SUPPORTING INFORMATION for

Smith and Jackman "Kinetic analysis of 3'-5' nucleotide addition catalyzed by eukaryotic $tRNA^{His}$ guanylyltransferase"

Supporting information figure legends

Figure S1: Single turnover enzyme dependence of adenylylation at pH 7.5. (A) Reactions were carried out with 4 mM ATP and limiting 5'-[32 P]tRNA^{His} in the presence of 0.6 (\blacktriangle), 1 (+), 3 (×), 5 (\blacklozenge), 10 (\blacksquare), and 15 (\bullet) μ M yThg1. Product formation at each concentration of enzyme was plotted as a function of time and fit to a single exponential equation (eq. 1) to yield the observed rate (k_{obs}). (B) Observed rates of adenylylation were plotted as a function of [E] and fit to $k_{obs} = k_{on}*[E]$ to give an estimate of $k_{on} = 60 \text{ M}^{-1}\text{s}^{-1}$.

Figure S2: Single turnover ATP dependence of adenylylation at pH 6. (A) Reactions were performed with 15 μ M yThg1 and limiting 5'-[32 P]tRNA^{His} in the presence of 0.1 (\bullet), 0.25 (\Box), 0.5 (\blacktriangle), 1 (\times), 1.5 (\bullet), 2 (Δ), and 3 (\circ), mM ATP. Product formation at each concentration of ATP was plotted as a function of time and fit to a single exponential equation (eq. 1) to yield the observed rate (k_{obs}). (B) Observed rates of adenylylation were plotted as a function of [ATP] and fit to eq. 2 to determine the first-order adenylylation rate constant (k_{aden}) and apparent equilibrium dissociation constant (K_{Dapp}) for p-tRNA^{His}.

Figure S3: Single turnover GTP dependence of nucleotidyl transfer at pH 7.5. (A) Reactions were carried out with 15 μ M yThg1 and limiting p*pp-tRNA^{His} in the presence of 0.4 (×), 1.0 (\blacksquare), 10 (+), 25 (\bullet), 50 (\diamond), 100 (\triangle), 200 (\circ), and 500 (\square) μ M GTP. Product formation at each concentration of GTP was plotted as a function of time and fit to a single exponential equation (eq. 1) to yield the observed rate (k_{obs}). (B) Observed rates of nucleotidyl transfer were

plotted as a function of [GTP] and fit to eq. 2 to determine the first-order nucleotidyl transfer rate constant (k_{ntrans}) and apparent equilibrium dissociation constant (K_{Dapp}) for GTP.

Figure S4: Single turnover analysis of adenylylation and nucleotidyl transfer catalyzed by S76A yThg1. (A) Adenylylation reactions were performed with 15 μ M yS76A and limiting 5'- [32 P]tRNA^{His} in the presence of 0.075 (\blacktriangle), 0.25 (\blacksquare), 0.5 (\blacklozenge), 1 (+), 3 (\square), and 5 (\blacklozenge) mM ATP. Product formation at each concentration of ATP was plotted as a function of time and fit to a single exponential equation (eq. 1) to yield the observed rate (k_{obs}). (B) Nucleotidyl transfer reactions were carried out with 15 μ M yS76A and limiting p*pp-tRNA^{His} in the presence of 5 (\blacklozenge), 15 (\square), 75 (\blacktriangle), and 250 (\lozenge) μ M GTP. Product formation at each concentration of GTP was plotted as a function of time and fit to a single exponential equation (eq. 1) to yield the observed rate (k_{obs}).

Figure S1

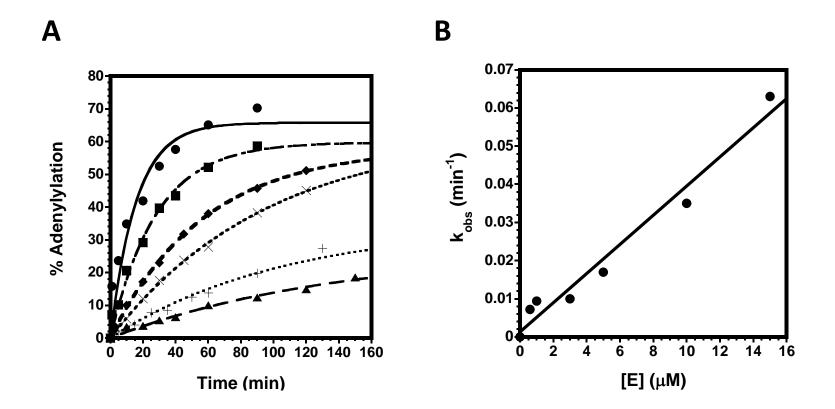


Figure S2

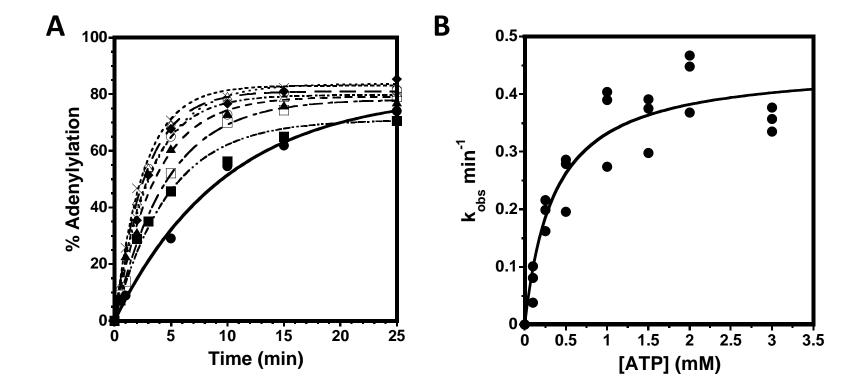


Figure S3

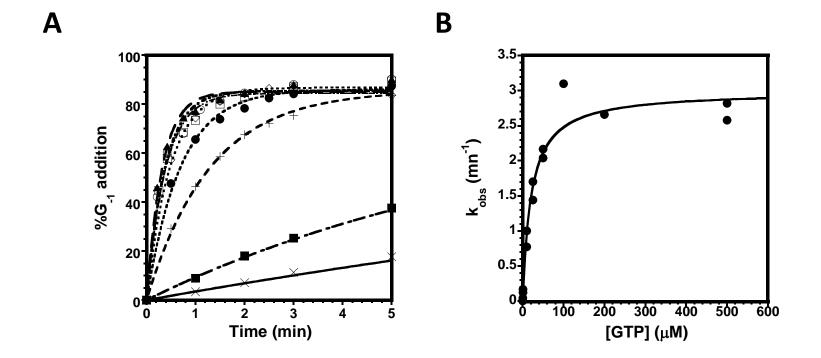
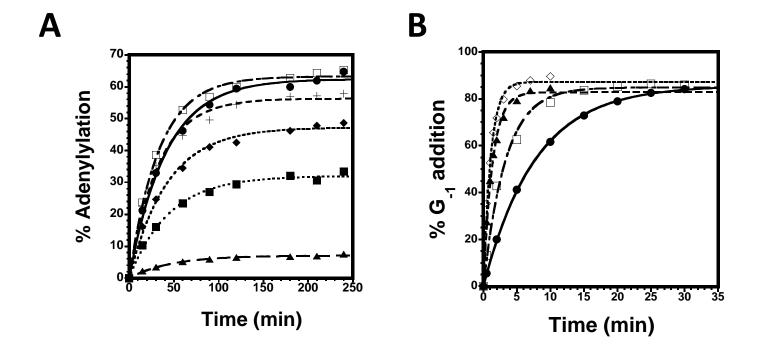



Figure S4

