Highly Efficient Syntheses of Azetidines, Pyrrolidines and Indolines via Palladium

Catalyzed Intramolecular Amination of $C(sp^3)$ and $C(sp^2)$ -H Bonds at γ and δ Positions

Gang He, Yingsheng Zhao, Shuyu Zhang, Chengxi Lu and Gong Chen*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.

1. **Reagents**: All commercial materials were used as received unless otherwise noted. The following solvents were obtained from a JC Meyer solvent dispensing system and used without further purification: THF, DMF, DCM and toluene. Flash chromatography was performed using 230-400 mesh SiliaFlash 60® silica gel (Silicycle Inc.). PhI(OAc)₂ (98%, Aldrich), Pd(OAc)₂ (98%, Aldrich), AcOH (99.7%, Mallinckrodt Chemicals) were used in the Pd-catalyzed reactions.

2. **Instruments**: NMR spectra were recorded on Bruker CDPX-300, DPX-300, DRX-400 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, br s = broad singlet, m = multiplet. High resolution ESI mass experiments were operated on a Waters LCT Premier instrument.

3. General procedure A for the preparation of picolinamide substrates 1, 8, 10, 16, 18, 21, 24, 26, 30, 35, 37, 44.

A mixture of amine (1.0 eq), picolinic acid (1.1 eq), EDCI (1.1 eq), HOBtH₂O (1.1 eq), and DIPEA (3.0 eq) in anhydrous DCM (0.2 M) was stirred at rt overnight. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give the desired picolinamide product.

4. General procedure B for the preparation of picolinamide substrates 5, 13, 28.

A mixture of amino alcohol (1.0 eq), picolinic acid (1.0 eq), EDCI (1.1 eq), and HOBtH₂O (1.1 eq) in anhydrous DMF (0.2 M) was stirred at room temperature overnight. Water was added and the mixture was extracted with ethyl acetate. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was dissolved in DCM; Ac₂O (2.0 eq) and Et₃N (2.0 eq) were added to the resulting solution. After stirring at rt for 8 hours, the solvent was removed and the residue was purified by silica gel flash chromatography to give the desired picolinamide product.

5. General procedure C: Synthesis of azetidines via Pd-catalyzed intramolecular amination of γ -C(sp³)–H bonds.

A mixture of picolinamide substrate (0.2 mmol, 1.0 eq), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 0.05 eq), $PhI(OAc)_2$ (161 mg, 0.5 mmol, 2.5 eq), and AcOH (23 μ L, 0.4 mmol, 2.0 eq) in anhydrous toluene (2 mL) in a 10 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 110 °C for 24 hours. The reaction mixture was cooled to rt, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give the cyclized azetidine product.

6. General procedure D: Synthesis of pyrrolidines via Pd-catalyzed intramolecular amination of δ -C(sp³)–H bonds.

A mixture of picolinamide (0.2 mmol, 1.0 eq), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 0.05 eq), $PhI(OAc)_2$ (161 mg, 0.5 mmol, 2.5 eq), AcOH (115 μ L, 2.0 mmol, 10.0 eq) in anhydrous toluene (2 mL) in a 10 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 110 °C for 24 hours. The reaction mixture was cooled to rt, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give the cyclized pyrrolidine product.

7. General procedure E: Synthesis of indolines via Pd-catalyzed intramolecular amination of δ -C(sp²)–H bonds.

A mixture of picolinamide (0.4 mmol, 1.0 eq), $Pd(OAc)_2$ (1.8 mg, 0.008 mmol, 0.02 eq), $PhI(OAc)_2$ (322 mg, 1.0 mmol, 2.5 eq), and toluene (4 mL) in a 10 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 60 °C for 24 hours. The reaction mixture was cooled to rt,

and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give the cyclized product.

8. ¹H-NMR assay for the screening reactions of substrate 1.

The screening reactions of substrate 1 were carried out following the general procedure C under the conditions specified in Table 1 in a 10 mL glass vial (purged with different gas, sealed with PTFE cap) (0.2 mmol scale). The reaction mixture was then cooled to rt, diluted with CHCl₃, filtered through a short celite pad, and concentrated *in vacuo*. The resulting residue was dissolved in 0.5 mL of CDCl₃ and 0.2 mmol of Cl₂CHCHCl₂ was added as an internal standard. The distributions of compounds 1, 2(cis and trans isomers), 3, 4 were analyzed based on the distinct chemical shifts of β -Hs of different products in ¹H-NMR of the resulting mixture. More than 2 experiments were performed for each condition.

9. Characterization of compounds 1-45:

All the azetidine and pyrrolidine products show two sets of rotamer signals in ¹H and ¹³C-NMR spectra at rt. The <u>ratio</u> of these two sets of signal changes in different solvent such as $CDCl_3$ and $DMSO-d_6$.

Compound **1** was prepared following the standard coupling procedure A in 90% yield. ¹H NMR (CDCl₃, 300 MHz) δ 8.61 (m, 2H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.87 (m, 1H), 7.48 (m, 1H), 4.78 (dd, *J* = 5.1, 9.1 Hz, 1H), 3.79 (s, 3H), 2.37 (m, 1H), 1.05 (d, *J* = 2.1 Hz, 3H), 1.03 (d, *J* = 2.1 Hz, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 172.35, 164.42, 149.67, 148.55, 137.59, 126.67, 122.48, 57.58, 52.33, 31.70, 19.38, 18.14; HRMS Calcd for C₁₂H₁₇N₂O₃ [M+H⁺]: 237.1239; Found: 237.1218.

Compound 2-cis isomer was isolated in 74% yield following the general procedure C with 2.5 mol% of Pd(OAc)₂. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: 2.5/1) δ 8.57 (d, J = 4.6 Hz, 0.28H), 8.43 (m, 0.72H), 8.14 (m, 1H), 7.80 (m, 1H), 7.37 (m, 1H), 5.08 (d, J = 4.9 Hz, 0.72H), 4.94 (dd, J = 9.3, 8.9 Hz, 0.28H), 4.51 (d, J =4.9 Hz, 0.28H), 4.42 (m, 0.72H), 4.29 (dd, J = 5.4, 10.0 Hz, 0.28H), 3.78 (s, 0.86H), 3.77 (m, 0.72H), 3.64 (s, 2.14H), 2.76 (m, 1H), 1.41 (m, 3H);

¹³C NMR (CDCl₃, 75.5 MHz) δ 171.47, 170.96, 164.92, 164.50, 151.47, 151.28, 148.06, 147.42, 136.87, 136.68, 125.49, 125.41, 123.97, 123.53, 72.28, 66.57, 60.37, 54.05, 52.25, 51.94, 30.75, 30.52, 19.43, 19.19; HRMS Calcd for $C_{12}H_{15}N_2O_3$ [M+H⁺]: 235.1083; Found: 235.1090.

Compound **2**-trans isomer was isolated in 12% yield following the general procedure C with 2.5 mol% of Pd(OAc)₂. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: 2.5/1) δ 8.58 (d, *J* = 4.0 Hz, 0.31H), 8.46 (m, 0.78H), 8.17 (m, 1H), 7.83 (m, 1H), 7.39 (m, 1H), 5.62 (dd, *J* = 0.8, 9.2 Hz, 0.77H), 5.05 (d, *J* = 9.5 Hz, 0.29H), 4.85 (dd, *J* = 8.4, 10.0 Hz, 0.29H), 4.40 (m, 0.29H), 4.34 (dd, *J* = 8.6, 9.8 Hz, 0.75H), 3.91 (m, 0.76H), 3.81 (s, 0.8H), 3.64 (s, 2.2H), 3.22 (m, 1H), 1.19 (m, 1H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.59, 164.91, 151.90, 148.52, 147.98, 137.30, 137.16, 125.92, 125.80, 124.47, 124.04, 70.26, 64.39, 54.95, 52.35, 52.03, 31.38, 28.83, 28.46, 15.54, 15.20; HRMS Calcd for C₁₂H₁₅N₂O₃ [M+H⁺]: 235.1083; Found: 235.1064.

3

Compound **3** as diastereomeric mixture was isolated in 2% yield following the general procedure C with 2.5 mol% of Pd(OAc)₂. ¹H NMR (CDCl₃, 300 MHz) δ 8.62 (m, 1H), 8.21 (m, 1H), 7.90 (m, 1H), 7.49 (m, 1H), 4.96 (m, 1H), 4.20 (m, 2H), 3.80 (s, 3H), 2.65 (m, 1H), 2.19 (m, 3H), 1.11 (m, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 172.17, 172.02, 171.24, 164.86, 149.71, 148.71, 137.78, 126.88, 122.81, 66.03, 54.88, 53.80, 52.93, 52.82, 36.10, 35.93, 31.38, 21.35, 21.28, 14.48, 12.66; HRMS Calcd for C₁₄H₁₉N₂O₅ [M+H⁺]: 295.1294; Found: 295.1291.

Compound **4** was isolated in 8% yield following the general procedure C with 2.5 mol% of Pd(OAc)₂. ¹H NMR (CDCl₃, 300 MHz): δ 8.58 (m, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.86 (m, 1H), 7.48 (m, 1H), 5.14 (dd, *J* = 4.2, 9.1 Hz, 1H), 4.33 (dd, *J* = 5.9, 11.7 Hz, 1H), 4.21 (m, 3H), 3.79 (s, 3H), 2.86 (m, 1H), 2.14 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 171.52, 171.10, 170.97, 164.88, 149.48, 148.69, 137.84, 127.02, 122.87, 62.34, 62.24, 53.12, 51.77, 40.25, 21.23, 21.20; HRMS Calcd for C₁₆H₂₁N₂O₇ [M+H⁺]: 253.1349; Found: 253.1347.

Compound **5** was prepared following the standard procedure B in 40% yield. ¹H NMR (CDCl₃, 400 MHz): δ 8.56 (m, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.86 (td, *J* = 7.7, 1.6 Hz, 1H), 7.44 (m, 1H), 4.28 (m, 3H), 2.04 (s, 3H), 2.01 (m, 1H), 1.02 (d, *J* = 4.0 Hz, 3H), 1.00 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 171.31, 164.55, 150.08, 148.46, 137.71,

126.57, 122.67, 64.97, 53.65, 29.99, 21.20, 19.85, 18.84; HRMS Calcd for $C_{13}H_{19}N_2O_3$ [M+H⁺]: 251.1396; Found: 251.1388.

6

Compound **6** was prepared in 82% yield following the standard procedure C. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1.3:1</u>) δ 8.55 (d, *J* = 4.7 Hz, 2.3H), 8.07 (d, *J* = 7.9 Hz, 2.3H), 7.80 (td, *J* = 7.7, 1.8 Hz, 2.3H), 7.35 (m, 2.3H), 4.81 (m, 2.3H), 4.55-4.20 (m, 6.9H), 4.08 (dd, *J* = 5.5, 10.2 Hz, 1.3H), 3.68 (dd, *J* = 4.6, 10.2 Hz, 1H), 2.59 (m, 2.3H), 2.07 (s, 3.9H), 2.00 (s, 3H), 1.32 (d, *J* = 7.0 Hz, 3H), 1.24 (d, *J* = 6.9 Hz, 3.9H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 171.30, 171.23, 166.39, 166.11, 152.26, 152.13, 148.48, 148.46, 137.30, 137.16, 125.92, 125.78, 124.39, 124.19, 71.02, 67.17, 65.53, 64.09, 60.33, 54.17, 29.21, 28.59, 21.28, 21.19, 19.56, 19.19; HRMS Calcd for C₁₃H₁₇N₂O₃ [M+H⁺]: 249.1239; Found: 249.1221.

Compound **8** was prepared in 63% yield following the standard coupling procedure **A**. ¹H NMR (CDCl₃, 300 MHz) δ 8.66 (s, 1H), 8.63 (d, *J* = 4.6 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.89 (t, *J* = 7.7 Hz, 1H), 7.48 (m, 1H), 4.69 (d, *J* = 9.8Hz, 1H), 3.78 (s, 3H), 1.10 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.02, 164.29, 149.76, 148.62, 137.64, 126.69, 122.62, 60.62, 52.10, 35.33, 26.69; HRMS Calcd for C₁₃H₁₉N₂O₃ [M+H⁺]: 251.1396; Found: 251.1384.

Compound **9** was prepared in 91% yield following the standard procedure **C**. ¹H NMR (CDCl₃, 400 MHz, ratio of rotamers: <u>1:0.36</u>): δ 8.56 (d, J = 4.8 Hz, 0.36H), 8.43 (m, 1H), 8.16 (m, 1.36H), 7.80 (m, 1.36H), 7.36 (dd, J = 4.9, 7.4 Hz, 0.36H), 7.30 (m, 1H), 5.18 (s, 1H), 4.60 (s, 0.36H), 4.50 (d, J = 9.7 Hz, 0.36H), 4.38 (d, J = 9.8 Hz, 0.36H), 3.97 (d, J = 9.6 Hz, 1H), 3.87 (d, J = 9.5 Hz, 1H), 3.78 (s, 1.08H), 3.62 (s, 3H), 1.46 (s, 3H), 1.43 (s, 1.08H), 1.19 (s, 1.08H), 1.16 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 170.58, 169.78, 165.45, 165.17, 151.97, 151.86, 148.46, 147.89, 137.27, 137.12, 125.92, 125.81, 124.37, 123.96, 75.84, 69.99, 66.39, 60.34, 52.23, 51.96, 36.34, 36.02, 28.66, 28.40, 23.03, 22.73; HRMS Calcd for C₁₃H₁₇N₂O₃ [M+H⁺]: 249.1239; Found: 249.1234.

Compound **10** was prepared in 84% yield following the standard procedure **A**. ¹H NMR (CDCl₃, 300 MHz) δ 8.58 (m, 1H), 8.49 (d, *J* = 6.8 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.86 (td, *J* = 7.7, 1.7 Hz, 1H), 7.45 (m, 1H), 4.79 (m, 1H), 3.76 (s, 3H), 2.06-1.97 (m, 1H), 1.95-1.81 (m, 1H), 1.01 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.87, 164.43, 149.75, 148.59, 137.63,

126.70, 122.56, 53.74, 52.61, 26.09, 10.10; HRMS Calcd for $C_{11}H_{15}N_2O_3$ [M+H⁺]: 223.1083; Found: 223.1069.

1

Compound **11** was prepared in 25% yield following the standard procedure C. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: 2.5:1) δ 8.59 (d, *J* = 4.4 Hz, 0.4H), 8.45 (d, *J* = 4.6 Hz, 1H), 8.16 (m, 1.4H), 7.83 (m, 1.4H), 7.40 (m, 1.4H), 5.55 (dd, *J* = 5.4, 9.3 Hz, 1H), 4.99 (dd, *J* = 5.4, 9.4 Hz, 0.4H), 4.88 (m, 0.4H), 4.76 (m, 0.4H), 4.38 (m, 1H), 4.24 (m, 1H), 3.81 (s, 1.2H), 3.67 (s, 3H), 2.76 (m, 1.4H), 2.36 (m, 1.4H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.33, 171.86, 165.14, 164.78, 151.84, 151.67, 148.57, 147.92, 137.36, 137.17, 125.98, 125.90, 124.39, 123.94, 65.96, 60.34, 54.07, 52.77, 52.45, 47.76, 22.09, 21.83; HRMS Calcd for C₁₁H₁₃N₂O₃ [M+H⁺]: 221.0926; Found: 221.0924.

Compound **12** was prepared in 70% yield following the standard procedure C. ¹H NMR (CDCl₃, 400 MHz) δ 8.65 (d, J = 7.8 Hz, 1H), 8.58 (d, J = 4.7 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.86 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 6.5 Hz, 1H), 4.94 (m, 1H), 4.26 (m, 2H), 3.78 (s, 3H), 2.38 (m, 1H), 2.26 (m, 1H), 2.05 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.34, 171.10, 164.57, 149.53, 148.63, 137.74, 126.90, 122.66, 61.06, 52.91, 50.33, 31.32, 21.18; HRMS Calcd for C₁₃H₁₇N₂O₅ [M+H⁺]: 281.1137; Found: 281.1116.

Compound **13** was prepared in 32% yield using the standard procedure **B**. ¹H NMR (CDCl₃, 300 MHz) δ 8.56 (m, 1H), 8.20 (td, J = 1.0, 7.9 Hz, 1H), 8.13 (d, J = 6.1 Hz, 1H), 7.86 (td, J = 7.7, 1.7 Hz, 1H), 7.44 (m, 1H), 4.30 (m, 3H), 2.03 (s, 3H), 1.81 (m, 1H), 1.64 (m, 1H), 1.29 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.31, 164.41, 150.09, 148.44, 137.68, 126.53, 122.63, 64.79, 52.61, 36.53, 25.72, 21.19, 15.87, 11.67; HRMS Calcd for C₁₄H₂₁N₂O₃ [M+H⁺]: 265.1552; Found: 265.1547.

Compound **14** was isolated in 70% yield following the standard procedure C. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1.3:1</u>) δ 8.56 (m, 2.3H), 8.07 (m, 2.3H), 7.82 (td, *J* = 7.7, 1.7 Hz, 2.3H), 7.37 (m, 2.3H), 5.33 (m, 1H), 4.84 (m, 1.3H), 4.65-4.47 (m, 4.9H), 4.37-4.24 (m, 3.3H), 3.84 (t, *J* = 8.3 Hz, 1H), 2.93-2.72 (m, 2.3H), 2.07 (s, 3.9H), 1.96 (s, 3H), 1.75-1.56 (m, 4.6H), 0.92 (m, 6.9H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.99, 170.84, 166.25, 165.85, 152.33, 152.27,

148.54, 148.42, 137.27, 137.17, 125.86, 125.76, 124.30, 124.22, 66.17, 63.01, 61.88, 61.77, 59.72, 54.04, 35.70, 35.51, 22.20, 22.12, 21.38, 21.23, 12.14, 12.10; HRMS Calcd for $C_{14}H_{19}N_2O_3$ [M+H⁺]: 263.1396; Found: 263.1396.

Compound **15** was isolated in 8% yield following the standard procedure C. ¹H NMR (CDCl₃, 300 MHz) δ 8.56 (m, 1H), 8.36 (d, *J* = 9.5 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.88 (td, *J* = 7.7, 7.7 Hz, 1H), 7.46 (m, 1H), 4.61 (m, 1H), 4.27 (d, *J* = 5.4 Hz, 2H), 4.22 (m, 1H), 4.12 (m, 1H), 2.11 (s, 3H), 2.05 (s, 3H), 2.02 (m, 1H), 1.63 (m, 1H), 1.47 (m, 1H), 1.03 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 171.41, 171.36, 164.45, 150.00, 148.51, 137.86, 126.75, 122.82, 64.46, 64.26, 49.55, 41.61, 21.38, 21.30, 21.25, 12.29; HRMS Calcd for C₁₆H₂₃N₂O₅ [M+H⁺]: 323.1607; Found: 323.1605.

Compound **16** was prepared in 95% yield following the standard procedure **A**. ¹H NMR (CDCl₃, 400 MHz) δ 8.68 (d, *J* = 9.0 Hz, 1H), 8.62 (d, *J* = 4.7 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.85 (td, *J* = 7.7, 1.2 Hz, 1H), 7.44 (m, 1H), 4.71 (d, *J* = 9.4 Hz, 1H), 4.35 (m, 1H), 3.73 (s, 3H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.17 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.57, 165.18, 149.92, 148.79, 137.53, 126.65, 122.67, 74.48, 68.05, 58.46, 52.56, 28.73, 21.31; HRMS Calcd for C₁₅H₂₃N₂O₄ [M+H⁺]: 295.1658; Found: 295.1635.

Compound **17** was isolated in 79% yield following the standard procedure C. ¹H NMR (CDCl₃, 400 MHz, ratio of rotamers: <u>3:1</u>) δ 8.57 (d, *J* = 4.6 Hz, 1H), 8.45 (d, *J* = 4.7 Hz, 3H), 8.14 (m, 4H), 7.80-7.75 (m, 4H), 7.36-7.29 (m, 4H), 5.64 (dd, *J* = 1.0, 7.5 Hz, 3H), 5.09 (d, *J* = 7.7 Hz, 1H), 4.98 (dd, *J* = 6.6, 10.0 Hz, 1H), 4.74 (m, 4H), 4.65 (m, 1H), 4.41 (dd, *J* = 7.1, 10.1 Hz, 3H), 4.21 (m, 3H), 3.79 (s, 3H), 3.65 (s, 9H), 1.17 (s, 36H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 169.22, 168.34, 165.10, 164.95, 151.90, 151.65, 148.49, 148.09, 137.26, 137.11, 125.93, 125.86, 124.31, 123.90, 75.51, 75.40, 73.99, 68.66, 64.27, 63.46, 63.07, 58.81, 52.26, 52.07, 31.28, 28.21; HRMS Calcd for C₁₅H₂₁N₂O₄ [M+H⁺]: 293.1501; Found: 293.1484.

NHPA 18

Compound **18** was prepared in 67% yield following the standard procedure **A**. ¹H NMR (CDCl₃, 300 MHz) δ 8.53 (d, J = 4.1 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.11 (s, 1H), 7.85 (td, J = 7.7, 5.2 Hz, 1H), 7.41 (dd, J = 5.2, 6.9 Hz, 1H), 3.44-3.23 (m, 2H), 1.72 (m, 1H), 1.51 (m, 1H), 1.26 (m, 1H), 0.96 (m, 6H);); ¹³C NMR (CDCl₃, 75.5 MHz) δ 164.23, 150.02, 147.93, 137.25, 125.95,

122.12, 44.96, 35.05, 27.00, 17.22, 11.28; HRMS Calcd for $C_{11}H_{17}N_2O$ [M+H⁺]: 193.1341; Found: 193.1322.

Compound **19** was isolated in 68% yield following the standard procedure C. ¹H NMR (CDCl₃, 300 MHz, no rotamers observed) δ 8.58 (d, J = 4.4 Hz, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.82 (td, J = 7.7, 1.6 Hz, 1H), 7.37 (m, 1H), 4.78 (dd, J = 9.5, 10.7 Hz, 1H), 4.33 (m, 2H), 3.86 (dd, J = 5.6, 10.2 Hz, 1H), 2.61 (m, 1H), 1.71 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 165.18, 152.03, 147.90, 136.61, 125.03, 123.61, 59.81, 53.83, 31.48, 27.28, 11.06; HRMS Calcd for C₁₁H₁₅N₂O [M+H⁺]: 191.1184; Found: 191.1168.

20

Compound **20** was isolated in 12% yield following the standard procedure C. ¹H NMR (CDCl₃, 400 MHz) δ 8.56 (m, 1H), 8.36 (s, 1H), 8.21 (dd, J = 0.7, 5.9 Hz, 1H), 7.88 (m, 1H), 7.45 (m, 1H), 4.24 (dd, J = 4.4, 11.3 Hz, 1H), 4.10 (dd, J = 4.9, 11.3 Hz, 1H), 3.64 (m, 1H), 3.48 (m, 1H), 2.12 (s, 3H), 1.97 (m, 1H), 1.50 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 171.20, 164.39, 148.02, 137.31, 126.08, 122.18, 65.52, 40.69, 39.65, 22.03, 20.89, 11.34; HRMS Calcd for C₁₃H₁₉N₂O₃ [M+H⁺]: 251.1396; Found: 251.1380.

Compound **21** was prepared in 87% yield following the standard coupling procedure **A**. ¹H NMR (CDCl₃, 400 MHz) δ 8.58 (m, 1H), 8.36 (d, *J* = 7.6 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.85 (t, *J* = 7.7 Hz, 1H), 7.44 (m, 1H), 4.85 (m, 1H), 3.75 (s, 3H), 1.79-1.69 (m, 3H), 0.98 (t, *J* = 4.5 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 173.47, 164.45, 149.69, 148.56, 137.64, 126.71, 122.62, 52.58, 51.11, 41.89, 25.22, 23.20, 22.15; HRMS Calcd for C₁₃H₁₉N₂O₃ [M+H⁺]: 251.1396; Found: 251.1383.

Compound **22-trans** was isolated in 72% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1:0.86</u>) δ 8.61 (dd, J = 1.0, 5.4 Hz, 0.86H), 8.47 (m, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 7.9 Hz, 0.86H), 7.83 (m, 1.86H), 7.39 (m, 1.86H), 5.18 (m, 1H), 4.75 (dd, J = 2.6, 8.8 Hz, 0.86H), 4.13 (m, 1.86H), 3.78 (s, 2.6H), 3.66 (s, 3H), 3.60 (dd, J = 9.0, 11.0 Hz, 0.86H), 3.36 (dd, J = 9.2, 11.9 Hz, 1H), 2.50 (m, 1.86H), 2.27 (m, 1H), 2.16 (m, 0.86H), 1.99 (m, 1.86H), 1.13 (d, J = 6.5 Hz, 3H), 1.07 (d, J = 6.6 Hz, 2.6H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.91, 173.10, 165.55, 165.74, 153.72, 152.93, 148.26, 147.49, 137.31, 137.23, 125.50, 124.99, 124.78, 62.53, 60.57, 56.91, 55.47, 52.63, 52.41, 39.82, 36.77, 33.31, 30.01, 17.62, 17.46; HRMS Calcd for C₁₃H₁₇N₂O₃ [M+H⁺]: 249.1239; Found: 249.1232.

Compound **22**-cis was isolated in 10% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1:1.4</u>) δ 8.63 (d, *J* = 3.4 Hz, 1.4H), 8.47 (d, *J* = 4.6 Hz, 1H), 8.06 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 1.4H), 7.82 (m, 2.4H), 7.39 (m, 2.4H), 5.28 (t, *J* = 8.4 Hz, 1H), 4.66 (dd, *J* = 7.7, 9.8 Hz, 1.4H), 4.25 (m, 2.5H), 3.78 (s, 4.2H), 3.58 (m, 1.4H), 3.51 (s, 3H), 3.30 (t, *J* = 10.0 Hz, 1H), 2.62 (m, 2.4H), 2.37 (m, 2.4H), 1.74 (m, 2.4H), 1.14 (dd, *J* = 8.0, 6.7 Hz, 7.2H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.89, 173.11, 166.49, 165.92, 153.63, 153.35, 148.41, 147.43, 137.39, 137.21, 125.53, 125.40, 125.08, 124.84, 62.30, 61.09, 57.15, 55.72, 52.68, 52.31, 40.33, 37.30, 34.79, 31.53, 17.53, 17.01; HRMS Calcd for C₁₃H₁₇N₂O₃ [M+H⁺]: 249.1239; Found: 249.1225.

Compound **24** was prepared in 99% yield following the standard coupling procedure **A**. ¹H NMR (CDCl₃, 400 MHz) δ 8.57 (dd, J = 0.7, 4.1 Hz, 1H), 8.31 (d, J = 8.2 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.85 (td, J = 7.8, 1.6 Hz, 1H), 7.43 (m, 1H), 4.85 (m, 1H), 3.73 (s, 3H), 1.94 (m, 1H), 1.72 (m, 1H), 0.99 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 173.85, 164.16, 149.73, 148.61, 137.65, 126.71, 122.65, 52.69, 50.34, 46.38, 31.07, 29.94; HRMS Calcd for C₁₄H₂₁N₂O₃ [M+H⁺]: 265.1552; Found: 265.1528.

Compound **25** was isolated in 86% yield following the standard procedure C. ¹H NMR (CDCl₃, 400 MHz, ratio of rotamers: <u>1:1.3</u>) δ 8.61 (d, *J* = 4.7 Hz, 1.3H), 8.45 (d, *J* = 4.7 Hz, 1H), 8.06 (d, *J* = 7.9 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1.3H), 7.80 (m, 2.3H), 7.36 (m, 1.3H), 7.31 (m, 1H), 5.36 (t, *J* = 8.4 Hz, 1H), 4.73 (dd, *J* = 8.1, 9.5 Hz, 1.3H), 3.85 (m, 1H), 3.77 (m, 2.6H), 3.76 (s, 3.9H), 3.50 (s, 3H), 3.48 (d, *J* = 11.8 Hz, 1H), 2.24 (m, 1H), 2.11 (dd, *J* = 8.0, 12.5 Hz, 1.3H), 1.91 (m, 2.3H), 1.63 (m, 9.9H), 1.03 (s, 3.9H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.99, 173.13, 166.75, 166.09, 153.51, 153.26, 148.39, 147.39, 137.35, 137.18, 125.53, 125.39, 125.10, 124.90, 62.72, 61.76, 61.18, 60.35, 52.66, 52.31, 45.76, 42.55, 39.66, 36.40, 26.76, 26.34, 26.30, 26.11; HRMS Calcd for C₁₄H₁₉N₂O₃ [M+H⁺]: 263.1396; Found: 263.1387.

Compound **26** was prepared in 71% yield following the standard coupling method **A**. ¹H NMR (CDCl₃, 300 MHz) δ 8.57 (m, 1H), 8.44 (d, *J* = 10.4 Hz, 1H), 8.16 (d, *J* = 6.9 Hz, 1H), 7.84 (td, *J* = 7.7, 1.7 Hz, 1H), 7.43 (m, 1H), 4.81 (m, 1H), 3.74 (s, 3H), 1.96 (m, 2H), 1.46 (m, 1H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.11, 164.40, 149.70, 148.57, 137.64, 126.72, 122.57, 56.62, 52.39, 34.92, 19.09, 13.97; HRMS Calcd for C₁₂H₁₇N₂O₃ [M+H⁺]: 237.1239; Found: 237.1230.

Compound **27** was isolated in 17% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 400 MHz, ratio of rotamer: <u>1:0.8</u>) δ 8.60 (m, 0.8H), 8.47 (m, 1H), 8.59 (dd, *J* = 0.9, 7.9 Hz, 1H), 7.92 (dd, *J* = 0.9, 7.9 Hz, 0.8H), 7.81 (m, 1.8H), 7.37 (m, 1.8H), 5.16 (m, 1H), 4.70 (m, 0.8H), 4.04-3.80 (m, 3.6H), 3.78 (s, 2.4H), 3.64 (s, 3H), 2.32-2.22 (m, 1.8H), 2.18-2.13 (m, 1H), 2.10-2.00 (m, 1.4H), 1.99-1.92 (m, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.84, 173.04, 166.60, 165.85, 153.71, 153.06, 148.27, 147.49, 137.29, 137.17, 125.47, 124.90, 124.71, 61.95, 60.46, 52.57, 52.36, 50.10, 48.64, 32.17, 29.23, 25.82, 22.35; HRMS Calcd for C₁₂H₁₅N₂O₃ [M+H⁺]: 235.1083; Found: 235.1075.

NHPA ...,_OAc 28

Compound **28** was prepared in 49% yield following the standard procedure **B**. ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (d, *J* = 4.3 Hz, 1H), 8.20 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 6.2 Hz, 1H), 4.98 (m, 1H), 4.17 (d, *J* = 4.8 Hz, 2H), 2.06 (s, 3H), 1.72 (m, 1H), 1.60 (m, 1H), 1.46 (m, 1H), 0.96 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.32, 164.33, 150.09, 148.43, 137.72, 126.57, 122.67, 66.88, 46.85, 41.05, 25.17, 23.46, 22.44, 21.20; HRMS Calcd for C₁₄H₂₁N₂O₃ [M+H⁺]: 265.1552; Found: 265.1545.

Compound **29** was prepared in 72% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1:1.6</u>) δ 8.58 (m, 2.6H), 7.86 (m, 5.2H), 7.35 (m, 2.6H), 5.15 (m, 1H), 4.62 (m, 1.6H), 4.35 (m, 3.2H), 4.05 (m, 2.6H), 3.94 (m, 2H), 3.33 (m, 2.6H), 2.50 (m, 2.6H), 2.06 (s, 4.8H), 2.02 (m, 2.6H), 1.87 (s, 3H), 1.81 (m, 2.6H), 1.13 (d, *J* = 6.5 Hz, 3H), 1.01 (d, *J* = 6.6 Hz, 4.8H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 171.34, 170.95, 167.52, 166.83, 154.70, 154.41, 148.41, 148.25, 137.34, 137.29, 125.27, 125.18, 124.74, 124.25, 65.87, 64.37, 57.41, 57.06, 56.68, 54.63, 37.65, 35.60, 32.64, 29.69, 21.38, 21.15, 18.73, 18.22; HRMS Calcd for C₁₄H₁₉N₂O₃ [M+H⁺]: 263.1396; Found: 263.1371.

Compound **30** was prepared in 57% yield following the standard coupling procedure **A**. ¹H NMR (CDCl₃, 300 MHz) δ 10.24 (s, 1H), 8.56 (d, *J* = 4.2 Hz, 1H), 8.25 (d, *J* = 7.8 Hz, 1H), 8.07 (d, *J* = 7.9 Hz, 1H), 7.84 (td, *J* = 7.7, 1.3 Hz, 1H), 7.41 (m, 2H), 7.23 (M, 1H), 7.09 (m, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 161.74, 150.14, 148.12, 141.01, 137.63, 135.40, 126.78, 126.38, 126.29, 125.17, 124.96, 122.48, 34.48, 30.48; HRMS Calcd for C₁₆H₁₉N₂O [M+H⁺]: 255.1497; Found: 255.1475.

Compound **31** was isolated in 61% yield following the standard procedure **D** with 10 mol% of Pd(OAc)₂. ¹H NMR (CDCl₃, 300 MHz, no rotamers observed) δ 8.58 (d, *J* = 4.5 Hz, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.85 (m, 2H), 7.35(t, *J* = 5.2 Hz, 1H), 7.23 (m, 1H), 7.13 (m, 2H), 4.02 (s, 2H), 1.25 (s, 6H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 154.91, 148.46, 142.39, 141.85, 137.49, 128.01, 125.45, 125.09, 124.73, 122.29, 118.35, 65.46, 41.03, 28.61; HRMS Calcd for C₁₆H₁₇N₂O [M+H⁺]: 253.1341; Found: 253.1323.

Compound 33

Compound **32** was prepared from compound **32-0** based on the known procedure.¹ Compound **33** was isolated in 56% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1:1.2</u>) δ 8.67 (t, *J* = 4.7 Hz, 2.2H), 8.00 (m, 2.2H), 7.84 (m, 2.2H), 7.40 (dd, *J* = 5.0, 6.6 Hz, 2.2H), 7.29 (m, 2.2H), 6.93 (d, *J* = 7.5 Hz, 1.2H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.77 (dd, *J* = 2.5, 8.1 Hz, 2.2H), 5.22 (s, 2H), 5.13 (s, 2.4H), 5.04 (s, 2.4H), 4.99 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3.6H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 166.91, 166.57, 155.43, 155.06, 154.17, 148.57, 148.34, 139.74, 137.79, 137.32, 137.29, 129.65, 129.62, 126.01, 125.39, 125.34, 124.71, 124.46, 124.26, 115.20, 114.84, 109.12, 109.03, 55.78, 55.72, 55.61, 54.29, 53.36, 52.10; HRMS Calcd for C₁₅H₁₅N₂O₂ [M+H⁺]: 255.1134; Found: 255.1116.

Compound **34**

Compound **34** was isolated in 30% yield following the standard procedure **D**. ¹H NMR (CDCl₃, 300 MHz) δ 8.50 (dd, J = 0.7, 3.9 Hz, 1H), 8.38 (s, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.84 (td, J = 7.7, 1.7 Hz, 1H), 7.40 (m, 1H), 7.31 (m, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 5.35 (s, 2H), 4.77 (d, J = 5.9 Hz, 1H), 3.90 (s, 3H), 2.05 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 171.12, 164.15, 158.91, 150.53, 148.43, 137.69, 136.37, 129.32, 126.43, 126.00, 122.92, 122.70, 111.46, 65.02, 56.24, 35.13, 21.44; HRMS Calcd for C₁₇H₁₉N₂O₄ [M+H⁺]: 315.1345; Found: 315.1345.

Compound **35** was prepared in 98% yield following the standard amide coupling procedure **A**. ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (m, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.85 (td, *J* = 7.7, 1.7 Hz, 1H), 7.43 (m, 1H), 7.30 (m, 3H), 7.20 (m, 2H), 5.10 (m, 1H), 3.72 (s, 3H), 3.29 (m, 2H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 172.18, 164.41, 149.63, 148.72, 137.69, 136.49, 129.68, 128.99, 127.48, 126.84, 122.62, 53.90, 52.73, 38.62; HRMS Calcd for C₁₆H₁₇N₂O₃ [M+H⁺]: 285.1239; Found: 285.1226.

Compound **36** was isolated in 81% yield following the standard procedure **E**. ¹H NMR (DMSOd₆, 300 MHz, no rotamers observed) δ 8.56 (d, *J* = 4.3 Hz, 1H), 8.28 (d, *J* = 8.2 Hz, 1H), 8.03 (m, 2H), 7.58 (m, 1H), 7.53 (m, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 5.67 (dd, *J* = 2.3, 10.9 Hz, 1H), 3.70 (m, 1H), 3.60 (s, 3H), 3.19 (dd, *J* = 2.3, 16.8 Hz, 1H); ¹³C NMR (DMSO-d₆, 100 MHz) δ 173.05, 165.84, 153.40, 148.20, 144.26, 138.59, 130.66, 128.25, 128.11, 126.71, 125.51, 125.19, 118.00, 62.94, 52.95, 33.98; HRMS Calcd for C₁₆H₁₅N₂O₃ [M+H⁺]: 283.1083; Found: 283.1063.

Compound **37** was prepared in 97% yield following the standard amide coupling procedure A. ¹H NMR (CDCl₃, 400 MHz) δ 8.55 (m, 1H), ¹H NMR (CDCl₃, 400 MHz) δ 8.51 (d, *J* = 4.3 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 8.14 (s, 1H), 7.85 (td, *J* = 7.7, 1.5 Hz, 1H), 7.41 (m, 1H), 7.33 (m, 2H), 7.26 (m, 3H), 3.76 (dd, *J* = 6.8, 13.5 Hz, 2H), 2.97 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 164.75, 150.30, 148.47, 139.39, 137.67, 129.17, 128.99, 126.85, 126.51, 122.51, 41.20, 36.30; HRMS Calcd for C₁₄H₁₅N₂O [M+H⁺]: 227.1184; Found: 227.1179.

Compound **38** was isolated in 90% yield following the standard procedure **E**. ¹H NMR (DMSOd₆, 300 MHz) δ 8.66 (d, *J* = 4.5 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.03 (td, *J* = 7.8, 1.6 Hz, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.58 (dd, *J* = 5.3, 6.9 Hz, 1H), 7.30 (m, 2H), 7.10 (m, 1H), 4.20 (t, *J* = 8.3 Hz, 2H), 3.13 (t, *J* = 8.3 Hz, 2H); ¹³C NMR (DMSO-d₆, 75.5 MHz) δ 166.57, 155.07, 149.07, 143.78, 138.34, 133.39, 127.83, 126.13, 125.81, 125.01, 124.39, 117.77, 50.83, 28.82; HRMS Calcd for C₁₄H₁₃N₂O [M+H⁺]: 225.1028; Found: 225.1021.

Compound **38** (50 mg, 0.22 mmol, 1.0 eq) was dissolved in a mixture of THF/MeOH/H₂O (1/0.5/0.5 mL); NaOH (14 mg, 0.33 mmol, 1.5 eq) was then added. The mixture was heated to 50 °C and stirred for 24 hours. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography to give the desired product **39**² in 83% yield. ¹H NMR (CDCl₃, 300 MHz) δ 7.15 (d, *J* = 7.2 Hz, 1H), 7.07 (m, 1H), 6.75 (m, 2H), 3.66 (s, 1H), 3.59 (t, *J* = 8.4 Hz, 2H), 3.08 (t, *J* = 8.3 Hz, 2H).

10. Application of the more easily removable PAre group.

Compound **43** was prepared in 84% yield using the standard amide coupling procedure **A** with compound **42**³. ¹H NMR (CDCl₃, 400 MHz) δ 8.53 (d, *J* = 8.3 Hz, 1H), 8.45 (d, *J* = 3.8 Hz, 1H), 8.26 (d, *J* = 7.6 Hz, 1H), 7.48 (dd, *J* = 4.7, 7.8 Hz, 1H), 5.29 (s, 2H), 4.75 (m, 1H), 3.75 (s, 3H), 1.78 (m, 3H), 0.96 (s, 15H), 0.13 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 173.75, 165.85, 146.10, 144.47, 140.32, 135.66, 126.59, 62.06, 52.65, 50.99, 41.84, 26.38, 25.36, 23.24, 22.36, 18.74, -4.95; HRMS Calcd for C₂₀H₃₅N₂O₄Si [M+H⁺]: 395.2366; Found: 395.2357.

Compound 44-trans (51%).

Compound **44-trans** was isolated in 51% yield following the standard procedure **D** without 10 equiv of AcOH. **44-cis** isomer was also obtained in 7% yield. ¹H NMR (CDCl₃, 300 MHz, ratio of rotamers: <u>1:1.8</u>) δ 8.46 (d, J = 4.7 Hz, 1.8H), 8.34 (d, J = 4.7 Hz, 1H), 8.02 (d, J = 7.9 Hz, 2.8H), 7.37 (m, 2.8H), 5.04 (m, 5.6H), 4.81 (dd, J = 2.0, 8.5 Hz, 1H), 4.72 (dd, J = 2.1, 8.9 Hz, 1.8H), 4.07 (dd, J = 7.8, 11.8 Hz, 1H), 3.76 (s, 5.4H), 3.57 (m, 1.8H), 3.53 (s, 3H), 3.28 (m, 2.8H), 2.49 (m, 2.8H), 2.17 (m, 2.8H), 1.97 (m, 2.8H), 1.12 (d, J = 6.6 Hz, 3H), 1.00 (d, J = 6.6 Hz, 5.4H), 0.93 (s, 25.2H), 0.11 (d, J = 2.8 Hz, 16.8H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.43, 172.78, 166.97, 166.94, 151.01, 149.96, 147.10, 146.10, 138.10, 136.67, 135.42, 135.21, 124.95, 124.87, 61.50, 61.49, 61.23, 59.47, 55.77, 54.08, 52.71, 52.51, 39.41, 37.29, 32.94, 30.65, 26.35, 18.76, 18.74, 17.84, 17.31, -4.93, -4.99; HRMS Calcd for C₂₀H₃₃N₂O₄Si [M+H⁺]: 393.2210; Found: 393.2212.

Compound 45.

Compound 44 (40 mg, 0.1 mmol, 1.0 eq) was dissolved in dioxane (2 mL), and aq. HCl (1 M) (0.5 mL, 0.5 mmol, 5.0 eq) was added. The mixture was stirred at rt for 24 hours. NaHCO₃ (84 mg, 1.0 mmol, 10.0 eq) and CbzCl (22 μ L, 0.15 mmol, 1.5 eq) were added and the resulting mixture was stirred at rt for another 3 hours. Water was added and the mixture was extracted with DCM. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel flash chromatography to give product 45 in 73% yield. ¹H NMR (CDCl₃, 300 MHz) δ 7.37 (m, 5H), 5.20 (m, 2H), 4.45 (m, 1H), 3.82 (m, 1H), 3.73 (s, 1.5H), 3.58 (s, 1.5H), 3.07 (m, 1H), 2.46 (m, 1H), 2.13 (m, 1H), 1.91 (m, 1H), 1.06 (m, 3H); ¹³C NMR (CDCl₃, 75.5 MHz) δ 173.68, 173.52, 155.29, 154.63, 137.12, 137.07, 128.89, 128.82, 128.40, 128.33, 128.30, 128.17, 67.45, 67.33, 59.78, 59.47, 54.07, 53.71, 52.68, 52.50, 38.92, 38.00, 32.49, 31.58, 17.74, 17.69;

Compound **46**⁴

Compound 45 (21 mg, 0.076 mmol, 1.0 eq) was dissolved in ethyl acetate (1 mL), Boc₂O (20 mg, 0.091 mmol, 1.2eq) and Pd/C (2 mg) was added. The mixture was stirred under H₂ (1 atm.) at rt for 12 hours. The reaction mixture was filtered through a pad of celite; the filtrate was concentrated in vacuo. The residue was then dissolved in a mixture of THF/MeOH/H2O (1/0.3/0.3 mL), and LiOH.H₂O (6 mg, 0.15 mmol, 2.0 eq) was added. The resulting mixture was stirred at rt for 12 hours, aq. HCl (1 M) was added to pH = 2, then extracted with ethyl acetate. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was dissolved in anhydrous DMF (1 mL), and treated with K₂CO₃ (21 mg, 0.15 mmol, 2.0 eq), BnBr (14 µL, 0.11 mmol, 1.5 eq) and KI (cat). After stirring at rt for 3 hours, water was added and the mixture was extracted with ethyl acetate. The combined organic layers was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give product **46** in 62% yield. ¹H-NMR (CDCl₃, 300 MHz) δ 7.34 (m, 5H), 5.26 (m, 2H), 4.44 (dd, J = 2.1, 8.7 Hz, 0.4 H), 4.32 (dd, J = 2.8, 8.8 Hz, 0.6 H), 3.75 (m, 1H), 3.00 (m, 1H), 2.41 (m, 1H), 1.00 (m, 1H), 2.41 (m, 1H), 1.00 (m, 1H), 1.02.10 (m, 1H), 1.90 (m, 1H), 1.46 (s, 3.6H), 1.34 (s, 5.4H), 1.04 (m, 3H). HRMS Calcd for C₁₅H₂₀NO₄ [M+H⁺]: 278.1392; Found: 278.1379.

11. Substrate deuteration experiments.

General procedure F: Picolinamide substrate (0.1 mmol), $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 10 mol%), AcOD (1 mmol, 10 equiv) in anhydrous toluene (1 mL) in a 10 mL glass vial (purged with Ar, sealed with PTFE cap) was heated at 110 °C for 24 hours (No PhI(OAc)₂ was added). The reaction mixture was cooled to rt, and concentrated *in vacuo*. The resulting residue was purified by silica gel flash chromatography to give the deuterated product. The resulting compound was dissolved in CDCl₃ and analyzed by ¹H-NMR.

¹ Zhao, Y.; Chen, G. Org. Lett. **2011**, 13, 4850-4853.

² Huang, Y.-B.; Yang, C.-T.; Yi, J.; Deng, X.-J.; Fu, Y.; Liu, L. J. Org. Chem. 2011, 76, 800-810.

³ He, G.; Chen, G. Angew. Chem. Int. Ed. 2011, 50, 5192-5196.

⁴ Xie, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775-2777.

FI

S21

.

t of of

`

ppm _ Integral ppm 8.4329 ۰ 8.4311 8.4293 8.4211 0.3596 8.4192 1.0018 8.4174 1.3650 8.1559 ω 8.1541 1.3705 8.1365 0.3681 7.7770 1.0136 7.7741 7.3209 Chemical Formula: C₁₃H₁₆N₂O₃ 7.3089 Molecular Weight: 248.2777 7.3045 Exact Mass: 248.1161 7.3021 7.2899 σ 7.2602 [∕]CO₂Me 5.1832 4.5971 1.0000 G 9 4.4936 4.4693 0.3545 4.3785 0.3578 4.3540 0.3589 3.9660 1.0085 3.9421 Ь 1.0065 3.8682 1.1154 3.8444 3.0537 3.7788 3.6177 ω 3.6166 2.1530 n. 1.7999 3.0062 1.4640 1.1236 1.4317 1.1158 1.1858 3.0590 1.1638 -0.0148 -0.0168 -
 1D NMR plot parameters
 20.00 0

 CX
 20.00 1

 F1P
 9.500 1

 F1P
 3801.24 1

 F2P
 -0.500 1

 F2
 -200.07 1

 F2
 -200.05500 1
TD SOLVENT NS NS NS SWH FIDHES AG DW AG DW TE TE PROBHD PULPROG SI SSB CB PC PL1 SF01 EXPN0 PROCNO INSTRUM Time Date Current Data Parameters NAME 1004hg3-116-1H F2 - Acquisition Parameters Processing parameters J 300.0 K 1.00000000 sec 400.1300089 MHz 400.1324710 MHz CHANNEL f1 ======: 1H mm 88I 1H-20.00 cm 9.500 ppm 3801.24 Hz -0.500 ppm -200.07 Hz 0.50000 ppm/cm 200.06500 Hz/cm 16 2 8278.146 Hz 0.126314 Hz 3.9584243 sec 20111004 60.400 usec 6.00 usec COC 13 724.1 65536 32768 spect 6.45 usec 0.00 dB 13.15 0.00 1.00 2g30 Ηz

S31

m q	maa
200	
175	170.578 169.780 165.451 165.170 151.974
50- 125- 125-	131.833 148.462 147.893 137.265 137.117 125.923 125.807 124.274
100	Chemical Formula: 0 Exact Mass: 24 Weight:
75	248.2777 248.2777 248.2777 248.277 248.277 248.277 27.601 77.601 77.175 75.842 69.991 66.393
50-	60.344 52.232 51.959
	36.344 36.021 28.657 28.395 23.028 22.729
CPUPPG2 PCPD2 PCPD2 PCPD2 PL12 PL12 PL12 SF SF SF SF SF SSB SSB SSB SSB SSB SSB	Current NAME PHOCNO PHOCNO PADDATE_ Time To PADBHD PADB PADB PADB PADB PADB PADB PADB PAD
<pre>waltz16</pre>	Data Parameters 1006hg3-116-1 3331 1 20111005 20111005 19.38 spect 5 mm GNP 1H/1 20536 CDC13 11264 16795.92 Hz 0.266819 Hz 0.266819 Hz 0.266819 Hz 0.266819 Hz 28.600 usec 6.00 usec 0.0000000 sec 0.0000000 sec 13C 13C 5.25 usec 5.25 usec 5.4106357 MHz

•

mqq				ppm
200				
175				172.330
150				148.570 147.923 137.355
125			Chemica Exac	-125.983 -125.896 -124.385
			0 N CO ₂ Me Formula: C IF ormula: C If Mass: 220 Iar Weight: 2	-123.944
			11H12N2O3 10848	77.951
75				77.527 77.103 65.960
50				54.068 52.766 52.448
				- 47.760
				22.092
СХ F1 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2	۲۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	P1 SF01	PULPRO TD SOLVEN DS SWH FIDRES AG AG AG DE TE TE D1 D1 D1 D12	Curreni NAME EXPNO PROCNO F2 - Ac Date Time Time INSTRU
220.00 cm 220.00 cm 16588.51 Hz -10.000 ppm -754.02 Hz 11.50000 ppm/cm 867.12695 Hz/cm	====== CHANNEL f2 ======= 2	====== CHANNEL f1 ======== 13C 5.25 usec -6.00 dB 75.4106357 MHz	G Zgpg30 6536 65536 1T CDC13 1900 0.286819 Hz 0.286819 Hz 1.7433076 Sec 512 26.600 USEC 6.00 USEC 2.00000000 Sec 0.0300000 Sec 0.0300000 Sec	t Data Parameters 1030hg3-134-2 106 1 cquisition Parameters 20111030 20.02 M spect 5 mm GNP 1H/1

S46

HI CATHH

6Ac

V H V A

100

ATHDA

ppm Integral ppm 8.6118 <u>ဖ</u>-8.5959 8.4701 0.8490 8.4676 0.9732 8.4651 8.4544 8.4519 0.9858 ω 0.8608 8.0702 1.8881 8.0439 7.9074 2.3291 7.8203 で 7.8009 Chemical Formula: C 13H16N2O3 7.7945 Molecular Weight: 248.2777 7.7861 Exact Mass: 248.1161 7.3461 7.3427 σ 7.2904 5.1786 "CO₂Me 2 5.1732 5.1492 1.0000 4.7541 ப 4.7456 4.7247 0.8558 4.1090 4.0973 4.0814 4.0711 1.9175 2.7034 4.0422 3.0736 3.7774 0.9523 3.6639 1.0527 3.6034 3.5734 ω 3.5664 3.3598 1.9477 3.3293 1.0628 3.3200 0.9570 N 3.2893 2.4863 2.2287 1.9625 1.9546 3.1012 1.9252 2.6921 1.9207 1.9119 1.1336 1.1119 1.0749 \cap 1.0529 -0.0002 1D NMR plot parameters CX 20.00 cm F1P 29.500 ppm F1 2848.76 Hz F2P -0.500 ppm TD SOLVENT NS DS DS SWH FIDRES AQ DW DE TE TE SI SI SSB SSB GB FC NUC1 P1 PL1 SF01 PROBHD PULPROG EXPNO INSTRUM Time Date_ Current Data Parameters NAME 0525hg2-286A F2 - Acquisition Parameters PROCNO Processing parameters ഗ -== CHANNEL f1 == 1H 12.10 usec 0.00 dB ~18518 M' 299.8700012 MHz 0 0.00 Hz 1.00 0525hg2-286A 6172.839 Hz 0.094190 Hz 5.3084660 sec 181 81.000 usec 6.00 usec 300.0 K 1.00000000 sec mm 0.50000 ppm/cm 149.93500 Hz/cm QNP 1H/1 9.500 ppm 2848.76 Hz -0.500 ppm -149.93 Hz 20110525 CDC13 spect 32768 65536 18.14 2930 ນ 16 ΓU

S57

ndd Integral ppm -8.62960 G 8.61829 8.46619 1.4397 -8.45074 1.0645 8.05513 8.02883 1.0880 ш 7.92374 1.4590 7.89810 2.5259 -7.81931 7.79394 2.7900 -7.76841 22-7.38905 Chemical Formula: C₁₃H₁₆N₂O₃ Exact Mass: 248.1161 Molecular Weight: 248.2777 7.37122 7.34791 7.33912 7.32268 σ 7.29560 ''C.O₂Me -5.28020 5.25216 4.65985 1.0000 -4.63414 σı 4.62732 4.60138 1.3803 4.20512 4.18188 2.4517 4.16643 -4.14273 4.5343 3.77744 -3.58039 4.5828 -3.54386 1.0971 -3.50812 ω -3.29618 -3.26280 -2.48944 2.5996 2.46801 2.5884 -2.44924 1.3006 ъ 2.33068 -2.31616 2.5748 -2.29633 2.27682 2.16863 7.8093 1.66229 1.62437 1.58800 1.13841 1.11163 0 1.08914 0.00034 1D NMA plot parameters CX 20.00 F1P 9.500 F1 2848.76 F2P -0.500 F2 -149.93 PPMCM 0.50000 HZCM 149.93500 F2 -SI SSB CB FC FIDRES AG RG DW DE TE TE P1 PL1 SF01 TD SOLVENT NS DS SWH NUC 1 PROBHD PULPROG Current Data Parameters NAME 0525hg2-286B EXPNO 2 INSTRUM Time PROCNO F2 - Acquisition Parameters Date_____20110525 Processing parameters ບາ == CHANNEL f1 ====== 1H 12.10 usec 0.00 dB 299.8718518 MHz 16 2 5172.839 Hz 5.3084660 sec 181 81.000 usec 6.00 usec 300.0 K 299.8699997 MHz mm 1.00000000 sec 0.50000 ppm/cm 149.93500 Hz/cm 20.00 cm 9.500 ppm 2848.76 Hz QNP 1H/1 -0.500 ppm -149.93 Hz zg30 65536 CDC13 spect 18.19 32768 no 0.00 1.00 Ηz 11 11 11 11 11

-754.02 Hz 11.50000 ppm/cm 867.12695 Hz/cm	F2 PPMCM HZCM	75 50 25 0	100	125	150	175	200	ppm -
it parameters 20.00 cm 220.000 ppm 16508.51 Hz -10.000 ppm	1D NMA p10 CX F1P F1 F2P				and the second sec		nder son der Schule der	A she want to the state
75.4023410 MHz no 0.00 Hz 0.00 Hz 1.40	905 E 8 8 8 9 8							
ssing parameters 32768	F2 - Proce SI			9				
19.70 dB 19.70 dB 299.8711995 MHz	PL13 SF02					-		
115.00 usec 0.00 dB	PCPD2							
<pre> CHANNEL f2</pre>	CPDPAG2 NUC2							
-6.00 06 75.4106357 MHz	SF01	_						
13C 5.25 usec	P1 1							
:== CHANNEL f1 =======:			248.2777	Molecular Weight:				
0.03000000 sec 0.00002000 sec	D11 D12		8.1161	Exact Mass: 24				
2,0000000 sec				Chemical Formula: (
6.00 usec	TE ER		2Me	,,,,CO				
26,600 usec	Dw							
1.7433076 sec	AQ			22-cis				
18796.992 Hz 0.286819 Hz	FIDRES			Ç				
4	5							
CDC13 919	SOL VENT							
95239 Acfid67	TD						×	
5 mm QNP 1H/1	PROBHD		=	-	=	=		
spect	INSTRUM			<				
20111025	Date							
isition Parameters	F2 - Acqui	77 62 61 57 55 52 37 37 31 17 17	77.	137 137 125 125 125 125	165 153 153 148	173 173 166		pp
1	PROCNO	.08 .29 .08 .14 .71 .30 .32 .30 .78 .53 .52	. 93 . 50	. 38 . 21 . 53 . 39 . 07 . 84	. 91 . 63 . 34 . 41	. 88 . 10 . 49		сm
3ta Parameters 1025hg2-286B 11732	Current Da NAME FXPND	5897559719390	3	9 6 2 2 7 8 1	5 2 9 1	9 5 4		
560								

ppm Integral ppm 8.5665 ഗ 8.5646 8.5562 8.5547 0.9893 8.1751 0.9639 3e - 1r _ 8.1557 1.0084 7.8451 8 1.0067 7.8296 7.8258 1.0067 7.8105 7.8066 Chemical Formula: C₁₄H₂₀N₂O₃ 7.4335 Molecular Weight: 264.3202 7.4215 Exact Mass: 264.1474 7.4174 7.4051 7.4028 7.2601 S. ''CO2Me ő 44 4.8540 4.8447 сī 4.8319 1.0000 4.8225 4.8097 4.8004 Ь 3.7294 3.0816 3.7166 3.7124 ω 1.9354 1.9260 1.8994 1.8901 \sim 1.0349 1.7753 1.7176 1.0434 1.6952 1.6816 1.6593 9.4997 0.9866 0.9699 0 -0.0152 ---

 1D NMR plot parameters

 CX
 20.00 cm

 F1P
 9.500 ppm

 F1
 3801.24 Hz

 F2P
 -0.500 ppm

 F2P
 -20.00 Hz

 F2P
 -20.00 Ppm

 F2P
 -20.07 Hz

TD SOLVENT SSLVENT SSH SWH FIDRES AG RG DW DE TE TE SI SF WDW SSB SSB CB CB NUC1 P1 PL1 SF01 PPMCM HZCM PULPROG PROBHD INSTRUM EXPNO Time F2 - Acquisition Parameters Date_ 20110504 PROCNO Current Data Parameters NAME 0504hg2-260 Processing parameters -----: CHANNEL f1 ======: 1H 6.45 usec 0.00 dB ഗ 400.1300084 MHz 0 0.00 Hz 1.00 60.400 usec 6.00 usec 300.0 K 1.00000000 sec mm BBI 1H-B 400.1324710 MHz 3.9584243 sec 71.8 16 2 8278.146 Hz 0.126314 Hz 0.50000 ppm/cm 200.06500 Hz/cm zg30 65536 CDC13 spect 18.33 32768

S61

mđc		والمعالمة والمعالمة والمعالمة والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالمة و																																				, bt	m		
200	lla lla	بيديدان الإلايات المأتينية المالية. والمراجع المراجع المالية المراجع المالية المراجع																															`								
150	יין איז איז אין אין איז איז אין איז איז אין איז איז אין איז				-				-																									-				173 173 166 153 148 147 137 125 125 125 124	. 99 . 13 . 75 . 25 . 38 . 38 . 38 . 38 . 38 . 38 . 39 . 39 . 90	35 34 50 14 56 56 58 19 28 19 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	
100	an a	مريح المريح المريح ومن المريح الم		×											e1404					ignt: 262.3043	s: 262.1317	113: C 14M18N203				Z	Ľ,]										77 77 77 62 61 61 61	. 98 . 78 . 58 . 11 . 78 . 18	31 58 56 32 17 57 30 53	
50	וניון ה∳ריקיים, היו היים היים היו היו היום היום היום היום היום ה																																					52 52 45 39 36 26 26 26 26	. 60 . 30 . 70 . 55 . 65 . 40 . 30 . 30 . 29 . 10	50)9 50 53 58)2 54 37 96)9	
HZCM	۲ ۲2 ۲2	1D NMA CX F1P	PC	GB	LB	NDM MDM	, SF	IS	F2 - Pr	SF02	PL13	PL12		NUCZ	CPDPAG2	8	SF01	PL1	P1	NUC1		D12	D11	D1	T F		RG	AQ	FIDRES	SMH US	NS	SOLVENT	TD	ם וון סטאמ	INS HUM	Time	Date_	F2 - Ac	PAOCNO	EXPNO	Current
-794.02 HZ 11.50000 ppm/cm 867.12695 Hz/cm	16588.51 Hz -10.000 ppm	plot parameters 20.00 cm 220.000 ppm	1.40	0	0 00 Hz	on	75.4023410 MHz	32768	ocessing parameters	299.8711995 MHz	19.70 dB	19.70 dB	0.00 dB		waltz16	CHANNEL f2	75.4106357 MHz	-6.00 dB	5.25 usec	13C	===== CHANNEL f1 ===================================	0.00002000 sec	0.03000000 sec	2.0000000 sec	300.0 K	26.600 usec	1024	1.7433076 sec	0.286819 Hz	4 COD 30704	304	- COC13	95239 955453		s mm OND 11/1	19.24	20111011	quisition Parameters	ĻÅ	96601	: Data Parameters 1011hq3-122C

ppm 7 Integral ppm 8.5662 ഗ 8.5634 8.5611 8.5582 1.0371 ≥ ‡ 8.5504 0.9040 0.9997 8.5476 œ 8.5453 8.5424 1.0083 8.1598 1.0025 8.1567 8.1367 8.1337 7.8178 Chemical Formula: C12H16N2O3 Molecular Weight: 236.2670 7.8122 Exact Mass: 236.1161 7.4267 7.4108 7.2601 σ "'CO2Me 4.8152 4.7974 S 4.7884 1.0000 4.7703 -4.7610 4.7431 Δ 3.0658 3.7418 1.9645 1.9162 ω 1.9060 1.8878 1.8169 1.7996 1.7960 N 2.2468 1.7702 1.4574 1.4500 2.0589 1.4275 1.4170 3.0937 1.4043 1.3955 1.3802 0.9535 0.9291 0 0.9046 -0.0329 ۲2 ۲2 ۲2 F1P ST ST WDW SSB CB PC NUC1 PL1 SF01 NS DS SWH FIDRES AQ PG DW DE TE TE TD SOLVENT PPMCM HZCM 1D NMR plot parameters CX 20.00 PROBHD EXPN0 PROCNO PULPROG INSTRUM Time F2 - Acquisition Parameters Date_____20110516 Current Data Parameters NAME 0516hg2-274H Processing parameters сı -= CHANNEL f1 ======: 1H 12.10 usec 0.00 dB 299.8718518 MHz 6172.839 Hz 0.094190 Hz 5.3084660 sec 128 81.000 usec 6.00 usec 300.0 K 1.00000000 sec m 299.8700101 MHz 0.50000 ppm/cm 149.93500 Hz/cm QNP 1H/1 20.00 cm 9.500 ppm 2848.76 Hz -0.500 ppm -149.93 Hz 32768 CDC13 65536 spect 13.39 0.00 1.00 2930 0 0 ∿ີ ອີ N Ηz

mqq		, mad
200		
175		173.835 173.042 166.602 165.850
150 		-153.709 153.057 -148.273 -147.489 -137.289
125		-137.166 -125.474 -124.904 -124.708
	Chemical Fo Exact M	70.007
75	N N N N N N N N N N N N N N N N N N N	77.870 77.670 77.243 61.948 60.457
50		52.565 52.356 50.104 48.644
25		32.173 29.227 25.824 22.352
CPDPHG2 PCPD2 PCPD2 PL12 PL13 SFD2 SFD SFD SF SF SF SF SF SF SF SF SF SF SF SF SF	PULPROG TD SSLVENT DS SWH FIDRES AG D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	Current Dat NAME EXPNO PROCNO F2 - Acquis Date_ Time INSTRUM 50000 5
= CHANNEL f2 ======= waltz16 115.00 usec 0.00 dB 19.70 dB 19.70 dB 19.70 dB 299.8711995 MHz 32768 75.4023410 MHz 75.4023410 MHz 0 0.00 Hz 0 0.00 Hz 1.40 parameters 20.000 cm 220.000 ppm 46588.51 Hz -754.02 Hz 11.50000 ppm/cm	zgpg3 55536 CDC13 203 18796.992 Hz 0.286819 Hz 1.7433076 sec 406.4 26.600 usec 6.00 usec 0.0300000 sec 0.0300000 sec 0.00002000 sec 13C 5.25 usec 5.25 usec 5.25 usec 75.4106357 MHz	a Parameters 1009hg3-97C 334 1 ition Parameters 20111009 14.31 spect mm GNP 1H/1

mqq			maa
		Chemical Formula: C Exact Mass: 262 Molecular Weight 2	171.343 170.945 167.522 166.834 154.704 154.406 148.408 148.250 137.339 137.287 125.270 125.183 124.740 124.245
		262.3043	77.994 77.569 77.145 65.866 64.373 57.410 57.058 56.678 54.632 37.651 35.599 32.644 29.693 21.379 21.151 18.734 18.218
1D NMR plot parameters 1D NMR plot parameters CX 20.00 ppm F1P 220.000 ppm F1P 16588.51 Hz F2P -10.000 ppm F2 -754.02 Hz PPMCM 11.50000 ppm/cm HZCM 867.12695 Hz/cm	 ===== CHANNEL f1 ========= sec NUC1 13C 5.25 usec PL1 -6.00 dB SF01 75.4106357 MHz	PULPHUG ZSQS30 TD E5536 SOLVENT CDC13 NS 701 DS 4 SWH 18796.992 Hz AQ 1.7433076 sec PG 512 DE 6.00 usec DE 6.00 usec DE 300.0 K D11 0.03000000 sec D12 0.00022000 sec	Current Data Parameters NAME 1011hg2-123C EXPNO 96601 PROCNO 1 F2 - Acquisition Parameters Date_ 2011011 Time 20.06 INSTRUM Spect

S73

mdd					ppm
200					
175					<u> </u>
150					
125					
			Chemical Fo Exact M Molecular V		125.506 125.194 118.000
			rmula: C ₁₆ H ₁ ass: 282.100 Veight: 282.2	36	
75			4N2O3 940	æ	
					62.942 52.954
					40.817 40.608 40.400 40.191
					39.982 39.774 33.984
0-					
1D NMA P CX F1P F1 F2P F2P F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2	F2 - Pro SI - Pro WDW SSB LB GB PC	**************************************	P1 PL1 SF01	SWH FIDRES AG DW DE DE TE TE d11 d12	Current NAME EXPNO PROCNO F2 - Acg Date_ Time INSTRUM PROBHD PDULPROG TD PULPROG TD SOLVENT NS
<pre>ilot parameters</pre>	cessing parameters 32768 100.6127290 MHz EM 0 1.00 Hz 0 1.40	CHANNEL f2 waltz16 1H 114.00 usec 0.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB 24.00 dB	CHANNEL f1 13C 16.35 usec -6.00 dB 100.6237959 MHz	25125.629 Hz 1.3042164 sec 16384 19.900 usec 6.00 usec 300.0 K 2.00000000 sec 0.03000000 sec	Data Parameters 1105hg3-142C 1 1 20111105 5 mm BBI 1H- 29930 65536 DMS0 289
			14 19 19		Si

m dd			ppm
200			
175			
150		-	150.304 148.472 139.387 137.674
125			129.171 128.993 126.846 126.506 122.506
100		Chemical Fo Exact M Molecular	
		HN 0 HN 0 n n n HN 0 HN 0 HN 0 HN 0 HN 0 HN 226.1106 ass: 226.1106 ass: 226.2738	77.909 77.477
50			41.195 36.295
0			
1D NMA plot CX F1P F2P F2P F2P F2P F2P F2P F2P F2P	PCPDPR62 PCPD2 PCPD2 PL12 PL13 SF02 SF02 SF SI SSB SSB SSB SSB SSB SSB SSB SSB SSB	SWH FIDRES AG DW DE D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	Current Dat NAME EXPNO PROCNO F2 - Acquis Date_ Time INSTRUM PROBHD 5 PULPROG TD SOLVENT NS
parameters 20.00 cm 215.000 ppm 16211.50 Hz -5.000 ppm -377.01 Hz 11.00000 ppm/cm 829.42578 Hz/cm	- LHANNEL 12 Waltz14 115.00 Usec 0.00 dB 19.70 dB 19.70 dB 299.8711995 MHz 32768 75.4023410 MHz 0 0.00 Hz 0.00 Hz 1.40	18796.923 Hz 0.286819 Hz 1.7433076 sec 512 26.600 usec 300.0 K 2.00000000 sec 0.0300000 sec 0.0300000 sec 0.00002000 sec 0.00002000 sec 5.25 usec 5.25 usec -6.00 dB 75.4106357 MHz	20 Parameters 102Bhg2-256A 350 1 120111028 20111028 17.24 Spect 17.24 55536 65536 65536 CDC13 11

ppm] Integral ppm 8.6579 ۰ 8.6429 8.1749 0.9713 8.1488 7.9995 0.8677 7.9944 ω-1.0211 7.9737 7.9687 0.9470 7.7927 1.0560 7.7665 1.9289 7.5752 0.9654 7.5577 7.5522 Chemical Formula: C14H12N20 Molecular Weight: 224.2579 7.5350 38 Exact Mass: 224.0950 7.3029 7.2787 7.2370 **m**-7.0777 υı 4.1994 4.1719 2.0000 4.1435 3.3389 3.1337 3.1059 1.9911 ω 3.0781 2.5060 2.5002 2.4946 N 0 -0.0047 -F2 - Processing parameters SI 32768 SF 299.8700050 MHz WDW 0 SSB 0.00 Hz GB 0.00 Hz GB 0 PC 1.00 F1P F1 F2P F2 F2 F2 F2 HZCM NUC1 PL1 SF01 TD SOLVENT NS DS DS SWH FIDRES AG AG AG AG DW DE TE PROBHD PULPROG 1D NMR plot parameters CX 20.00 Time INSTRUM EXPNO F2 - Acquisition Parameters Date_____20111028 PROCNO Current Data Parameters NAME 1028hg3-137 ----- CHANNEL f1 -------1H 12.10 usec 0.00 dB ហ 6172.839 Hz 0.094190 Hz 5.3084660 sec 362 81.000 usec 6.00 usec 300.0 K 1.00000000 sec 299.8718518 MHz ШШ 0.50000 ppm/cm 149.93500 Hz/cm 9.500 ppm 2848.76 Hz QNP 1H/1 na 0.00 Hz 1.00 -0.500 ppm -149.93 Hz 20.00 cm 2930 5536 DMS0 16 15.09 spect

S87

un d d		, maa	
200		· · · ·	
1 150			
	Molecular Wei	Chemical Formula 2004	
100	ght 277.1314	bz 'CO2Me 46	
		77.908 77.483 77.059 67.448 67.327 59.781	
		59.468 54.067 53.711 52.682 52.500	
		38.921 38.000 32.489 31.578 17.739 17.694	
	•		
F 1 F 2 F 2 PPMCM HZCM	D11 D12 P1 SF01 PL1 PL1 PL1 PL1 PL12 PL12 PL12 PL12 PL	NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT SOLVENT FIDRES AG AG AG DW DI	Current D
220.000 cm 220.000 ppm 16588.51 Hz -10.000 ppm -754.02 Hz 11.50000 ppm/cm 867.12695 Hz/cm		1103hg3-145-1C 1 1 1 1 1 20111103 18.21 20111103 18.21 20111103 18.21 2099 18.21 2099 1971 2099 18796.92 1.7433076 sec 1024 26.00 usec 300.0 k 2.0000000 sec	ata Parameters

