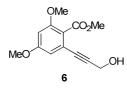
Supporting Information

Total Synthesis of (±)-Cephalosol

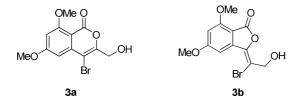
Yuanzhen Xie,[†] Ning Wang,[‡] Bin Cheng,[‡] Hongbin Zhai^{*,^{†,‡}}

Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China[‡]

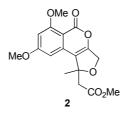
zhaih@lzu.edu.cn


CONTENTS

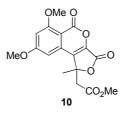
Part 1. Experimental Procedures and Analytical Data.....Page S2


Part 2. NMR Spectra of New and Selected Known Compounds......Page S7

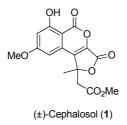
Part 1. Experimental Procedures and Analytical Data


General Methods. Melting points are uncorrected. NMR spectra were recorded in $CDCl_3$ or DMSO- d_6 (¹H at 400 MHz and ¹³C at 100 MHz) using TMS as the internal standard. Column chromatography was performed on silica gel. Anhydrous dioxane was distilled over sodium benzophenone ketyl under Ar. Anhydrous CH_2Cl_2 was distilled over calcium hydride under Ar. Anhydrous DMF was distilled at reduced pressure over calcium hydride. All other solvents and reagents were used as obtained from commercial sources without further purification.

Compound 6. To a solution of **5** (5.66 g, 17.6 mmol) in Et₃N (85 mL) were successively added propargyl alcohol (1.95 g, 34.8 mmol), Pd(PPh₃)₂Cl₂ (341 mg, 0.486 mmol), and CuI (63 mg, 0.33 mmol). The mixture was exposed to ultrasonic irradiation at 40 °C for 90 min, cooled to room temperature, filtered, washed with EtOAc, and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 2:1) to afford **6** (4.13 g, 94%) as a yellow solid: mp 68–69 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.22 (br s, 1H), 3.74 (s, 3H), 3.75 (s, 3H), 3.85 (s, 3H), 4.40 (d, *J* = 5.2 Hz, 2H), 6.40 (d, *J* = 2.4 Hz, 1H), 6.52 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 51.4, 52.5, 55.6, 56.1, 82.7, 91.2, 99.8, 108.4, 118.9, 123.0, 158.1, 161.5, 167.6. ESI-HRMS Calcd for C₁₃H₁₅O₅ (M + H) 251.0914, found 251.0907.

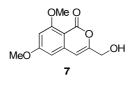


Compounds 3a and 3b. To a solution of **6** (250 mg, 1.00 mmol) in ClCH₂CH₂Cl (10 mL) were added CuBr₂ (469 mg, 2.10 mmol) and pyridine (119 mg, 1.50 mmol). The mixture was heated at reflux for 2 h, filtered through a short column of silica gel, and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 1:1) to afford **3a** (224 mg, 71%) and **3b** (40 mg, 13%). Compound **3a**: a white amorphous solid; mp 182–183 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.92 (s, 3H), 3.95 (s, 3H), 4.47(d, *J* = 6.4 Hz, 2H), 5.67 (t, *J* = 6.4 Hz, 1H), 6.79 (s, 1H),6.81 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 55.9, 56.4, 60.3, 99.0, 99.8, 101.8, 101.9, 139.2, 154.4, 155.9, 163.4, 165.4. ESI-HRMS Calcd for C₁₂H₁₂BrO₅ (M + H) 314.9863, found 314.9872. Compound **3b**: a white amorphous solid; mp 159–160 °C; ¹H NMR (DMSO-*d*₆, 400 MHz) δ 3.92 (s, 3H), 3.93(s, 3H), 4.46 (s, 2H), 6.78 (s, 1H), 7.48 (s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 56.2, 56.2, 61.1, 100.5, 101.2, 104.9, 112.4, 140.4, 141.6, 159.6, 161.6, 166.7. ESI-HRMS Calcd for C₁₂H₁₂BrO₅ (M + H) 314.9863, found 314.9861.



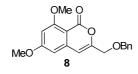
Compound 2. To a solution of triflate **9** (248 mg, 1.00 mmol) in dioxane (6 mL) were successively added bis(pinacolato)diboron (279 mg, 1.10 mmol), Pd(PPh₃)₂Cl₂ (35 mg, 50 μ mol), PPh₃ (26 mg, 99 μ mol), and K₂CO₃ (207 mg, 1.50 mmol). The mixture was heated at 90 °C under Ar until complete consumption of **9** as monitored by TLC analysis (in *ca*. 2 h) and cooled to 0 °C. Compound **3a** (157 mg, 0.498 mmol), Pd(PPh₃)₄ (57 mg, 49 μ mol), and H₂O (0.85 mL) were then added. The mixture was heated at 90 °C until complete consumption of **3a** as monitored by TLC analysis (in *ca*. 2 h). After a solution of DBU (760 mg, 5.00 mmol) in dioxane (6 mL) was added, the mixture was stirred at rt for 8 h, neutralized with HCl (1 M), and extracted with EtOAc. The combined organic layers were dried (MgSO₄), filtered, and concentrated

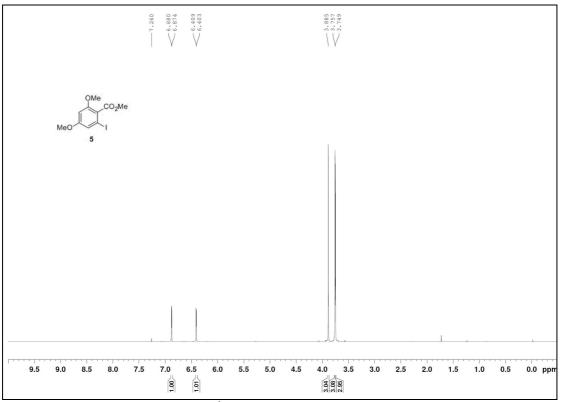
to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc, 1:1) to afford **2** (130 mg, 78%) as a yellow thick liquid, which turned into a white solid upon storage at rt: mp 102–103 °C; ¹H NMR (CDCl₃, 400 MHz) δ 1.71 (s, 3H), 2.92 (s, 2H), 3.57 (s, 3H), 3.91 (s, 3H), 3.98 (s, 3H), 4.78 (s, 2H), 6.28 (d, *J* = 2.0 Hz, 1H), 6.47 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 27.0, 44.7, 51.8, 55.7, 56.4, 68.6, 86.7, 97.5, 97.8, 102.0, 113.7, 137.2, 153.4, 158.8, 165.0, 165.9, 170.2. ESI-HRMS Calcd for C₁₇H₁₉O₇ (M + H) 335.1125, found 335.1129.



Compound 10. To a suspension of CrO₃ (350 mg, 3.50 mmol) in CH₂Cl₂ (10 mL) was added pyridine (553 mg, 7.00 mmol) at rt. After the mixture was stirred at the same temperature for 20 min and cooled to 0 °C, a solution of **2** (78 mg, 0.23 mmol) in CH₂Cl₂ (2 mL) was added. The mixture was stirred at rt for 4 h, filtered through Celite, and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 1:1) to afford **10** (65 mg, 80%) as a white amorphous solid: mp 198–199 °C; ¹H NMR (CDCl₃, 400 MHz) δ 1.85 (s, 3H), 3.02 (d, *J* = 16.0 Hz, 1H), 3.18 (d, *J* = 16.0 Hz, 1H), 3.57 (s, 3H), 3.97 (s, 3H), 4.00 (s, 3H), 6.44 (d, *J* = 2.0 Hz, 1H), 6.67 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.7, 42.3, 52.2, 56.1, 56.7, 82.0, 100.1, 100.7, 103.7, 132.9, 133.8, 140.8, 156.4, 162.0, 165.4, 166.1, 168.2. ESI-HRMS Calcd for C₁₇H₁₇O₈ (M + H) 349.0918, found 349.0917.

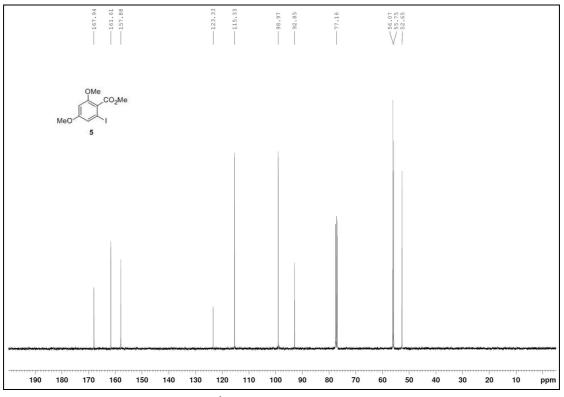
(±)-Cephalosol (1). To a solution of 10 (75 mg, 0.21 mmol) in CH₂Cl₂ (5 mL) was


added BCl₃ (1 M in CH₂Cl₂, 1.0 mL, 1.0 mmol) at 0 °C. The reaction was completed instantly as monitored by TLC analysis. The mixture was quenched with HCl (1 M, 1 mL) and H₂O (10 mL) followed by extraction with CH₂Cl₂. The combined organic layers were dried (MgSO₄), filtered, and concentrated to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc, 1:1) to afford **1** (67 mg, 93%) as a white amorphous solid: mp 199–200 °C; ¹H NMR (CDCl₃, 400 MHz) δ 1.84 (s, 3 H), 3.02 (d, *J* = 16.0 Hz, 1 H), 3.20 (d, *J* = 16.0 Hz, 1 H), 3.59 (s, 3 H), 3.93 (s, 3 H), 6.44 (d, *J* = 2.0 Hz, 1 H), 6.69 (d, *J* = 2.4 Hz, 1 H), 11.29 (s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 25.7, 41.9, 52.2, 56.3, 81.9, 100.2, 102.6, 103.1, 131.1, 134.8, 139.6, 161.6, 164.7, 166.1, 167.2, 168.0 [Note that the ¹³C NMR chemical shift data of **1** matched those reported in the literature¹ if the solvent peak settings for CDCl₃ were adjusted. The ¹³C NMR chemical shift values for the solvent (CDCl₃) peak set by us, Tan,^{1a} and Koert^{1b} were 77.16, 77.8, and 77.8 ppm, respectively]. ESI-HRMS Calcd for C₁₆H₁₈NO₈ (M + NH₄) 352.1027, found 352.1033.


Compound 7. To a solution of **3a** (80 mg, 0.25 mmol) in DMF (5 mL) were successively added Et₃N (76 mg, 0.75 mmol), HCO₂H (23 mg, 0.50 mmol), Pd(OAc)₂ (2.0 mg, 8.9 μ mol), and PPh₃ (4.6 mg, 17 μ mol). The mixture was heated at 60 °C for 8 h, cooled to rt, quenched with saturated aqueous NH₄Cl solution, and extracted with EtOAc. The combined organic layers were dried (MgSO₄), filtered, and concentrated to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc, 2:3) to afford **7** (35 mg, 92% based recycled starting material) and as well as unreacted **3a** (29 mg, 36%). Compound **7**, a white solid: mp 177 – 179 °C; ¹H

^{(1) (}a) Zhang, H. W.; Huang, W. Y.; Chen, J. R.; Yan, W. Z.; Xie, D. Q.; Tan, R. X. *Chem. Eur. J.* 2008, *14*, 10670.
(b) Arlt, A.; Koert, U. *Synthesis* 2010, 917.

NMR (CDCl₃, 400 MHz) δ 2.22 (t, J = 6.4 Hz, 1H), 3.90 (s, 3H), 3.97 (s, 3H), 4.44 (d, J = 6.4 Hz, 2H), 6.37 (s, 1H), 6.38 (d, J = 2.0 Hz, 1H), 6.47 (d, J = 2.0 Hz, 1H); ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.86 (s, 3H), 3.87 (s, 3H), 4.21 (d, J = 6.0 Hz, 2H), 5.56 (t, J = 6.0 Hz, 1H), 6.50 (s, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.67 (d, J = 2.4 Hz, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 55.8, 56.0, 59.5, 98.5, 100.9, 101.7, 101.9, 141.5, 157.4, 158.1, 162.8, 165.2.



Compound 8. To a solution of **7** (8.0 mg, 34 µmol) and benzyl 2,2,2-trichloroacetimidate (10 mg, 40 µmol) in CH₂Cl₂ (1 mL) and cyclohexane (1.5 mL) was added trifluoromethanesulfonic acid (0.76 mg, 5.1 µmol) at rt. The mixture was stirred at rt overnight. After the white precipitate was filtered off, the filtrate was washed successively with saturated aqueous NaHCO₃ solution and brine, dried (MgSO₄), filtered, and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc, 2:1) to afford **8** (7.4 mg, 67%) as a white solid: mp 111–112 °C; 1H NMR (CDCl₃, 400 MHz) δ 3.89 (s, 3H), 3.96 (s, 3H), 4.32 (s, 2H), 4.66 (s, 2H), 6.38 (d, *J* = 2.4 Hz, 1H), 6.42 (s, 1H), 6.46 (d, *J* = 2.0 Hz, 1H), 7.26-7.38 (m, 5H).

Part 2. NMR Spectra of New and Selected Known Compounds

Figure S1. ¹H NMR of **5** (CDCl₃, 400 Hz)

Figure S2. ¹H NMR of **5** (CDCl₃, 100 Hz)

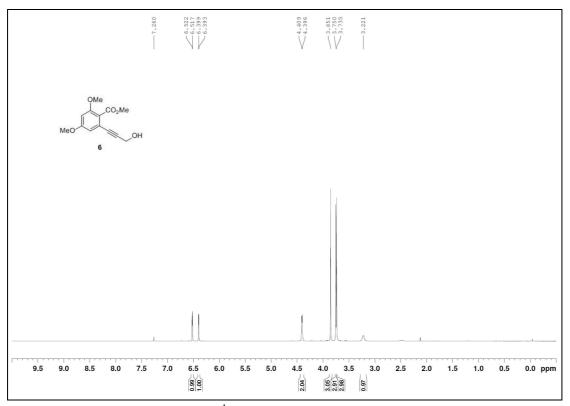
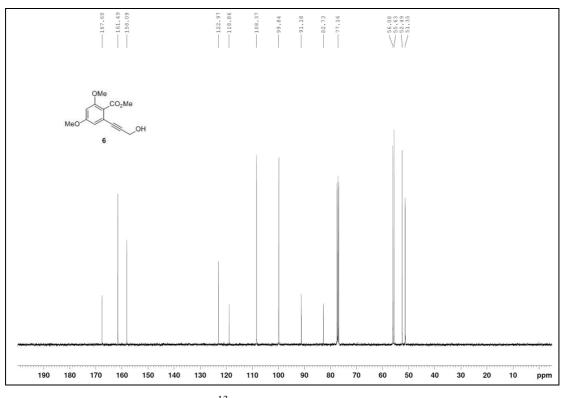
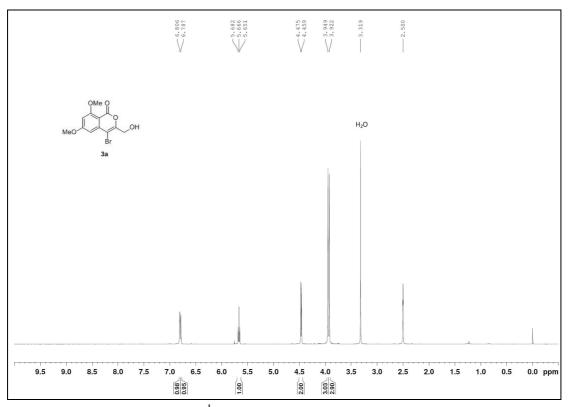
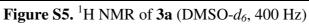
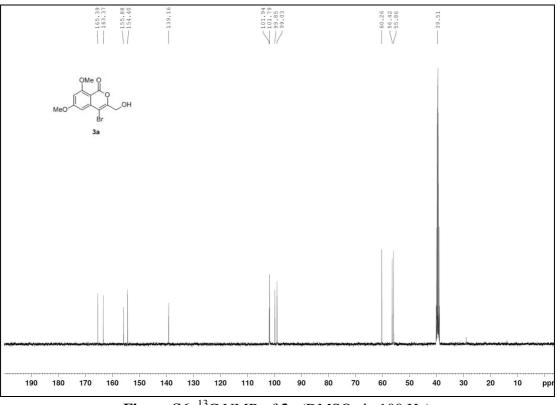
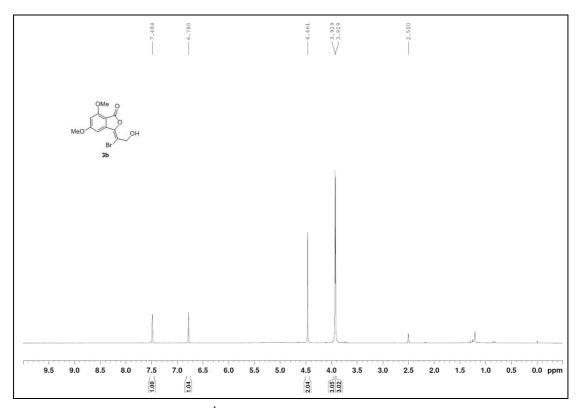
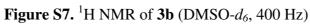
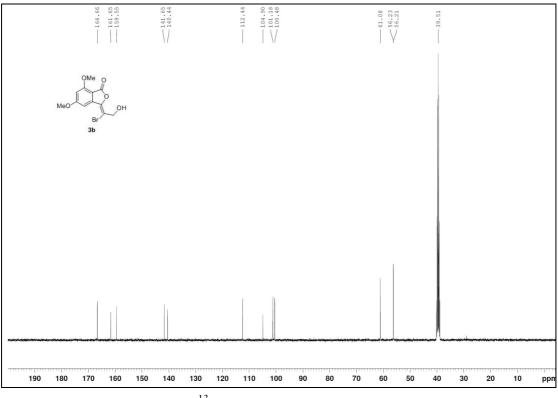


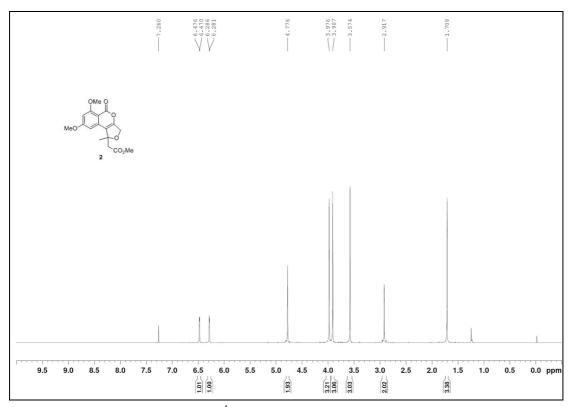
Figure S3. ¹H NMR of 6 (CDCl₃, 400 Hz)

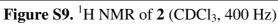





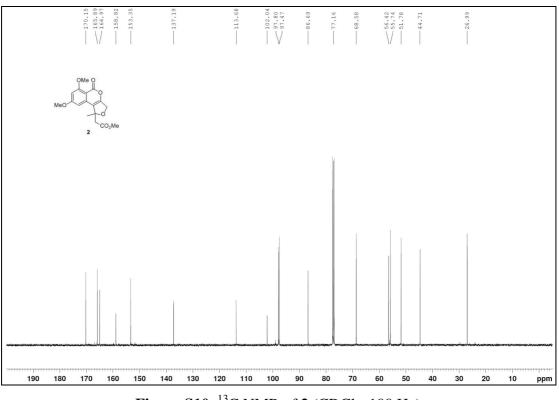

Figure S4. 13 C NMR of 6 (CDCl₃, 100 Hz)

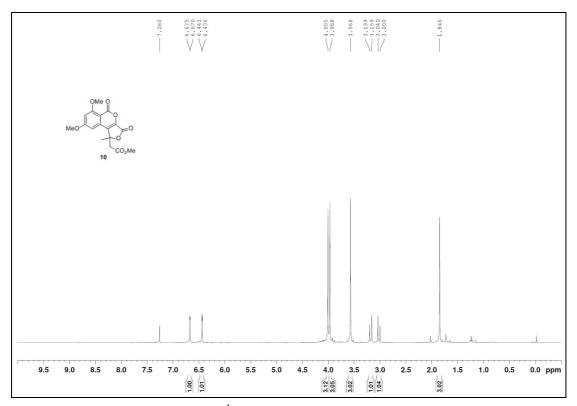


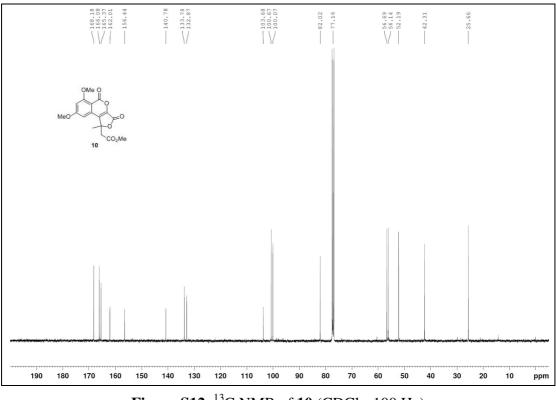


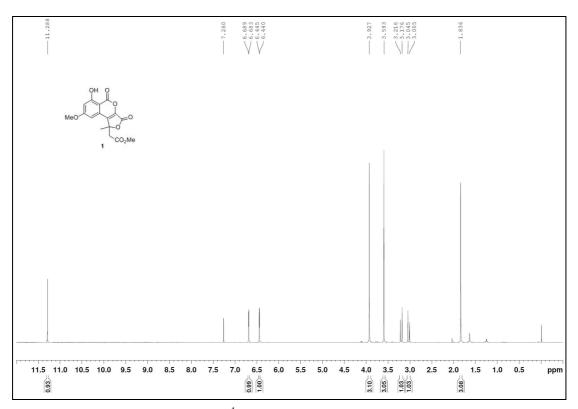

Figure S6. ¹³C NMR of **3a** (DMSO-*d*₆, 100 Hz)

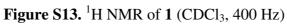


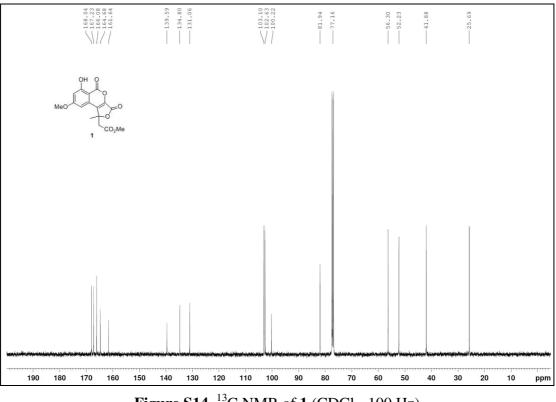


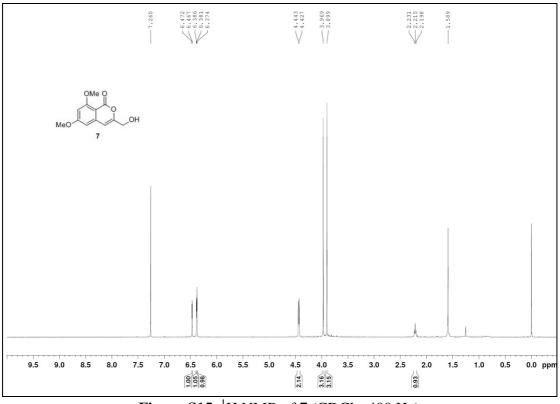

Figure S8. ¹³C NMR of **3b** (DMSO-*d*₆, 100 Hz)

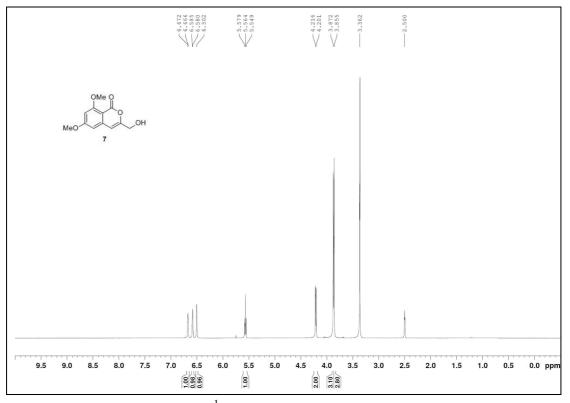



Figure S10. ¹³C NMR of **2** (CDCl₃, 100 Hz)




Figure S11. ¹H NMR of **10** (CDCl₃, 400 Hz)


Figure S12. ¹³C NMR of **10** (CDCl₃, 100 Hz)



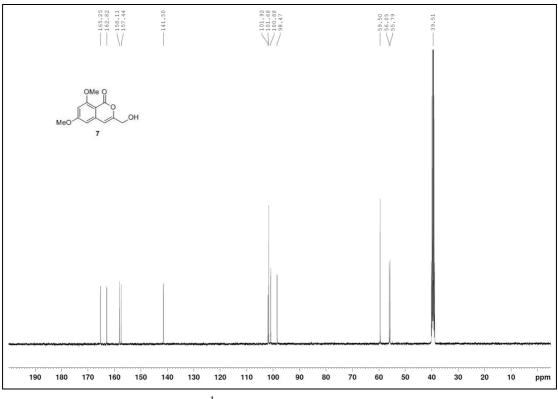

Figure S14. ¹³C NMR of **1** (CDCl₃, 100 Hz)

Figure S15. ¹H NMR of **7** (CDCl₃, 400 Hz)

Figure S16. ¹H NMR of **7** (DMSO-*d*₆, 400 Hz)

Figure S17. ¹H NMR of **7** (DMSO-*d*₆, 100 Hz)

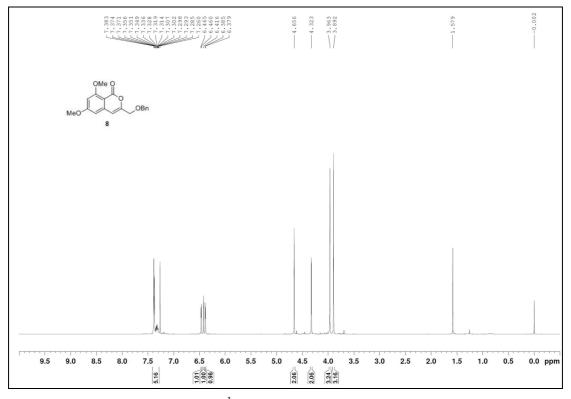


Figure S18. 1 H NMR of 8 (CDCl₃, 400 Hz)