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1. Comments on Hybrid Monte Carlo 

Hybrid Monte Carlo1 is one way to generate new conformations for a many-atom system by using 

plain molecular dynamics to propose trial moves.  To justify this, note that a repeated application of 

standard velocity verlet integration steps,  
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is simply a linear transformation of coordinates, with t  a constant time step.  Given infinite precision, 

the above transformation is time-reversible and volume preserving (i.e. it has a Jacobian determinant of 

one).  Furthermore, since velocity verlet integration nearly conserves total energy for small t , trial 

moves can have an average acceptance rate close to one.   

In a fashion similar to Hybrid Monte Carlo, nonequilibrium molecular dynamics can be used as a trial 

move generator for exchanging Hamiltonians.  Essentially, the time-independent Hamiltonian in 

Equation (S1) is replaced with a time-dependent form, ˆ( ; )i j xH t  , that smoothly links Hamiltonians iH  

and jH .  To preserve reversibility, the time-dependent Hamiltonian is chosen to satisfy  
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where ,i jt  is the simulation length of a nonequilibrium trial exchange used to transform the coordinates.  

Such a transformation is also time-reversible and unitary, but it does not conserve energy2. 

 

2. Derivation of Equation (2) from Main Text. 

To quickly estimate mean round trip time (mrtt) for a given set of intermediates and nonequilibrium 

trial exchanges, the transitions between Hamiltonian levels can be roughly modeled as a Markov 

process with an equilibrium distribution that visits all levels equally.  In replica exchange, the nature of 

the algorithm guarantees that equal time is spent simulating at every level, while in serial exchange, the 

average number of moves spent at each Hamiltonian depends on the values of tunable parameters. 

Consider a Markov Chain on a system with N states, numbered 1 through N, obeying the special 

property that an attempted transition from state i  to 1i   and from state 1i   to i  are accepted with the 

same probability: , 1 1,i i i ia a  .  From state i , the system attempts to transition into state 1i   or into 

state 1i  , each with probability 1/2.  Overall, the system will transition from state i  to state 1i   with 

probability 1, , 1

1 1

2 2i i i ia a   , and to state 1i   with probability , 1 1,

1 1

2 2i i i ia a  , and will otherwise 

remain in state i .  By construction, 0,1 , 1 0N Na a   , and the symmetry of the acceptance probabilities 

guarantees that the equilibrium distribution of the system is uniform across all states.  Next, we 

associate a cost to any given trajectory of this system.  Each step spent in state i  incurs a cost of is .  

Each transition attempt between i  and 1i   incurs a cost of , 1 1,i i i it t  .  The mean round trip time is 

defined as the average cost required to travel from state 1 to state N, and back to state 1.   

To prove,  
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we first consider the simpler case where all 1is   and all , 1 0i it   .  The mean round trip time for this 

case is equivalent to the mean number of moves required to execute a round trip, and Equation (S3) 

simplifies to  

 , 1

1

1

1/2
N

i
i imrt at N 





  . (S4) 

We proceed by induction.  Given 2N  , the average number of attempts required to transition from 

state 1 to N  is the reciprocal of the transition probability, yielding 0,12 / a .  The return trip behaves 

similarly, resulting in an average number of steps (and mrtt) of 0,14 / a . 

Next, we show if (S4) is true for N k , it must also hold for 1N k  .  This is equivalent to 

showing the marginal cost of adding a state 1k   is given by 

 , 1 , 1
1

/2 / 2
k

k k i i
i

k a a 


 . (S5) 

We will show that the marginal cost of going forward from 1 to 1k   is given by the first term, and 

marginal cost of returning from 1k   to 1 is given by the second. 

The expected number of moves to go from 1 to 1k  , denoted as 1, 1km  , can be decomposed as 

1, 1 1, , 1k k k km mm   .  This holds since all paths from 1 to 1k   must pass through state k .  Note that 

1,km  is the same as it was for the smaller system with only k states, so the marginal cost of adding a state 

is simply , 1k km  .  To derive , 1k km  , we use the well known Markov Chain result that the average number 

of moves it takes to return to a given state is the reciprocal of the equilibrium probability of that state.  

By construction, every state has equal equilibrium probability 1/ ( 1)k  .  Thus, the mean return time for 

any state is simply 1k  .  Alternatively, the mean return time for state 1k   can be written explicitly as 

    , 1 , 1 , 1

1 1 1
·1 1 1

2 2 2k k k k k ka am    , (S6) 

where the first term represents a rejected transition attempt to non-existent state 2k  , the middle term 
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represents a successful move to state k , and the final term represents a rejected move to state k .  

Setting (S6) equal to 1k   and solving for , 1k km   gives the marginal forward cost of adding state 1k  : 

 , 1 , 12 /k k k kk am   . (S7). 

Similarly, the cost of returning can be written as 
1

1,1 , 1
2

k

k i i
i

mm


 


  .  To derive , 1i im  , we consider the sub-

problem of adding state 1i   to the sub-system comprising states i  through 1k  .  The marginal cost of 

adding this state is also given by (S7), but with the k in the numerator replaced by the number of states 

in our sub-problem, 2k i  , and the denominator replaced by the acceptance probability of a transition 

from i  to 1i  :   

  , 1 1,2 2 /i i i ik im a    . (S8) 

The total return trip cost, in the system of 1k   states, is thus 
1

1,1 1,
2

2( 2) /
k

k i i
i

m k i a


 


   ; the 

corresponding total return trip cost from state k  to state 1 in a system of only k  states is obtained by 

replacing 1k   with k .  The marginal cost of the return trip is the difference of the two, which 

simplifies to the second term in (S4).  This completes the proof of (S3). 

Next we sketch how to generalize to arbitrary cost functions.  Since round trips generate the same 

limiting distribution of states as the Markov Chain, the average total cost of a round-trip is given by  

 , 1 , 1i i i i i i
i i

mrtt n s n t        , (S9) 

where in   is the average number of visits to state i  during a round trip, and , 1i in    is the average 

number of attempted transitions between states i  and 1i  .  Since our Markov Chain visits all states 

equally, on average, and since transitions to either neighbor are attempted with probability 1/2, 

, 1i i in n n       for all i , where n  does not depend on is  or , 1i it  .  Setting , 11, 0i i is t    and equating 

(S9) with (S4), we get , 12 1/ i i
i

n a   .  Substituting n  into Equation (S9) gives us (S3). 

3. Outline of Parameter Selection Algorithm 
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Inputs to the parameter selection algorithm are a list of L  possible levels (ranging from 1 to L ) with 

associated costs s , and acceptance rate estimates of the form 0 1, , )( ,ll t a  where 0l  and 1l  are two levels, 

t  is the length of nonequilibrium simulations connecting the levels, and a  is the associated acceptance 

probability.  The output is the subset of the inputs that form the lowest cost path connecting levels 1 and 

L , where cost is defined by the mean round trip time.  The mean round trip time for such a path of N 

nodes is given by Equation (S3).  In dynamic programming, a solution is found by first optimizing sub-

problems.  A simple, but not necessarily optimal strategy is given by the pseudocode in the main text.  

At the conclusion of the pseudocode, a fast backtracking algorithm can recover the precise path.  

Although the heuristic described by the pseudocode is likely good enough for the problem at hand, 

optimality is not guaranteed.  The multiplicative nature of (S3) means the best solution need not be an 

extension of an optimal path for a smaller problem.  To exactly solve the problem, one approach is to 

store some suboptimal paths as well.  One way to do this is to save the lowest cost to intermediate j  for 

each obtainable value of s t
  
 
  .  If the s  values are all the same, and t  values take on only a 

few possibilities, the extra work is not prohibitive.  This is the case for the problem studied here, and no 

further enhancements are needed. 

If desired, various dominance criteria can be used to reduce the algorithm cost.  As an example, if 

both s t
  
 
   and 1/ a

 
 
 
  for one path to i  are smaller than the corresponding values for a 

different path to i , then the latter path can be eliminated from contention.  Also, one could execute the 

cheaper heuristic to get a reasonable solution, and use this answer to truncate the search of any sub-

paths that exceed this known cost (since all cost parameters are non-negative). 

4.  Reaction Coordinate Details and the Softcore Potential 

The full interaction Hamiltonian, onH  was prepared using ANTECHAMBER3, and includes a 

simulation box with 1,022 TIP3P water molecules.  To connect onH  and offH , a fixed reaction 
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coordinate4 is chosen that first linearly scales the charges to zero, yielding an intermediate Hamiltonian, 

unchargedH .  Next, the ligand–solvent van der Waals interactions are turned off with a softcore potential4 
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  (S10) 

where r  is the distance between atoms i  and j ,   and   are the standard van der Waals parameters, 

and vdw  is a softcore parameter ranging from zero to one.  When vdw  is zero, this is the standard van 

der Waals potential, and when vdw  is one, this potential is zero everywhere.  The reaction coordinate 

from unchargedH  to offH  linearly scales vdw  from zero to one.  To help overcome energy barriers, the 

reaction coordinate is extended further by turning off all ligand–ligand van der Waals interactions using 

the same softcore formula shown above.  During initialization, the reaction coordinate is subdivided into 

a large number of possible intermediates.  In the segment between onH  and unchargedH , the ligand charge 

scaling parameter has candidate intermediates ranging from 0.0 to 1.0 separated by increments of 0.05.  

From unchargedH  to offH , the softcore parameter vdw  for ligand–solvent interactions has candidate 

intermediates ranging from 0.0 (full strength) to 0.75 in increments of 0.025, and from 0.75 to 1.0 

(completely off) in increments of 0.0125.  In switching from offH  to pseudo1DH , ligand–ligand 

interactions are disabled using candidate vdw  values ranging from 0.0 to 1.0, in increments of 0.05.   

5. Free Energies of Full Simulations 

To estimate the free energy difference between Hamiltonians onH  and offH , Bennett’s method is 

used.  After a simple serial exchange run, trajectory frames are sorted by their Hamiltonian level, and 

Bennett analysis is used to estimate the relative free energies between adjacent levels.  Summing the 

free energy differences connecting onH  and offH  gives the desired value.  This is repeated for the 19 

serial exchange trajectories to give 19 independent estimates.  To analyze serial exchange runs with 

nonequilibrium trials, a similar analysis, but with work values5 replacing potential energy differences, 

gives 19 more estimates.  In the case of replica exchange, the same approach yields a single estimate of 
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the free energy difference.  To produce multiple estimates for comparison with the serial exchange 

methods, the 19-level replica exchange simulation is also approximated as 19 independent serial 

exchange runs6, and the first 100 ns of these 19 runs are analyzed independently. 

6.  Molecular Dynamics Details 

As described in the main text, simulations use M-SHAKE to constrain bonds involving hydrogen.  

Technically, using constraints that are not completely converged will disrupt the exact reversibility or 

phase-preserving properties of numerical integration schemes7, but these deviations are considered 

small.  Following the extended ensemble approach of Andersen8, simulations included an isotropic 

scaling variable to control the size of the box, along with an associated momentum,  , and barostat 

mass, w.  In these simulations, the conserved quantity is 

 
2

pot kin ext( (ˆ ˆ ˆ ˆ( ) ) ) ( )
2

H x E x E x p V x
w


    , (S11) 

where extp  is the constant external pressure, V is the volume of the simulation box, and potE  and kinE  

are the potential and kinetic energies, respectively.  Andersen showed that such a simulation will have 

the same equilibrium properties as a constant pressure, constant enthalpy ensemble (NPH).  Here, all 

momenta were periodically resampled from a target Gaussian distribution, thereby converting the 

simulation ensemble to constant pressure, constant temperature (NPT).   

7. Hamiltonian Exchange Details 

The Hamiltonian exchange performed here can be described as an alternating sequence of two types 

of moves.  First, the system is sampled using the current Hamiltonian, and second, an attempt is made to 

change or swap the Hamiltonian.  Here the focus is on serial exchange, but an analogous protocol for 

replica exchange is also possible. 

In almost all cases (see main text for exceptions), the current Hamiltonian is sampled by randomizing 

the velocities according to the target Boltzmann distribution, followed by 1 ps of molecular dynamics 

with a constant enthalpy integrator.  In a true Monte Carlo process, the end results of this molecular 

dynamics simulation should be subjected to an acceptance criterion to test whether this short simulation 
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sufficiently preserves the equilibrium distribution.  However, as is implicitly done in most applications 

of Hamiltonian exchange, the end results of these simulations are always accepted.  This introduces the 

same possible errors inherent in standard molecular dynamics applications, but these errors are 

considered negligible for a small enough time step.  To be more rigorous, a Hybrid Monte Carlo move 

in the NPT ensemble9 could be performed instead, using the conserved quantity from Equation (S11) to 

test for detailed balance.    

As the second component of Hamiltonian Exchange, nonequilibrium simulations are introduced.  

Given a system at Hamiltonian level i , a target level 1j i   is chosen randomly.  If j  is outside the 

range of defined Hamiltonians, the move is automatically rejected.  Otherwise, velocities are resampled, 

and a nonequilibrium simulation of length ,i jt  is performed.  During the course of the run, either a 

charge scaling factor or a softcore vdw  is linearly interpolated between the endpoint values, with an 

update every 24 fs.  When , 0i jt  , this is essentially a standard implementation of Hamiltonian 

exchange, and atomic positions do not change.  Acceptance or rejection of a trial move is determined by 

a Metropolis criterion10, obtained by plugging the conserved quantity (S11) into the detailed balance 

equation, giving 

  , ,ˆ ˆ ˆ ˆ]) min exp ( [ ])( [ ,1( )i j j i j i j ix T x H T x H x f fa          
  . (S12) 

Here, , ˆ[ ]i jT x  are the system coordinates after the nonequilibrium simulation, and the if  are the extra 

parameters associated with serial exchange.  In cases when the trial move is rejected, the system 

coordinates revert back to x̂ . 

In the case of replica exchange, the Metropolis criterion depends on the total energies of the replicas 

after the nonequilibrium simulations, minus the original energies. 
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Here, ˆix  and ˆ, jx . refer to the subset of system coordinates associated with replicas i  and j , 

respectively.  Unlike serial exchange, no extra parameters are needed. 

8. Method for Combining Conformer Data from Initial Estimates 

The main text describes Hamiltonian, pseudo1DH , where all ligand charges, ligand–solvent interactions, 

and ligand–ligand van der Waals interactions are zero.  If bond angles and bond lengths are temporarily 

fixed (for resampling purposes only, and not during the actual molecular dynamics), the only remaining 

degrees of freedom are dihedral angles.  In this case, the energies of rotating about bonds are 

independent (except for rotation about bonds within rings).  After minimizing bond angles and lengths, 

each rotatable bond is partitioned into 1 or more rotamers.  The relative free energy of a collection of 

these rotamers can be approximated as  

 
max

min

( )

( ){rotatable bonds}

log exp ][ ) /(B
r r

B

r

k T k T dU




 


   , (S14) 

where ( ), ( )min maxr r   are the empirically determined boundaries of a specific rotamer of r , and )(U   is 

the empirically determined potential energy function. The six conformers with the lowest energies are 

selected, and the initialization procedures described in the main text are applied to each conformer.  

This gives relative free energy estimates of a single conformer across all the tested Hamiltonians.  These 

free energy approximations are used to estimate the overall mean acceptance rates of Hamiltonian 

exchange attempts.   

It is worth noting that the treatment of a given Hamiltonian level as the combination of distinct 

conformers will violate the Markov approximation if these conformers do not readily exchange with one 

another.  While it is possible to construct a more complicated Markov model that subdivides each level 

into conformers, this would complicate the mean round trip time equation, and is found to be 

unnecessary for the current problem.  Since this Markov model is merely a tool for guessing good initial 
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parameters, errors such as these may make the simulations less efficient, but will not change the 

asymptotic correctness of the computed free energies.  
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Level 
Ligand Charge 

Coefficient 
Softcore vdw  

(Ligand–Solvent) 

Softcore vdw  

(Ligand–Ligand) 

0 ( onH ) 1.00 0 0

1  0.80 0 0

2 0.55 0 0

3 0.30 0 0

4 ( unchargedH ) 0 0 0

5  0 0.3000 0

6 0 0.4750 0

7  0 0.5700 0

8 0 0.6500 0

9 0 0.7250 0

10 0 0.7750 0

11 0 0.8125 0

12 0 0.8375 0

13 0 0.8750 0

14 ( offH ) 0 1.0000 0

15 0 1 0.3

16 0 1 0.5

17 0 1 0.7

18 ( 1pseudo DH ) 0 1 1.0

 

Table S1.  Production Parameters for Replica Exchange 
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Level 
Ligand Charge 

Coefficient 
Softcore vdw  

(Ligand–Solvent) 

Softcore vdw  

(Ligand–Ligand) 

0 ( onH ) 1.00 0 0

1  0.75 0 0

2 0.45 0 0

3 ( unchargedH ) 0.00 0 0

4 0 0.400 0

5  0 0.575 0

6 0 0.700 0

7  0 0.775 0

8 0 0.825 0

9 0 0.875 0

10 ( offH ) 0 1.000 0

11 0 1 0.40

12 0 1 0.65

13 0 1 1.00

14 
( pseudo1DH ) 0 1.0000 0

 

Table S2.  Production Parameters for Serial Exchange 
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Type 0  1  
Length (ps) 

Estimated  
Acceptance Rate 

Ligand Charge Scaling 1.0 0.0 0.5 0.03

Ligand Charge Scaling 1.0 0.0 1.0 0.07

Ligand Charge Scaling 1.0 0.0 2.0 0.16

Ligand Charge Scaling 1.0 0.0 5.0 0.29

Ligand Charge Scaling 1.0 0.0 10.0 0.38

Ligand–Solvent Softcore 0.0 0.775 1.0 0.01

Ligand–Solvent Softcore 0.0 0.775 2.0 0.04

Ligand–Solvent Softcore 0.0 0.775 5.0 0.12

Ligand–Solvent Softcore 0.0 0.775 10.0 0.22

Ligand–Solvent Softcore 0.0 0.825 5.0 0.02

Ligand–Solvent Softcore 0.0 0.825 10.0 0.06

Ligand–Solvent Softcore 0.0 0.825 20.0 0.13

Ligand–Solvent Softcore 0.0 0.825 50.0 0.27

Ligand–Solvent Softcore 0.825 1.000 1.0 0.04

Ligand–Solvent Softcore 0.825 1.000 2.0 0.07

Ligand–Solvent Softcore 0.825 1.000 5.0 0.16

Ligand–Solvent Softcore 0.825 1.000 10.0 0.25

Ligand–Ligand Softcore 0.0 0.65 0.2 0.23

Ligand–Ligand Softcore 0.0 0.65 0.5 0.31

Ligand–Ligand Softcore 0.0 0.65 1.0 0.38

Ligand–Ligand Softcore 0.0 0.65 2.0 0.46

Ligand–Ligand Softcore 0.0 0.65 5.0 0.48

Ligand–Ligand Softcore 0.0 0.65 10.0 0.54

Ligand–Ligand Softcore 0.0 0.70 0.2 0.17

Ligand–Ligand Softcore 0.0 0.70 0.5 0.25

Ligand–Ligand Softcore 0.0 0.70 1.0 0.32

Ligand–Ligand Softcore 0.0 0.70 2.0 0.37

Ligand–Ligand Softcore 0.0 0.70 5.0 0.41

Ligand–Ligand Softcore 0.0 0.70 10.0 0.46

 

Table S3.  Nonequilibrium Trial Exchange Data Used for Level Selection 
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