412	0.270121
23	6	2.354217	-0.033202	-0.057933
24	1	0.493092	0.638265	3.681105
25	1	-0.411197	2.561573	1.153413
26	1	-1.875979	3.915660	-0.308713
27	1	-3.663377	2.829666	-1.646676
28	1	-4.892521	0.799537	-2.296331
29	1	-5.275996	-1.640728	-2.097651
30	1	-3.856135	-3.001753	-0.554329
31	1	-2.054486	-1.917682	0.769813
32	1	0.577469	-2.842454	0.669829
33	1	2.159944	-3.823653	-0.980071
34	1	3.874754	-2.393180	-2.067672
35	1	4.944552	-0.204725	-2.337644
36	1	5.129481	2.194622	-1.743178
37	1	3.575616	3.175299	-0.046313
38	1	1. 862904	1.769290	1.030208

Deprotonated Di-(1-naphthyl)silanediol and Water

B3LYP/6-31+G(d)
HF $=-1287.7693317$ hartrees $(-808088.133335067 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.317481$ (Hartree/Particle)
Sum of electronic and zero-point Energies =
-1287.451851 hartrees ($-807888.91102101 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies = -1287.503660 hartrees ($-807921.4216866 \mathrm{kcal} / \mathrm{mol}$)
$\underline{\mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d})}$
$\mathrm{HF}=-1281.1103265$ hartrees $(-803909.540982015 \mathrm{kcal} / \mathrm{mol})$

Zero-point correction $=0.337168$ (Hartree $/$ Particle $)$
Sum of electronic and zero-point Energies $=-1280.773158$ hartrees ($-803697.96437658 \mathrm{kcal} / \mathrm{mol}$)
Temperature 298.150 Kelvin. Pressure 1.00000 Atm.
Sum of electronic and thermal Free Energies $=-1280.819605$ hartrees $(-803727.11033355 \mathrm{kcal} / \mathrm{mol})$

Center	Atomic	Coordinates		
Number	Number	X	Y	Z
1	14	-0.047704	1.491606	-0.243632
2	8	-0.652821	2.629025	0.689829
3	8	0.634742	2.073600	-1.683880
4	6	-1.318473	0.169048	-0.829400
5	6	-1.224796	-0.341199	-2.117493
6	6	-2.077907	-1.368693	-2.593677
7	6	-3.045336	-1.904803	-1.773269
8	6	-3.214295	-1.412204	-0.450353
9	6	-4.221612	-1.931637	0.410910
10	6	-4.397349	-1.428271	1.682290
11	6	-3.574803	-0.368829	2.140722
12	6	-2.586147	0.153789	1.332104
13	6	-2.356259	-0.357022	0.019596
14	6	1.333591	0.505374	0.671578
15	6	1.309622	0.602715	2.057417
16	6	2.212349	-0.107945	2.887630
17	6	3.163934	-0.933466	2.331579
18	6	3.259860	-1.064040	0.919242
19	6	4.247970	-1.895877	0.321145
20	6	4.351976	-2.005150	-1.048988
21	6	3.469666	-1.271861	-1.880737
22	6	2.499131	-0.459472	-1.330480
23	6	2.345312	-0.331863	0.081864
24	1	0.492592	3.041465	-1.731577
25	1	-0.473640	0.065005	-2.790382
26	1	-1.959355	-1.736866	-3.611776
27	1	-3.697329	-2.703243	-2.126052
28	1	-4.858545	-2.735327	0.042510
29	1	-5.173003	-1.834133	2.329439
30	1	-3.733055	0.043751	3.135240
31	1	-1.985939	0.999025	1. 660048
32	1	0.572838	1.258935	2.515056
33	1	2.146861	-0.000257	3.969374
34	1	3.857573	-1.490938	2.960265
35	1	4.927746	-2.445934	0.971229
36	1	5.112962	-2.644793	-1.492321
37	1	3.563824	-1.344116	-2.962462
38	1	1.854107	0.128506	-1.973873
39	1	-0.442417	4.043424	-0.122302

40	8	-0.134877	4.773931	-0.760747
41	1	0.627685	5.168992	-0.313266

Bis(trifluoromethyl)silanediol

B3LYP/6-31+G(d)

$\mathrm{HF}=-1116.5451776$ hartrees $(-700643.264395776 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found

Zero-point correction $=0.056159$ (Hartree/Particle)
Sum of electronic and zero-point Energies $=-1116.489018$ hartrees $(-700608.02368518 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies $=-1116.529600$ hartrees $(-700633.489296 \mathrm{kcal} / \mathrm{mol})$
$\underline{\mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d})}$
$\mathrm{HF}=-1112.3343404$ hartrees $(-698000.921944404 \mathrm{kcal} / \mathrm{mol})$
Zero-point correction $=0.061092$ (Hartree/Particle)
Sum of electronic and thermal Free Energies $=-1112.273248$ hartrees $(-697962.58585248 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies $=-1112.309105$ hartrees $(-697985.08647855 \mathrm{kcal} / \mathrm{mol})$

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	0.007953	0.743844	-0.003125
2	6	-1.562615	-0.397156	-0.036585
3	6	1.588221	-0.367801	-0.004131
4	8	0.121816	1.649044	-1.355774
5	1	-0.483600	2.387479	-1.513913
6	8	-0.080248	1.673439	1.346532
7	1	-0.380922	1. 300488	2.188373
8	9	-1.460710	-1.461232	-0.865339
9	9	-1.844379	-0.883406	1.209290
10	9	-2.656887	0.316269	-0.431261
11	9	1.544758	-1.244921	1.043244
12	9	1.727549	-1.103254	-1.132661
13	9	2.719335	0.366332	0.142007

Deprotonated Bis(trifluoromethyl)silanediol

B3LYP/6-31+G(d)
$\mathrm{HF}=-1116.0267858$ hartrees $(-700317.968357358 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.044759$ (Hartree/Particle)

Sum of electronic and zero-point Energies $=-1115.982027$ hartrees $(-700289.88176277 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies $=-1116.023167$ hartrees $(-700315.69752417 \mathrm{kcal} / \mathrm{mol})$

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	0.000000	0.872062	-0.140169
2	6	1.532358	-0.361713	-0.016865
3	6	-1.532360	-0.361711	-0.016866
4	8	-0.000008	1.550132	1.407908
5	1	0.000033	2.515963	1.333499
6	8	0.000008	1.813505	-1.379033
7	9	1.545973	-1.173908	1.093130
8	9	1.641188	-1.217462	-1.085241
9	9	2.725851	0.319512	0.025463
10	9	-1.641141	-1.217513	-1.085205
11	9	-1.546017	-1.173850	1.093168
12	9	-2.725857	0.319511	0.025380

Deprotonated Bis(trifluoromethyl)silanediol and Water

B3LYP/6-31+G(d)

$\mathrm{HF}=-1192.4742608$ hartrees $(-748289.523394608 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.068829$ (Hartree/Particle)
Sum of electronic and zero-point Energies $=$
-1192.405432 hartrees ($-748246.33263432 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1192.453037 hartrees ($-748276.20524787 \mathrm{kcal} / \mathrm{mol}$)
HF/6-31+G(d,p)//B3LYP/6-31+G(d)

$\mathrm{HF}=-1187.9220494$ hartrees $(-745432.965218994 \mathrm{kcal} / \mathrm{mol})$
Zero-point correction $=0.075114$ (Hartree/Particle)
Sum of electronic and zero-point Energies =
-1187.846936 hartrees $(-745385.83080936 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies $=$ -1187.887245 hartrees ($-745411.12510995 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	-0.267093	-0.034823	0.532952
2	6	0.571706	1.581744	-0.206928
3	6	0.830082	-1.480856	-0.220687
4	8	0.251001	0.002730	2.132913
5	1	-0.505723	-0.068298	2.733518
6	8	-1.793166	-0.161335	0.247777
7	9	1.917686	1.703327	0.036884
8	9	0.440739	1.691436	-1.568342
9	9	0.006856	2.721250	0.308738
10	9	0.700875	-1.615535	-1.579373
11	9	2.180106	-1.361638	0.003151
12	9	0.482982	-2.700527	0.304017
13	8	-4.440798	-0.300345	-0.359616
14	1	-3.494965	-0.279609	-0.053301
15	1	-4. 370241	-0.043100	-1.290131

Dimethylsilanediol Dimer

B3LYP/6-31+G(d)
HF $=-1042.2112673$ hartrees $(-653997.992343423 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.208165$ (Hartree/Particle)
Sum of electronic and zero-point Energies $=$
-1042.003102 hartrees $(-653867.36653602 \mathrm{kcal} / \mathrm{mol})$
Sum of electronic and thermal Free Energies =
-1042.048209 hartrees ($-653895.67162959 \mathrm{kcal} / \mathrm{mol}$)

HF/6-31+G(d,p)//B3LYP/6-31+G(d)
$\mathrm{HF}=-1038.399553$ hartrees $(-651606.10350303 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.220344($ Hartree $/$ Particle $)$
Sum of electronic and zero-point Energies =
-1038.179209 hartrees ($-651467.83543959 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1038.219214 hartrees ($-651492.93897714 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	2.164309	0.030510	-0.032354
2	8	1.310555	-0.276554	1.412226
3	1	1.344684	-1.187279	1.740671
4	8	1.371824	-0.649655	-1.321042
5	1	0.446233	-0.365682	-1.482482
6	14	-2.164318	-0.030556	0.032349
7	8	-1.310287	0.276295	-1.412129
8	1	-1.343227	1.187323	-1.739854
9	8	-1.371791	0.649509	1.321099
10	1	-0.446229	0.365437	1.482587
11	6	-3.847957	0.786730	-0.032861
12	1	-4.418622	0.563515	0.876799
13	1	-3.756558	1.878245	-0.097135
14	1	-4.431425	0.439347	-0.893738
15	6	-2.212709	-1.902537	0.106101
16	1	-2.662897	-2.247228	1.044759
17	1	-2.797045	-2.315914	-0.724906
18	1	-1.202445	-2.324470	0.038392
19	6	3.848186	-0.786307	0.032616
20	1	3.757129	-1.877860	0.096705
21	1	4.418712	-0.562747	-0.877046
22	1	4.431616	-0.438877	0.893504
23	6	2.212096	1.902527	-0.106071
24	1	2.796765	2.316095	0.724604
25	1	2.661608	2.247405	-1.044985
26	1	1.201725	2.324116	-0.037734

Deprotonated Dimethylsilanediol Dimer

B3LYP/6-31+G(d)
$\mathrm{HF}=-1041.6664898$ hartrees $(-653656.139014398 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.195074$ (Hartree/Particle)
Sum of electronic and zero-point Energies = -1041.471416 hartrees ($-653533.72825416 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies $=$ -1041.516198 hartrees ($-653561.82940698 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	-2.093998	0.011017	-0.121763
2	8	-1.399935	0.285399	1.456604
3	1	-1.194447	1.224893	1.579857
4	8	-1.148892	0.534022	-1.288915
5	1	0.320971	-0.040448	-1.449769
6	14	2.100731	-0.007376	-0.028306
7	8	1.287967	-0.388133	-1.405500
8	8	1.348424	-0.509718	1.383314
9	1	0.383397	-0.330591	1.453996
10	6	3.754179	-0.918711	-0.051178
11	1	4.337399	-0.712913	0.856192
12	1	3.584580	-2.001429	-0.106487
13	1	4.355276	-0.625585	-0.921846
14	6	2.401029	1.865241	0.078177
15	1	2.907445	2.145413	1.012173
16	1	3.012283	2.215358	-0.765010
17	1	1.443504	2.400368	0.030904
18	6	-3.790257	0.888496	-0.066891
19	1	-3.660278	1.977547	0.007950
20	1	-4.352996	0.694772	-0.990759
21	1	-4.403165	0.558151	0.783760
22	6	-2.394870	-1.863712	-0.037840
23	1	-2.999793	-2.148598	0.834304
24	1	-2.911611	-2.210560	-0.943197
25	1	-1.437832	-2.397797	0.021286

Deprotonated Dimethylsilanediol Dimer and Water

B3LYP/6-31+G(d)
$\mathrm{HF}=-1118.1155646$ hartrees $(-701628.697942146 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.219632$ (Hartree/Particle)
Sum of electronic and zero-point Energies = -1117.895933 hartrees ($-701490.87691683 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies = -1117.947421 hartrees ($-701523.18615171 \mathrm{kcal} / \mathrm{mol}$)

HF/6-31+G(d,p)//B3LYP/6-31+G(d)
$\mathrm{HF}=-1113.9596464$ hartrees $(-699020.817712464 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.233365$ (Hartree/Particle)

Sum of electronic and zero-point Energies =
-1113.726282 hartrees ($-698874.37921782 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-1113.769456 hartrees $(-698901.47133456 \mathrm{kcal} / \mathrm{mol})$

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	-1.921194	-0.548522	-0.012711
2	8	-1.032835	-1.518898	1.123955
3	1	-0.914734	-1.051825	1.965339
4	8	-1.189857	0.849291	-0.276952
5	1	0.341103	0.840188	-0.849649
6	14	2.270812	-0.022855	-0.003454
7	8	1.319648	0.748452	-1.108070
8	8	1.732370	-1.554343	0.408446
9	1	0.775638	-1.641072	0.620074
10	6	3.965430	-0.285531	-0.787011
11	1	4.645466	-0.808191	-0.101718
12	1	3.868560	-0.892148	-1.696086
13	1	4.425015	0.671393	-1.066112
14	6	2.429952	1.016126	1.575687
15	1	3.024891	0.501771	2.342689
16	1	2.900572	1.986560	1.367137
17	1	1.435265	1.220663	1.992758
18	6	-3.661570	-0.355541	0.732669
19	1	-3.625115	0.229316	1.662136
20	1	-4.319840	0.186029	0.040107
21	1	-4.122868	-1.327339	0.957090
22	6	-2.003080	-1.725814	-1.495092
23	1	-2.452809	-2.692673	-1.230987
24	1	-2.594315	-1.280860	-2.306560
25	1	-0.994345	-1.913213	-1.884141
26	1	-1.144762	3.808669	-0.693271
27	8	-1.928199	3.450331	-0.251264
28	1	-1.735789	2.467905	-0.218921

Bis(trifluoromethyl)silanediol Dimer

B3LYP/6-31+G(d)

$\mathrm{HF}=-2233.1060032$ hartrees $(-1401296.34806803 \mathrm{kcal} / \mathrm{mol})$ Imaginary Frequencies: none found
Zero-point correction $=0.115926$ (Hartree/Particle)
Sum of electronic and zero-point Energies $=$
-2232.990077 hartrees ($-1401223.60321827 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies $=$
-2233.052360 hartrees ($-1401262.6864236 \mathrm{kcal} / \mathrm{mol}$)

HF/6-31+G(d,p)//B3LYP/6-31+G(d)
$\mathrm{HF}=-2224.6623061$ hartrees $(-1395997.84370081 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.125870($ Hartree $/$ Particle $)$
Sum of electronic and zero-point Energies =
-2224.6622874 hartrees ($-1395997.83196637 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies =
-2224.587858 hartrees ($-1395951.12677358 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	-2.104954	---0.103755	0.097868
2	8	-1.207081	-0.467582	-1.254526
3	1	-1.091558	-1.406618	-1.477396
4	8	-1.454633	-0.554803	1.519761
5	1	-0.511415	-0.344183	1.677699
6	14	2.105011	0.103852	-0.097972
7	8	1.207078	0.468106	1.254268
8	1	1.091673	1.407208	1.476923
9	8	1.454854	0.554706	-1.520003
10	1	0.511518	0.344502	-1.677794
11	6	3.825540	0.973871	0.016642
12	6	2.292402	-1.820834	0.011195
13	6	-3.825334	-0.974068	-0.016767
14	6	-2.292667	1.820918	-0.010949
15	9	-4.534098	-0.930826	1.131090
16	9	-3.649797	-2.290416	-0.338476
17	9	-4.596729	-0.429273	-0.993686
18	9	-3.234038	2.279233	0.849734
19	9	-2.611207	2.274420	-1.243137
20	9	-1.110021	2.426683	0.338902
21	9	3.650220	2.290321	0.338056
22	9	4.534407	0.930254	-1.131137
23	9	4.596732	0.429136	0.993753
24	9	3.234099	-2.279398	-0.849002
25	9	2.610331	-2.274215	1.243590
26	9	1.109834	-2.426475	-0.339100

Deprotonated Bis(trifluoromethyl)silanediol Dimer

B3LYP/6-31+G(d)
HF $=-2232.6274072$ hartrees $(-1400996.02429207 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.101930$ (Hartree/Particle)
Sum of electronic and zero-point Energies = -2232.525478 hartrees ($-1400932.06269978 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies = -2232.587069 hartrees ($-1400970.71166819 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	2.115600	-0.274635	0.106968
2	8	1.213024	-0.359849	1.390810
3	8	1.655451	-1.027436	-1.303349
4	1	0.700484	-0.998391	-1.484999
5	14	-2.029593	-0.049787	0.175677
6	8	-1.156975	0.301696	-1.191704
7	1	-0.563420	1.072920	-1.159706
8	8	-1.241360	-0.157161	1.558811
9	1	-0.161628	-0.263236	1.541794
10	6	-3.443726	1.277537	0.360280
11	6	-2.914084	-1.702875	-0.343942
12	6	3.929271	-0.944662	0.362442
13	6	2.357553	1.600722	-0.435196
14	9	4.694471	-0.937492	-0.771971
15	9	3.945698	-2.232889	0.816358
16	9	4.627948	-0.209968	1.284046
17	9	3.232014	1.811353	-1.460865
18	9	2.736303	2.445545	0.559850
19	9	1.138315	2.111272	-0.897099
20	9	-2.921054	2.542955	0.363035
21	9	-4.162561	1.157122	1.510086
22	9	-4.353029	1.248499	-0.661188
23	9	-3.857511	-2.091446	0.565733
24	9	-3.554906	-1.633972	-1.547287
25	9	-2.027329	-2.734504	-0.444274

Deprotonated Bis(trifluoromethyl)silanediol Dimer and Water

B3LYP/6-31+G(d)
HF $=-2309.0668892$ hartrees $(-1448962.56364189 \mathrm{kcal} / \mathrm{mol})$
Imaginary Frequencies: none found
Zero-point correction $=0.127067$ (Hartree/Particle)
Sum of electronic and zero-point Energies = -2308.939822 hartrees ($-1448882.82770322 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies = -2309.006370 hartrees ($-1448924.5872387 \mathrm{kcal} / \mathrm{mol}$)

HF/6-31+G(d,p)//B3LYP/6-31+G(d)

$\mathrm{HF}=-2300.2593285$ hartrees $(-1443435.73122703 \mathrm{kcal} / \mathrm{mol})$
Zero-point correction $=0.582093$ (Hartree $/$ Particle)
Sum of electronic and zero-point Energies = --2300.2592519 hartrees ($-1443435.68315977 \mathrm{kcal} / \mathrm{mol}$)
Sum of electronic and thermal Free Energies = -2299.729484 hartrees ($-1443103.24850484 \mathrm{kcal} / \mathrm{mol}$)

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	14	2.075778	--0.200524	-0.166576
2	8	1.229142	-0.511937	1.128310
3	8	1.533640	-0.705221	-1.652540
4	1	0.575582	-0.620711	-1.798718
5	14	-2.085580	-0.028504	0.015287
6	8	-1.228786	0.564488	-1.273299
7	1	-0.647617	1.330839	-1.118230
8	8	-1.263380	-0.355939	1.351344
9	1	-0.211007	-0.441538	1.278376
10	6	-3.511995	1.219067	0.455322
11	6	-2.942655	-1.591324	-0.758324
12	6	3.895618	-0.892432	-0.124606
13	6	2.276220	1.742584	-0.380434
14	9	4.600873	-0.663909	-1.273976
15	9	3.927223	-2.241563	0.075270
16	9	4.636324	-0.339219	0.884158
17	9	3.089825	2.138812	-1.399331
18	9	2.703492	2.404391	0.724452
19	9	1.028431	2.306589	-0.680228
20	9	-3.010012	2.473675	0.666606
21	9	-4.201728	0.884372	1.579182
22	9	-4.439403	1.344082	-0.540611
23	9	-3.864590	-2.142435	0.085558
24	9	-3.599465	-1.335364	-1.925968
25	9	-2.035388	-2.569674	-1.035511
26	8	1.115554	-1.252412	3.865862
27	1	1.356794	-1.019283	2.942107
28	1	0.150747	-1.159930	3.868936

VIII. ${ }^{1}$ H NMR Spectra

$\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$

$\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

[^0]: ${ }^{1}$ Tran, N. T.; Min, T.; Franz, A. K. Chem. Eur. J. 2011, 17, 9897-9900.
 ${ }^{2}$ Rozga-Wijas; K.; Chojnowski, J. Macromolecules. 1996, 29, 2711-2721.
 ${ }^{3}$ Simons, R. S.; Haubrich, S. T.; Mork, B. V.; Niemeyer, M.; Power, P. P. Main Group Chem. 1998, 2, 275-283.

[^1]: ${ }^{4}$ Minge, O.; Nogai, S.; Schmidbaur, H. Z. Naturforsch., B: Chem. Sci. 2004, 59, 153-160.
 ${ }^{5}$ Söldner, M.; Sandor, M.; Schier, A.; Schmidbaur, H. Chem. Ber./Recueil. 1997, 130, 1671-1676.
 ${ }^{6}$ Boudin, A.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C. Angew. Chem. 1986, 98, 472-473.

[^2]: ${ }^{7}$ Tour, J. M.; John, J. A.; Stephens, E. B. J. Organomet. Chem, 1992, 429, 301-310.
 ${ }^{8}$ Kondo, S.-I.; Harada, T.; Tanaka, R.; Unno, M. Org. Lett. 2006, 8, 4621-4624.
 ${ }^{9}$ Schafer, A. G.; Wieting, J. M.; Mattson, A. E. Org. Lett. 2011, 13, 5228-5231.

[^3]: ${ }^{10}$ Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Ching-Fa, Y. Tetrahedron 2005, 61, 11751-11757.
 ${ }^{11}$ Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464-16465.

[^4]: ${ }^{12}$ Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Ching-Fa, Y. Tetrahedron 2005, 61 (49), 11751-11757.
 ${ }^{13}$ Dessole, G.; Herrera, R. P.; Ricci, A. Synlett. 2004, 2374-2378.
 ${ }^{14}$ Takenaka, N.; Sarangthem, R. S.; Seerla, S. K. Org. Lett. 2007, 9, 2819-2822.

[^5]: ${ }^{15}$ Billo, E. J. Excel for Chemists: A Comprehensive Guide, $3{ }^{\text {rd }}$ ed.; John Wiley \& Sons: New Jersey, 2011, 480-484.
 ${ }^{16}$ Walsh, S.; Diamond, D. Talanta, 1995, 42, 561-572.
 ${ }^{17}$ Wilcox, C. S. in Frontiers in Supramolecular Organic Chemistry and Photochemistry; Schneider, H.-J.; Durr, H. (Eds.), VCH: Weinheim, Federal Republic of Germany; New York, 1991, 123-143.

[^6]: ${ }^{18}$ Walsh, S.; Diamond, D. Talanta, 1995, 42, 561-572.

[^7]: ${ }^{19}$ Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124 (34), 10012-10014.
 ${ }^{20}$ (a) Jacobsen, E. N. Acc. Chem. Res. 2000, 33 (6), 421-431; (b) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem.Soc. 1996, 118 (44), 10924-10925.

[^8]: ${ }^{21}$ Bruker (2002). SMART (Version 5.054) and SAINT (Version 7.23a). Bruker AXS Inc., Madison, Wisconsin, USA.
 ${ }^{22}$ Blessing, R. H. Acta Cryst. 1995. A51, 33.
 ${ }^{23}$ Sheldrick, G.M., SADABS, Version 2.10; Universitat Gottingen: Gottingen, Germany, 2003.
 ${ }^{24}$ Sheldrick, G. M. Acta Cryst. 2008. A64, 112.
 ${ }^{25}$ Sheldrick, G. M., 1997. SHELXS97 and SHELXL97. Universitat Gottingen: Gottingen, Germany.
 ${ }^{26}$ Sheldrick, G.M., 2002. SHELXTL 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[^9]: ${ }^{27}$ Fu, Y.; Liu, L.; Li, R.-Q.; Liu, R.; Guo, Q.-X. J. Am. Chem. Soc. 2004, 126, 814-822.

