Asymmetric Induction in 8π Electrocyclizations. Design of a Removable Chiral Auxiliary

Keunsoo Kim, Joseph W. Lauher, and Kathlyn A. Parker*
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400
kparker@notes.cc.sunysb.edu

Supporting Information: Experimental Procedures

Scheme 4. Summary of synthetic routes for preparing iododienes 7a-g	P2
Scheme 5. Preparation of 1:1 mixture of 11f and 12f	P3
Scheme 6. Preparation of (S)-Mosher esters $\mathbf{3 3}$ and $\mathbf{3 4}$ from 11f and 12 f	P3
Scheme 7. Preparation of acids $\mathbf{3 5}$ and $\mathbf{3 6}$ from $\mathbf{3 1}$ and $\mathbf{3 2}$	P3
General experimental methods	P4
Experimental details and characterization of new compounds	P5-23
- (2E, 4Z)-Iododienes 7a-g	P5-12
- Bicyclo[4.2.0]octadienes 11a-g, 12a-g	P12-17
- Determination of absolute stereochemistry and stereoselectivity of 12f	P17-23
${ }^{1} \mathrm{H}$ NMR and ${ }^{\text {I3 }} \mathrm{C}$ NMR spectra for new compounds	P24-47

Scheme 4. Summary of synthetic routes for preparing iododienes 7a-g.

(a) 1. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 2. $\mathrm{KOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (b) $\mathrm{R}_{1}-\mathrm{NH}_{2}$, $\mathrm{DCC}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c) 1. $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2} 2$. $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}$ (d) $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e) TBS-Cl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (f) Bromoacetyl bromide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}$, $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~g})\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{P}$ (h) DBU, LiCl, THF (i) Pivaloyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, n-BuLi, THF.

Scheme 5. Preparation of 1:1 mixture of 11f and 12f.

Scheme 6. Preparation of (S)-Mosher esters 33 and 34 from $\mathbf{1 1 f}$ and 12f.

Scheme 7. Preparation of acids $\mathbf{3 5}$ and $\mathbf{3 6}$ from $\mathbf{3 1}$ and 32.

General experimental methods

All air- and moisture-sensitive reactions were carried out under Argon (Ar) atmosphere with freshly distilled solvents and oven-dried or flame-dried glassware. Handling of solvents and solutions for air- and moisture-sensitive reactions was performed by carefully dried glass syringe or cannula on a positive pressure of Ar atmosphere. Unless indicated otherwise, commercially available reagents were used as supplied without further purification. Tetrahedrofuran (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ for reactions were distilled from sodium-benzophenone ketyl and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from calcium hydride. Dimethylforamide (DMF), which has extra dry with molecular sieve, was purchased from ACROS and carefully maintained in a positive pressure. For Stille coupling/ $8 \pi, 6 \pi$ electrocyclizations, the reaction mixture was thoroughly degassed with a stream of Ar both before and after adding tetrakistriphenylphosphine palladium. Then it was immediately wrapped with aluminum foil.

Chromatography was carried out with HPLC grade ethyl acetate (EtOAc), n hexane, and methanol. All experiments were monitored by thin layer chromatography (TLC). Spots were visualized by exposure to ultraviolet (UV) light (254 nm) or staining with a 10% solution of phosphomolybdenic acid (PMA) in ethanol and then heating. Flash chromatography was carried out with Fisher brand silica gel (170-400 mesh). For compounds 11a-g and 12a-g, preparative TLC was performed on Whatman ${ }^{\circledR}$ TLC plates $(1000 \mu \mathrm{~m})$. All ${ }^{1} \mathrm{H}$ NMR spectra for bicyclo[4.2.0]octadiene compounds were recorded with a Varian Inova-600 (600 MHz) instrument. Multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian Inova-400 (100 MHz) spectrometer. Infrared spectra were collected with a Perkin-Elmer 1600 Series FT-IR instrument. High-resolution mass spectra were obtained on a Micromass Q-Tof Ultima spectrometer. X-ray crystallography was performed on an Oxford Gemini X-Ray Diffractometer.

Diastereomeric excesses (\%de) for 11a-g and 12a-g and 33 and $\mathbf{3 4}$ were calculated on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra.

Amide 7a. The procedure of Ordonez et al ${ }^{1}$ was followed to prepare iododienes 7a-d.
To a solution of (S)-(+)-2-phenylglycinol 15 ($132.1 \mathrm{mg}, 0.96 \mathrm{mmol}$), which was purchased from ACROS, and (Z)-5-iodo-4-methyl-penta-2,4-dienoic acid ${ }^{2} \mathbf{1 4}(210.4 \mathrm{mg}$, $0.89 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was slowly added dicyclohexylcarbodiimide (DCC) ($197.2 \mathrm{mg}, 0.96 \mathrm{mmol}$) and 4 -(N, N-dimethylamino) pyridine (DMAP) ($13.1 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 4 h , the reaction mixture was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:1) to provide 210.3 mg (66%) of 7a as white solid.
$\mathrm{R}_{f}: 0.30$ (EtOAc/n-hexane, 1/1); IR: 3390, 1646, 1600, $1417 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.53(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 166.7$, 141.2, 139.9, 128.4, 127.3, 126.9, 125.2, 86.2, 65.0, 56.1, 19.7; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{INO}_{2}[(\mathrm{M}+\mathrm{H})]^{+} 358.0226$, found 358.0297.

Amine 16. ${ }^{3}$ Ziegler's silylation procedure was used. To a stirring solution of 15 (98.1 $\mathrm{mg}, 0.71 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added triethylamine ($180 \mu \mathrm{~L}, 1.29 \mathrm{mmol}$) followed by DMAP ($9.0 \mathrm{mg}, 0.07 \mathrm{mmol}$). After 5 min , tert-butyldiphenylchlorosilane (TBS-Cl) ($214.5 \mathrm{mg}, 0.78 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred for 16 h at rt , quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:nhexane, $1: 3$ to 1:2) to provide $129.2 \mathrm{mg}(73 \%)$ of 16 as colorless oil.
$\mathrm{R}_{\mathrm{f}}: 0.66$ (EtOAc/n-hexane, 1/2); IR: 3388, 1603, 1257, $1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.32-7.47(\mathrm{~m}, 5 \mathrm{H}), 4.14(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=9.8 \mathrm{~Hz}, 3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{bs}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 128.6,127.6,127.2,57.9,26.2,18.6,-5.1$

[^0]

Amide 7b. To a solution of $\mathbf{1 6}(49.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathbf{1 4}(45.6 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was slowly added DCC ($47.6 \mathrm{mg}, 0.23 \mathrm{mmol}$) and DMAP (5.6 mg , $0.05 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 8 h , the reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide $45.0 \mathrm{mg}(50 \%)$ of 7b as viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.40$ (EtOAc/ n-hexane, 1/5); IR: 3284, 3060, $1651,1614,1539 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{tt}, J=4.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $10.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (s, 3H), 0.83 (s, 9H), -0.08 $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1,141.6,140.8,140.2,128.6$, 127.6, 127.1, 125.3, 87.0, 66.3, 54.9, 26.1, 21.3, 18.5, -5.4; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{INO}_{2} \mathrm{Si}[(\mathrm{M}+\mathrm{H})]^{+} 472.1091$, found 472.1173.

Amine 22. To a stirring solution of (S)-(+)-2-(N-methylamino)-2-phenylethanol (21) ${ }^{4}$ ($66.4 \mathrm{mg}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}$) was added triethylamine ($95 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) followed by DMAP ($5.4 \mathrm{mg}, 0.04 \mathrm{mmol}$). After 5 min , TBS-Cl ($131.3 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred for 14 h at rt , quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:6) to provide $87.0 \mathrm{mg}(75 \%)$ of 22 as pale yellow oil.
$\mathrm{R}_{\mathrm{f}}: 0.27$ (EtOAc/n-hexane, 1/6); IR: 3304, 2871, $2799 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.52-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

[^1]

22

92 \%

23

Bromoacetamide 23. To a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(108.0 \mathrm{mg}, 0.79 \mathrm{mmol})$ and 22 (151.0 $\mathrm{mg}, 0.56 \mathrm{mmol}$) in a $3: 2$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise bromoacetyl bromide ($120 \mu \mathrm{~L}, 1.38 \mathrm{mmol}$). The reaction mixture was allowed to warm to rt , stirred for further 4 h , and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL), the combined organic extracts were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:1) to provide 280.0 mg (92%) of $\mathbf{2 3}$ as colorless viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.42(\mathrm{EtOAc} / n$-hexane, $1 / 3) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.77$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.16(\mathrm{dd}, J=9.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.35(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.90-4.20(\mathrm{~m}, 3.5 \mathrm{H}), 2.92(\mathrm{~s}, 1.5 \mathrm{H}), 2.67(\mathrm{~s}, 1.5 \mathrm{H}), 0.90(\mathrm{~s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}, 4.5 \mathrm{H}), 0.08-$ 0.11 (m, 6H).

Phosphonoacetamide 24. A mixture of 23 ($251.2 \mathrm{mg}, 0.65 \mathrm{mmol}$) and trimethyl phosphate ($0.7 \mathrm{~mL}, 5.99 \mathrm{mmol}$) was heated for 3 h at $105-110{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to cool to rt , and then evaporated to remove volatile compounds under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n hexane: $\mathrm{CH}_{3} \mathrm{OH}, 5: 3: 2$) to provide 233.4 mg (87%) of 24 as colorless viscous oil. $\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane $/ \mathrm{CH}_{3} \mathrm{OH}, 5 / 3 / 2$); IR: 2850, 1640, 1253, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.25(\mathrm{dd}, J=9.5 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.00-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.83(\mathrm{~m}, 8 \mathrm{H}), 2.94(\mathrm{~s}, 1.5 \mathrm{H}), 2.69(\mathrm{~s}, 1.5 \mathrm{H}), 0.89$ $(\mathrm{s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}, 4.5 \mathrm{H}), 0.07-0.09(\mathrm{~m}, 6 \mathrm{H})$.

Amide 7c. A sample of (Z)-3-iodo-2-methyl-propenal ${ }^{2}$ (13) was prepared from (Z)-3-iodo-2-methylprop-2-en-1-ol ($104.9 \mathrm{mg}, 0.53 \mathrm{mmol}$) by the literature procedure and dissolved in 6.0 mL of dry THF. This was added by syringe over 10 min at $0^{\circ} \mathrm{C}$ under

Ar atmosphere to a stirred suspension solution of 24 ($232.8 \mathrm{mg}, 0.56 \mathrm{mmol}$), 1,8-diazabicyclo- [5.4.0]undec-7-ene (DBU) ($260.3 \mathrm{mg}, 1.71 \mathrm{mmol}$), and $\mathrm{LiCl}(72.1 \mathrm{mg}, 1.70$ $\mathrm{mmol})$ in dry THF (24 mL). The resulting solution was allowed to warm to rt and completed by checking with TLC. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ and extracted with EtOAc (3 x 40 mL). The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:5) to provide 227.4 mg (89%) of 7c as colorless viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.55$ (EtOAc/ n-hexane, 1/6); IR: 2928, 2856, 1641, 1601, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.54(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.21-7.35(\mathrm{~m}$, $5 \mathrm{H}), 6.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 0.5 \mathrm{H}) 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 0.5 \mathrm{H})$, $5.17(\mathrm{~s}, 0.5 \mathrm{H}), 4.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.14(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $0.5 \mathrm{H}), 2.92(\mathrm{~s}, 1.5 \mathrm{H}), 2.80(\mathrm{~s}, 1.5 \mathrm{H}), 2.02(\mathrm{~s}, 1.5 \mathrm{H}), 1.97(\mathrm{~s}, 1.5 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,143.0,142.0,141.2,138.2,129.0,128.7$, 128.3, 127.6, 127.2, 124.0, 122.8, 86.6, 85.8, 62.1, 57.6, 26.0, 21.4, 18.3, -5.3; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{INO}_{2} \mathrm{Si}[(\mathrm{M}+\mathrm{H})]^{+} 486.1247$, found 486.1320 .

Bromoacetamide 26. To a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(395.4 \mathrm{mg}, 2.90 \mathrm{mmol})$ and (+)-bis $[(R)$ -1-phenylethyl]amine $25(445.0 \mathrm{mg}, 1.98 \mathrm{mmol})$, which was purchased from SIGMAALDRICH, in a 3:2 mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added dropwise bromoacetyl bromide ($0.30 \mathrm{~mL}, 3.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2.5 h at rt , and then quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. After extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n hexane, 1:3) to provide $593.2 \mathrm{mg}(87 \%)$ of 26 as pale yellow sticky oil,
$\mathrm{R}_{\mathrm{f}}: 0.27$ (EtOAc/n-hexane, 3/7); IR: 2979, $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $6.98-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.17(\mathrm{bs}, 1 \mathrm{H}), 5.01(\mathrm{bs}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=16.4 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.78(\mathrm{bs}, 3 \mathrm{H}), 1.71(\mathrm{bs}, 3 \mathrm{H})$.

Phosphonoacetamide 27.
A mixture of $26(314.8 \mathrm{mg}, 0.91 \mathrm{mmol})$ and trimethyl phosphate ($1.0 \mathrm{~mL}, 8.48 \mathrm{mmol}$) was heated for 5.5 h at $105-110^{\circ} \mathrm{C}$. The reaction mixture
was allowed to cool to rt , and then evaporated to remove volatile compounds under vacuum. The residue was purified by silica gel column chromatography (EtOAc:nhexane: $\mathrm{CH}_{3} \mathrm{OH}, 5: 4: 1$) to provide 295.2 mg of $27(86 \%)$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane/ $\mathrm{CH}_{3} \mathrm{OH}, 5 / 4 / 1$); IR: $1654,1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.10-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.40(\mathrm{bs}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=10.8$ $\mathrm{Hz}, 6 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Amide 7d. A solution of $27(72.8 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry THF $(8.0 \mathrm{~mL})$ was treated with $\operatorname{DBU}(90.6 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{LiCl}(25.2 \mathrm{mg}, 0.59 \mathrm{mmol})$ at rt under Ar atmosphere. After stirring for 5 min , a solution of $\mathbf{1 3}(43.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry THF $(1.5 \mathrm{~mL})$ was added by syringe over 5 min . The reaction mixture stirred for 14 h at rt , quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL), and extracted with EtOAc (3 x 15 mL). The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ followed by brine (15 mL), dried over MgSO_{4} and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:5) to provide $77.1 \mathrm{mg}(91 \%)$ of 7d as colorless viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.53$ (EtOAc/n-hexane, 1/5); IR: 2977, 1637, $1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.09-7.39(\mathrm{~m}, 10 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{bs}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{bs}, 1 \mathrm{H}), 1.75$ (bs, 6 H$), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 166.7, 141.5, 141.3, 128.6, 125.7, 86.0, 21.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25}$ INO [(M $+\mathrm{H})]^{+}$446.0903, found 446.0983.

Oxazolidinone 7e. The procedure of Takacs ${ }^{5}$ was adapted. To a stirred solution of $\mathbf{1 4}$ $(200.5 \mathrm{mg}, 0.84 \mathrm{mmol})$ and triethylamine $(160 \mu \mathrm{~L}, 1.15 \mathrm{mmol})$ in dry THF (12 mL) was added pivaloyl chloride ($112.4 \mathrm{mg}, 0.93 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The resulting slurry solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, continued for further 45 min at $0^{\circ} \mathrm{C}$, and then the solution was again cooled to $-78{ }^{\circ} \mathrm{C}$. In a separate flask, a stirred solution of ($4 R, 5 S$)-(+)-4-methyl-5-phenyl-2-oxazolidinone 28 ($158.0 \mathrm{mg}, 0.89 \mathrm{mmol}$), which was purchased

[^2]from ACROS, in dry THF (12 mL) was treated with n-butyllithium (2.0 M in n-hexane) ($0.6 \mathrm{~mL}, 0.89 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the resulting solution was added to the dienoate slurry by syringe over 10 min . The resulting viscous slurry was stirred for 20 min at -78 ${ }^{\circ} \mathrm{C}$, and then allowed to warm to rt and stirred for further 16 h . The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and the organic phase was concentrated under vacuum. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and washed successively with portions of $0.5 \mathrm{~N} \mathrm{HCl}(25 \mathrm{~mL})$, saturated $a q . \mathrm{NaHCO}_{3},(25 \mathrm{~mL})$, brine (25 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:6) to provide 220.0 mg (65%) of 7 e as white solid. $\mathrm{R}_{\mathrm{f}}: 0.33$ (EtOAc/n-hexane, 1/6); IR: 1779, 1678, 1605, $1351 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.41(\mathrm{~m}, 5 \mathrm{H}), 6.70$ $(\mathrm{s}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.9,153.3,146.3,141.7,133.5,129.0,128.9,125.9,121.8$, 89.8, 79.3, 55.3, 21.4, 14.8; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{INO}_{3}[(\mathrm{M}+\mathrm{H})]^{+}$ 398.0175, found 398.0260.

Amide 19. To a solution of ($1 S, 2 R$)-2-amino-1,2-diphenylethanol 17 ($154.3 \mathrm{mg}, 0.72$ mmol), which was purchased from ACROS, and 14 ($189.7 \mathrm{mg}, 0.79 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was slowly added DCC $(159.0 \mathrm{mg}, 0.77 \mathrm{mmol})$ and DMAP $(10.6 \mathrm{mg}$, $0.09 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 3 h at rt , filtered through Celite ${ }^{\circledR}$, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 2:3) to provide 196.8 mg (63%) of $\mathbf{1 9}$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.57$ (EtOAc/n-hexane, 1/2); IR: 3364, 1646, 1610, $1512 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~m}, 4 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,142.2,140.8,139.9$, 137.0, 128.1, 126.7, 124.8, 87.5, 59.9, 21.2.

19

2. $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$, reflux, $4 \mathrm{~h}, 74$ \%

7f

Oxazoline 7f. The procedure of Du et al. was adapted. ${ }^{6}$ To an ice-cooled solution of $19(79.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ and triethylamine ($90 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.2 \mathrm{~mL})$ was added methanesulfonyl chloride ($30 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) via syringe in one portion. The reaction mixture was allowed to warm to rt and stirred for further 4 h . Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was poured into the reaction mixture and the organic layer was separated. The water layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. Then, the organic extracts were combined and the resulting solution was dried over MgSO_{4} and concentrated under vacuum The residue was purified by silica gel column chromatography (EtOAc:nhexane, $1: 2.5$) to provide 50.0 mg (54%) of mesylate as viscous oil.
$\mathrm{R}_{\mathrm{f}}: 0.64$ (EtOAc/n-hexane, 1:2.5); IR: 3285, 3056, 1715, 1625, $1326,1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35$ (d, $\left.J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H})$, $6.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,145.9$, 137.8, 136.8, 136.0, 128.9, 128.7, 127.3, 117.4, 77.9, 62.8, 42.0, 12.7.

The mesylate ($50.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in methanol $(1.0 \mathrm{~mL})$ and a solution of $\mathrm{NaOH}(15.1 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added in one portion. After refluxing for 4 h , the reaction mixture was allowed to cool to rt and the solvent was concentrated under vacuum. After adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the $a q$. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $10 \mathrm{ml})$. The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, 1:2.5) to provide 30.6 mg (74%) of $7 \mathbf{f}$ as viscous oil. $\mathrm{R}_{\mathrm{f}}: 0.57$ (EtOAc/n-hexane, 1/2.5); IR: 3062, 3032, 2916, $1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.41(\mathrm{~m}, 10 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.3,142.0,141.5,140.3,129.0,128.1,126.0,119.3,89.1$, 86.9, 78.7, 21.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{INO}[(\mathrm{M}+\mathrm{H})]^{+} 416.0433$, found 416.0504 .

Amide 20. To a solution of (S)-(-)-2-amino-3-methyl-1,1-diphenyl-1-butanol 18 $(114.7 \mathrm{mg}, 0.45 \mathrm{mmol})$, which was purchased from ALDRICH, and 14 ($104.0 \mathrm{mg}, 0.44$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added DCC ($87 \mathrm{mg}, 0.42 \mathrm{mmol}$) and DMAP $(7.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt. After stirring for further 5 h , the reaction mixture was filtered on a Celite ${ }^{\circledR}$ and the filtrate was concentrated under vacuum. The residue was

[^3]purified by silica gel column chromatography (EtOAc:n-hexane, 1:3) to provide 106.2 mg (51 \%) of 20 as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.42$ (EtOAc/ n-hexane, 1/3); IR: 3416, 3291, 1641, 1609, $1127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.17-7.49(\mathrm{~m}, 11 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1,146.6,145.7,141.3,140.8,128.7,128.6$, $127.1,127.0,125.6,119.6,87.0,82.4,58.3,29.5,23.2,21.3,18.1$.

Oxazoline 7g. The procedure of Ginotra and Singh 7 was adapted. Methanesulfonic acid ($22 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$) was added dropwise to a solution of $20(47 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was allowed to warm to rt and stirred for further 18 h . The resulting solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), washed with $a q . \mathrm{NaHCO}_{3}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$. The residue was purified by silica gel column chromatography (EtOAc: n-hexane, $1: 3$) to provide 23.0 mg (51%) of $\mathbf{7 g}$ as white solid.
$\mathrm{R}_{\mathrm{f}}: 0.65$ (EtOAc/n-hexane, 1/3); IR: 3059, 2959, 1651, 970, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.57(\mathrm{~m}, 10 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.2,145.3$, 141.6, 140.6, 128.6, 128.1, 128.0, 127.6, 127.1, 126.3, 119.6, 93.0, 86.3, 79.7, 30.4, 22.2, 21.1, 17.1; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25}$ INO $[(\mathrm{M}+\mathrm{H})]^{+} 458.0903$, found 458.0977.

General procedure to prepare 11a-g and 12a-g via Stille coupling/8 π, 6π electrocyclization ${ }^{8}$

[^4]

Bicyclooctadienes 11 and 12. To a solution of stannane $6(0.1 \mathrm{mmol})$ and iododiene $7(0.1 \mathrm{mmol})$ in anhydrous DMF $(2.5 \mathrm{~mL})$ were added cesium fluoride, CsF (0.2 mmol) and copper iodide, $\mathrm{CuI}(\mathrm{I})(0.02 \mathrm{mmol})$ at rt under degassing with a stream of Ar. After adding tetrakis(triphenylphosphine)palladium $(0), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.01 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued degassing for further 5 min . The reaction mixture stirred for $12-16 \mathrm{~h}$, and then diluted with EtOAc (25 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 25 \mathrm{~mL}$). The combined aq. layers were extracted with EtOAc (3 x 25 mL), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by chromatography on silica gel ($\mathrm{EtOAc} / n-$ hexane) to provide a mixture of bicyclo[4.2.0]octadiene compounds $\mathbf{1 1}$ and $\mathbf{1 2}$.

Analytical data for 11a and 12a

The general procedure was applied to the coupling of $6(32.4 \mathrm{mg}, 0.088 \mathrm{mmol})$ and $7 \mathbf{7 a}$ $(30.9 \mathrm{mg}, 0.087 \mathrm{mmol})$ with $\mathrm{CsF}(30.0 \mathrm{mg}, 0.197 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(3.8 \mathrm{mg}, 0.020 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10.2 \mathrm{mg}, 0.009 \mathrm{mmol})$, and DMF (3.6 mL). Preparative chromatography (EtOAc:n-hexane, 1:1) afforded 5.1 mg (14%) of 11a and $9.5 \mathrm{mg}(25 \%)$ of 12a in a ratio of $2: 3$.
$11 \mathbf{~ (s l o w e r ~ m o v i n g ~ i s o m e r) ~}$

$\mathrm{R}_{f:} 0.30(\mathrm{EtOAc} / n$-hexane, $1 / 1) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.06$ (dd, $J=11.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.31(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}), 1.25$ ($\mathrm{s}, 3 \mathrm{H}$).

12a (faster moving isomer)

$\mathrm{R}_{f}: 0.40(\mathrm{EtOAc} / n$-hexane, $1 / 1) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.04$ (dd, $J=11.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}$, 3 H), 1.24 ($\mathrm{s}, 3 \mathrm{H}$).

Analytical data for 11b and 12b

The general procedure was applied to the coupling of $\mathbf{6}(12.4 \mathrm{mg}, 0.034 \mathrm{mmol})$ and $\mathbf{7 b}$ $(16.2 \mathrm{mg}, 0.034 \mathrm{mmol})$ with $\mathrm{CsF}(10.5 \mathrm{mg}, 0.069 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(1.3 \mathrm{mg}, 0.007 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.0 \mathrm{mg}, 0.004 \mathrm{mmol})$, and DMF $(1.2 \mathrm{~mL})$. Preparative chromatography (EtOAc: n-hexane, $1 / 5$) afforded $9.7 \mathrm{mg}(51 \%)$ of an inseparable mixture in a ratio of 2 : 3 or 3 : 2.
$\mathrm{R}_{f}: 0.47$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.13(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.48(\mathrm{~s}, 0.4 \mathrm{H}), 5.46(\mathrm{~s}, 0.6 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 0.4 \mathrm{H}), 4.45(\mathrm{~s}, 0.6 \mathrm{H})$, $3.79-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.29(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.83(\mathrm{~s}, 1.25 \mathrm{H})$, $1.74(\mathrm{~s}, 1.75 \mathrm{H}), 1.66(\mathrm{~s}, 1.25 \mathrm{H}), 1.64(\mathrm{~s}, 1.75 \mathrm{H}), 1.23(\mathrm{~s}, 1.75 \mathrm{H}), 1.23(\mathrm{~s}, 1.25 \mathrm{H}), 0.75(\mathrm{~s}$, $3.6 \mathrm{H}), 0.74(\mathrm{~s}, 5.4 \mathrm{H}), 0.14-0.20(\mathrm{~m}, 6 \mathrm{H})$.

Analytical data for 11c and 12c

The general procedure was applied to the coupling of $\mathbf{6}(12.9 \mathrm{mg}, 0.035 \mathrm{mmol})$ and $7 \mathbf{c}$ $(14.5 \mathrm{mg}, 0.030 \mathrm{mmol})$ with $\mathrm{CsF}(9.7 \mathrm{mg}, 0.064 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and $\mathrm{DMF}(1.2 \mathrm{~mL})$. Preparative chromatography (EtOAc / n-hexane, $1 / 5$) afforded $7.3 \mathrm{mg}(44 \%)$ of an inseparable mixture in a ratio of 1 : 1.
$\mathrm{R}_{f:} 0.52(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.53(\mathrm{~s}, 0.5 \mathrm{H}), 5.45(\mathrm{~s}, 0.5 \mathrm{H}), 4.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H})$, $4.52(\mathrm{~s}, 0.5 \mathrm{H}), 4.31(\mathrm{~s}, 0.5 \mathrm{H}), 4.06-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.78(\mathrm{t}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.73(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.03(\mathrm{~s}, 1.5 \mathrm{H}), 2.96(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.76(\mathrm{~s}$, $1.5 \mathrm{H}), 1.86(\mathrm{~s}, 1.5 \mathrm{H}), 1.66(\mathrm{~s}, 1.5 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 4.5 \mathrm{H}), 0.88(\mathrm{~s}$, $4.5 \mathrm{H}),-0.06-0.08(\mathrm{~m}, 6 \mathrm{H})$.

Analytical data for 11d and 12d

The general procedure was applied to the coupling of $\mathbf{6}(37.5 \mathrm{mg}, 0.102 \mathrm{mmol})$ and $\mathbf{7 d}$ $(47.8 \mathrm{mg}, 0.107 \mathrm{mmol})$ with $\mathrm{CsF}(33.1 \mathrm{mg}, 0.218 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(4.2 \mathrm{mg}, 0.022 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.3 \mathrm{mg}, 0.011 \mathrm{mmol})$, and DMF (4.0 mL). Preparative chromatography (EtOAc: n-hexane, $1: 5$) afforded $9.6 \mathrm{mg}(18 \%)$ of the slower moving isomer and 14.5 mg (27%) of the faster moving isomer in a ratio of $2: 3$.

The slower moving isomer
$\mathrm{R}_{f:} 0.50(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{bs}, 2 \mathrm{H}), 6.63(\mathrm{bs}, 2 \mathrm{H}), 5.56-5.59$ (bs, $1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60$ (dd, $J=8.4 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.66$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.63 (bs, 3H), 1.14 (s, 3H).

The faster moving isomer
$\mathrm{R}_{f:} 0.55$ (EtOAc/n-hexane, 1/5); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{bs}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46$ $(\mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{bs}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.67 (dd, $J=8.7 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$.

Analytical data for 11e and 12e

The general procedure was applied to the coupling of $\mathbf{6}(34.0 \mathrm{mg}, 0.092 \mathrm{mmol})$ and $\mathbf{7 e}$ $(41.7 \mathrm{mg}, 0.107 \mathrm{mmol})$ with $\mathrm{CsF}(27.4 \mathrm{mg}, 0.180 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(5.0 \mathrm{mg}, 0.026 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.5 \mathrm{mg}, 0.011 \mathrm{mmol})$, and DMF (3.0 mL). Preparative chromatography (EtOAc: n-hexane, $1: 6$) afforded $15.7 \mathrm{mg}(36 \%)$ of an inseparable mixture in a ratio of 1 : 1.
$\mathrm{R}_{f:} 0.42(\mathrm{EtOAc} / n$-hexane, $1 / 6) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.46(\mathrm{~m}, 7 \mathrm{H}), 5.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.59(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.51(\mathrm{~s}, 0.5 \mathrm{H}), 5.50(\mathrm{~s}, 0.5 \mathrm{H}), 5.13(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.11(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.76(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 0.5 \mathrm{H}), 4.41(\mathrm{~s}, 0.5 \mathrm{H}), 3.90(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, 0.5 H), 3.84 (d, $J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.86 (d, $J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), 2.80 (d, $J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}$), $1.73(\mathrm{~s}, 1.5 \mathrm{H}), 1.69(\mathrm{~s}, 1.5 \mathrm{H}), 1.67(\mathrm{~s}, 1.5 \mathrm{H}), 1.67(\mathrm{~s}, 1.5 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1.5 \mathrm{H}), 0.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1.5 \mathrm{H})$.

Analytical data for 11f and $\mathbf{1 2 f}$

The general procedure was applied to the coupling of $\mathbf{6}(29.4 \mathrm{mg}, 0.080 \mathrm{mmol})$ and $\mathbf{7 f}$ $(32.2 \mathrm{mg}, 0.077 \mathrm{mmol})$ with $\mathrm{CsF}(27.4 \mathrm{mg}, 0.180 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(5.0 \mathrm{mg}, 0.026 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.5 \mathrm{mg}, 0.008 \mathrm{mmol})$, and DMF (2.2 mL). Preparative chromatography
(EtOAc: n-hexane, $1 / 5$) afforded $15.8 \mathrm{mg}(42 \%)$ of an inseparable mixture in a ratio of 1 : 6.
$\mathrm{R}_{f:} 0.38$ (EtOAc/n-hexane, 1/5); IR: 3054, 2916, 1660, 1599, 1520, 1348, $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.38$ $(\mathrm{m}, 8 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 0.85 \mathrm{H}), 5.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.15 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.00+3.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (t, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96+2.94(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 0.49 \mathrm{H}), 1.85(\mathrm{~s}, 2.51 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.2$, 145.6, 133.7, 131.5, $129.2,128.5,128.4,127.1,126.5,126.0,123.9,123.8,123.1,121.4,121.3,90.3,57.1$, 56.6, 47.2, 46.1, 45.2, 44.6, 40.9, 28.6, 22.3, 22.2, 22.1, 22.0; HRMS(ESI-MS) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[(\mathrm{M}+\mathrm{H})]^{+} 491.2256$, found 491.2344 .

Analytical data for 11g and 12g

The general procedure was applied to the coupling of $6(20.8 \mathrm{mg}, 0.057 \mathrm{mmol})$ and $7 \mathbf{g}$ $(22.9 \mathrm{mg}, 0.050 \mathrm{mmol})$ with $\mathrm{CsF}(18.2 \mathrm{mg}, 0.120 \mathrm{mmol}), \mathrm{CuI}(\mathrm{I})(2.5 \mathrm{mg}, 0.013 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.9 \mathrm{mg}, 0.006 \mathrm{mmol})$, and DMF (1.5 mL). Preparative chromatography (EtOAc: n-hexane, 1:5) afforded $8.9 \mathrm{mg}(33 \%)$ of an inseparable mixture of in a ratio of 1 : 3 or $3: 1$.
$\mathrm{R}_{f}: 0.50(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $0.5 \mathrm{H}), 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 7.22-7.47(\mathrm{~m}, 12 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{br}, 1 \mathrm{H}), 4.51(\mathrm{~s}$, 0.75 H), 4.49 ($\mathrm{s}, 0.25 \mathrm{H}$), 3.90 (br, 0.75 H), 3.78 (br, 0.25 H), 3.63 (bs, 1H), 2.88 (bs, 0.25 H), 2.78 (bs, 0.75 H), 1.72 (m, 1H), 1.61 (s, 6H), 1.30 (s, 3H), 0.97 (d, $J=6.6 \mathrm{~Hz}$, $0.75 \mathrm{H}), 0.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2.25 \mathrm{H}), 0.48(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.75 \mathrm{H}), 0.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 2.25 H).

Determination of absolute stereochemistry and stereoselectivity for $\mathbf{1 2 f}$

Confirmation of the absolute stereochemistry. The hydrolysis strategy of Barluenga et al. was employed. ${ }^{9}$

[^5]
Cbz-Cl, $\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt, overnight } \\ 62 \%}]{5 \% \text { aq. } \mathrm{Na}_{2} \mathrm{CO}_{3}}$

11f and $\mathbf{1 2 f}$

31 and 32

Bicyclooctadienes 31 and 32. To a solution of 11 f and $\mathbf{1 2 f}(15.3 \mathrm{mg}, 0.031 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}), 5 \% \mathrm{aq} . \mathrm{Na}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ and benzyl chloroformate ($\mathrm{Cbz}-\mathrm{Cl}$) ($9.7 \mathrm{mg}, 0.057 \mathrm{mmol}$) was added at rt and then stirred overnight. After addition of $\mathrm{H}_{2} \mathrm{O}$ $(1.5 \mathrm{~mL})$, the resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then the combined organic layers were washed first with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, second with $\mathrm{H}_{2} \mathrm{O}$, and then dried over MgSO_{4}. The solvent was removed under vacuum and the residue was purified by preparative chromatography ($\mathrm{EtOAc} / \mathrm{n}$-hexane, 1:5) to provide $12.4 \mathrm{mg}(62 \%)$ of an inseparable mixture as sticky oil.
$\mathrm{R}_{f}: 0.38$ (EtOAc/n-hexane, $1 / 5$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16+8.14(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.37 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23-7.35 (m, 5H), 7.20 (dd, J $=3.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 6.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.83 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H})$, $5.36+5.27(\mathrm{bs}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $0.83 \mathrm{H}), 2.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.17 \mathrm{H}), 1.68+1.66(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,155.8,147.1,145.6,138.3,136.7,136.4,134.3,131.4$, $128.5,128.3,127.2,123.8,123.6,121.3,121.1,94.6,77.9,67.2,56.8,46.1,45.5,45.3$, 44.5, 28.7, 22.3, 21.6.

31 and 32

35 and 36

Bicyclooctadienes 35 and 36. To a solution of $\mathbf{3 1}$ and $\mathbf{3 2}(12.4 \mathrm{mg}, 0.019 \mathrm{mmol})$ in dry THF $(1.0 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(0.5 \mathrm{~mL}), \mathrm{LiOH}(4.1 \mathrm{mg}, 0.171 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred 2 days at rt , and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined solution was acidified to $\mathrm{pH}=2$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic layers were dried over MgSO_{4}, filtered and concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc: n-hexane, 1:2) provide 5.6 mg (95%) of a white solid.
$\mathrm{R}_{f:} 0.51$ (EtOAc/n-hexane, $1 / 2$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.3,147.1,145.6,134.2,131.4,128.3,123.7,122.8,122.7$, 121.3, 121.2, 56.1, 46.0, 45.8, 44.5, 28.6, 22.2, 21.7.

35 and 36
11a and 12a
Bicyclooctadienes 11a and 12a. To a stirred solution of $\mathbf{3 5}$ and $\mathbf{3 6}(5.6 \mathrm{mg}, 0.018$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ were added (S)-(+)-2-phenylglycinol ($5.1 \mathrm{mg}, 0.037$ $\mathrm{mmol})$, 1-hydroxybenzotriazole (HOBt) $(3.0 \mathrm{mg}, \quad 0.023 \mathrm{mmol})$, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide $\mathrm{HCl}(\mathrm{EDC} \cdot \mathrm{HCl})(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$. The mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, allowed to warm to rt , and then followed overnight. The reaction mixture was washed with $5 \% ~ a q$. citric acid, saturated $a q . \mathrm{NaHCO}_{3}$, and saturated NaCl . Then, the organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum to provide $3.2 \mathrm{mg}(41 \%)$ of crude 11a and 12a.

* On TLC, the R_{f} value of the major component of this mixture of 11a and 12a from 35 and $\mathbf{3 6}$ was identical with that of authentic12a.

29 and 30

Bicyclooctadienes 29 and 30.
To a solution of $\mathbf{1 9}(33.4 \mathrm{mg}, 0.077 \mathrm{mmol})$ and $\mathbf{6}$ $(32.5 \mathrm{mg}, 0.088 \mathrm{mmol})$ in anhydrous DMF $(2.0 \mathrm{~mL})$ were added CsF $(22.6 \mathrm{mg}, 0.151$ $\mathrm{mmol})$ and $\mathrm{CuI}(\mathrm{I})(5.6 \mathrm{mg}, 0.029 \mathrm{mmol})$ at rt under degassing with a stream of Ar. After adding $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.3 \mathrm{mg}, 0.001 \mathrm{mmol})$, the reaction flask was immediately wrapped with aluminum foil and continued degassing for 5 min . The reaction mixture stirred for further 17 h , and then diluted with EtOAc $(5 \mathrm{~mL})$. The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($3 \times 5 \mathrm{~mL}$). The combined aq. layers were extracted with $\operatorname{EtOAc}\left(3 \times 5 \mathrm{~mL}\right.$), dried over MgSO_{4}, and concentrated under vacuum. The residue was purified by preparative chromatography (EtOAc:n-hexane, 1:2) to provide 11.8 mg (29 \%) of an inseparable mixture as a white solid.
$\mathrm{R}_{f:} 0.45$ (EtOAc / n-hexane, $1 / 2$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.24(\mathrm{~m}$, $6 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 0.5 \mathrm{H}), 5.43(\mathrm{~s}$, 0.5 H), 5.25 (dd, $J=8.4 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 5.21 (dd, $J=8.4 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.75$ (d, J $=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.74(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.69(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.30(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.25(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.75$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.78(\mathrm{~s}, 1.5 \mathrm{H}), 1.65(\mathrm{~s}, 1.5 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}), 1.24$ (s, 1.5H), 1.22 (s, 1.5H).

$+$

29 and 30

11f and 12 f

1:1 Mixture of 11f and 12f. To an ice-cooled solution of 29 and $\mathbf{3 0}(11.8 \mathrm{mg}, 0.023$ $\mathrm{mmol})$ and triethylamine ($20 \mu \mathrm{~L}, 0.143 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added dropwise methanesulfonyl chloride ($5 \mu \mathrm{~L}, 0.065 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ via syringe. The reaction mixture was allowed to warm to rt and stirred overnight. Then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was poured into the reaction mixture and the organic layer was separated. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{ml})$ and the combined extracts were dried over MgSO_{4} and the solvent was removed under vacuum to afford 4.7 mg (43%) of a pale yellow solid.

* Spectroscopic properties of $1: 1$ mixture of $\mathbf{1 1 f}$ and $\mathbf{1 2 f}$ were in agreement with $\mathbf{1 1 f}$ and 12 f values above.

Calculation of the stereoselectivity

31 and 32

1. DIBAL-H, toluene $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5 \mathrm{~h}$
2. (R)-(-)-MTPA-CI, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, overnight 52 \% (2 steps)

33 and 34
(S)-Mosher esters 33 and 34. ${ }^{10}$

To a stirred solution of $\mathbf{3 1}$ and $\mathbf{3 2}(7.8 \mathrm{mg}, 0.012$ mmol) in dry toulene (0.5 mL) was added diisobutylaluminum hydride (DIBAL-H) (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 35 \mu \mathrm{~L}, 0.024 \mathrm{mmol}$) via syringe at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, and then allowed to warm to rt . The reaction solution was again cooled to $0^{\circ} \mathrm{C}$, quenched with $\mathrm{EtOAc}(0.5 \mathrm{~mL})$, and allowed to warm to rt. After pouring $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ into the reaction solution, the $a q$. layer was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{ml})$ and the combined extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and brine. The organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum to afford 4.2 mg of crude bicyclo[4.2.0]octadiene substrate bearing methyl alcohol as yellow solid. The crude $(4.2 \mathrm{mg}, 0.014 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ solution was treated with DMAP ($3.6 \mathrm{mg}, 0.030 \mathrm{mmol}$). Then (R)-(-)- α-methoxy- α-trifluoromethylphenylacetyl chloride, (R)-(-)-MTPA-Cl, ($10 \mu \mathrm{~L}, 0.039 \mathrm{mmol})$ was added via syringe and the reaction solution was stirred overnight. After removing volatile compounds under vacuum, the residue was purified by preparative chromatography (EtOAc / n-hexane, $1: 5$) to provide 3.2 mg (52% for the two steps) of an inseparable mixture as pale yellow solid.
$\mathrm{R}_{f:} 0.59(\mathrm{EtOAc} / n$-hexane, $1 / 5) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.23-7.42 (m, 7H), $5.42(\mathrm{~s}, 0.16 \mathrm{H}), 5.40(\mathrm{~s}, 0.84 \mathrm{H}), 4.48(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 0.86 \mathrm{H})$, $4.33(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 0.28 \mathrm{H}), 4.22(\mathrm{dd}, J=11.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 0.86 \mathrm{H}), 3.44(\mathrm{~s}, 2.56 \mathrm{H}), 3.41$ (s, 0.44H), $3.28(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds

[^6]

$7 e$

枵育

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

[^7]

	1	1			150			1			1			1	1					1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

	1	1	1		1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

component of $11 \mathrm{~d}+12 \mathrm{~d}$ mixture

component of $11 \mathrm{~d}+12 \mathrm{~d}$ mixture

[^0]: ${ }^{1}$ Ordoñez, M.; Hernández-Fernández, E.; Montiel-Pérez, M.; Bautista, R.; Bustos, P.; Rojas-Cabrera, H.; Fernández-Zertuche, M.; García-Barradas, O. Tetrahedron: Asymmetry, 2007, 18, 2427-2436.
 ${ }^{2}$ (a) Beaudry, C. M.; Trauner, D. Oranic Lett. 2002, 4, 2221-2224. (b) Parker, K. A.; Wang, Z. Organic Lett. 2006, 8, 3553-3556.
 ${ }^{3}$ Ziegler, F.E.; Lim, H. J. Org. Chem. 1984, 49, 3278-3281.

[^1]: ${ }^{4}$ Huszthy, P.; Oue, M.; Bradshaw, J. S.; Zhu, C. Y.; Wang,T. M.; Dalley, N. K.; Curtis, J. C.; Izatt, R. M. J. Org. Chem., 1992, 57, 5383-5394.

[^2]: ${ }^{5}$ Takacs, J. M.; Jaber, M. R.; Swanson, B. J.; Mehrman, S. J. Tetrahedron: Asymmetry, 1998, 9, 4313-4324.

[^3]: 6 Han, L.; Jiaxi, S.; Du, D.-M. Organic Lett. 2007, 9, 4725-4728; see the Supporting Information for the procedure.

[^4]: ${ }_{8}^{7}$ Ginotra, S. K.; Singh, V. K. Tetrahedron, 2006, 62, 3573-3581.
 8 Beaudry, C. M.; Trauner, D. Organic Lett. 2005, 7, 4475-4477.

[^5]: 9 (a) Barluenga, J.; Suarez-Sobrino, A. L.; Tomas, M.; Garcia-Granda, S.; Santiago -Garcia, R. J. Am. Chem. Soc. 2001, 123, 10494- 10501. (b) Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J.; Rice, J. E. Bioorganic \& Medicinal. Chemistry Letters 2006, 16, 3891-3895. (c) Cho, S. J.; Jensen, N. H.; Kurome, T.; Kadari, S.; Manzano, M. L.; Malberg, J. E.; Caldarone. B.; Roth, B. L.; Kozikowski, A.P. J. Med. Chem. 2009, 52, 1885-1902.

[^6]: ${ }^{10}$ For an informative review of the Mosher ester technique, see Hoye, T.R.; Jeffrey, C.S.; Shao, F. Nature Protocols 2007, 2, 2451-2458.

[^7]:

