Ring Structure and Aromatic Substituent Effects

 on the pKa of the Benzoxaborole PharmacophoreJohn W. Tomsho ${ }^{\text {a }}$, Arnab Pal ${ }^{\text {b }}$, Dennis G. Hall ${ }^{\text {b }}$, and Stephen J. Benkovic ${ }^{\text {c }}$

---Supporting Information---
I. Syntheses of 2-(2-Hydroxyethyl) benzene boronic acid cyclic monoester (benzoxaborin, 2)
II. Syntheses of 3,3-Gem-dimethyl-benzoxaborole (3)
III. Spectral data and pKa determination plots
IV. Equations for the 3-component, ARS method of binding constant determination
V. Binding constant determination plots - examples

I. Syntheses of 2-(2-Hydroxyethyl) benzene boronic acid cyclic monoester (Benzoxaborin, 2)

Benzoxaborin (2)
To a solution of 2-(2-Bromo-phenyl)-ethanol ($5.0 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) in DCM (100 mL) was added 3,4-dihydro-2H-pyran ($3.4 \mathrm{~mL}, 37.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.), followed by camphorsulfonic acid (100 mg). The mixture was stirred at room temperature for 2 h . After adding $\mathrm{K}_{2} \mathrm{CO}_{3}(300 \mathrm{mg})$, the mixture was filtered to remove the precipitate, the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered and the filtrate was concentrated under reduced pressure. The oily residue was applied to silica chromatography eluting with EtOAc/Heptanes ($0: 100$ to $50: 50$) to give 2-[2-(2-bromo-phenyl)-ethoxy]-tetrahydro-pyran as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 8: 7.48-7.54 (m, $1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.97(\mathrm{~m}$, $1 \mathrm{H}), 3.58-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.60(\mathrm{~m}, 5 \mathrm{H}), 0.85-0.90$ (m, 1H)

Amount obtained: $6.9 \mathrm{~g}, 97.1 \%$ yield.
To a solution of 2-[2-(2-bromo-phenyl)-ethoxy]-tetrahydro-pyran ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{BuLi}(2.4 \mathrm{~mL}, 2.5 \mathrm{M}$ solution in THF, $3.8 \mathrm{mmol}, 1.1$ eq.) under nitrogen atmosphere. Triisopropyl borate ($1.2 \mathrm{~mL}, 5.25 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was then added and the mixture was allowed to warm to room temperature gradually and stirred overnight. After carefully adding HCl $(10 \mathrm{~mL}, 6 \mathrm{~N})$, the yellowish solution was stirred at room temperature for another 1 h and then poured into a mixture of $\operatorname{EtOAc}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). Combined organic extracts was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}$), brine (50 mL), dried over MgSO , filtered and the filtrate was concentrated under reduced pressure. The oily residue was applied to silica chromatography eluting with EtOAc/Heptanes (0:100 to 100: 0) to give 3,4-dihydro-benzo[c][1,2]oxaborinin-1-ol as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta: 7.73$ (d, J = 7.2 $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.

Amount obtained: $497 \mathrm{mg}, 99.3 \%$ yield.

II. Syntheses of 3,3-gem-dimethyl-benzoxaborole (GDM, 3)

To a suspension of 2-bromophenylboronic acid ($10.0 \mathrm{~g}, 49.7 \mathrm{mmol}$) in toluene (70 mL) was added N butyldiethanolamine ($8.5 \mathrm{~mL}, 52.2 \mathrm{mmol}, 1.05$ equiv.) via a syringe. The mixture was heated at $50^{\circ} \mathrm{C}$ for two hours. After cooling to room temperature, the toluene was evaporated under reduced pressure and the remaining clear colorless crude oil was treated with heptanes ($\sim 500 \mathrm{ml}$). The heptanes mixture was then sonicated $\sim 5 \mathrm{~min}$ and the resulting suspension was allowed to stand at room temperature overnight. The solid that precipitated was collected by filtration, washed with heptanes, and dried in a vacuum oven overnight to yield a white solid as the titled compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 0.86 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$) 1.14-1.25 (m, 2 H) 1.51-1.62 (m, 2 H$) 2.61-2.70(\mathrm{~m}, 2 \mathrm{H}) 3.01-3.11$ (m, 2 H) 3.26-3.37 (m, 2 H) 4.09-4.26 (m, 4 H) 7.10 (td, $J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.24$ (td, $J=7.3,1.1 \mathrm{~Hz}, 1$ H) $7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) 7.81(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$

Amount obtained, 16.0 g , (98 \% yield).
To a solution of 2-(2'-bromophenyl)-6-butyl [1,3,6,2]dioxazaborocan (3.0g, 9.2 mmol) in THF (76 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(4.4 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $11.0 \mathrm{mmol}, 1.2$ equiv.) dropwise via a syringe over a period of 10 min while maintaining reaction temperature at $-78{ }^{\circ} \mathrm{C}$. After the addition the reaction solution was stirred 20 min at $-78{ }^{\circ} \mathrm{C}$ before acetone ($946 \mu \mathrm{~L}, 12.8 \mathrm{mmol}, 1.4$ equiv.) was added dropwise via a syringe over a period of 10 min while maintaining the reaction temperature at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to stir for 20 min at $-78^{\circ} \mathrm{C}$ then warm to room temperature gradually. Once the reaction vessel reached room temperature, 6 M HCl solution (30 mL) was added and the mixture was stirred for 30 min . The mixture was extracted with EtOAc (3X). The EtOAc extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude slightly yellow in color residual oil remaining was then subjected to flash chromatography (Isco Companion, $80 \mathrm{~g} \mathrm{SiO}_{2}$ cartridge, solid loaded SiO_{2}, neat heptane to $20: 80 \mathrm{EtOAc}$ gradient at $60 \mathrm{ml} / \mathrm{min}$ for 90 min). The product was recovered as clear colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta \mathrm{ppm} 1.44(\mathrm{~s}, 6 \mathrm{H}) 7.31(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}) 7.38-7.47$ (m, 2 H$) 7.66$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) 8.99$ (s, 1 H).

Amount obtained: 1.76 g (61%).

III. Spectral Data and pKa Determinations

Figure 6 - A) Spectral scans of 9 in aqueous solutions of various pH 's.
B) Plot of the spectral difference between different solutions of 9. The maximum positive deviation occurred at 277 nm while the maximum negative deviation occurred at 250 nm.
C) 9 pKa determination. The total absorbance difference (the sum of the absolute absorbance difference values at 250 and 277 nm at each pH) was plotted against solution pH . The data was then fit to Eq. 1 to obtain the pKa.

Benzoxaborole (1)

Benzoxaborin (2)

3,3-Gem Dimethyl
Benzoxaorole (3)

GDM (3)
Spectral Difference Plot

4
Spectral Difference Plot

5

6

8

9

IV. Equations for the 3-component, ARS method of binding constant determination

In the complex mixture of boronic acid receptor (R), ARS indicator (I), and sugar substrate (S), there exist the following equilibria:

where RI is the boronic acid-ARS complex and RS is the substrate complex.

Equations for association constant determinations:
$1 / \Delta \mathrm{A}=\left(\Delta \mathrm{K}_{\mathrm{p}} \mathrm{I}_{0} \mathrm{~K}_{\mathrm{ars}}\right)^{-1} 1 /[\mathrm{S}]+\left(\Delta \mathrm{K} \mathrm{p}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}\right)^{-1}$
where $\Delta \mathrm{K}, \mathrm{p}_{\mathrm{o}}, \mathrm{I}_{\mathrm{o}}$ are all the parameters of the UV spectrophotometer.
$\mathrm{Q}=[\mathrm{I}] /[\mathrm{RI}]=\left(\mathrm{A}_{\mathrm{RI}}-\mathrm{A}\right) /\left(\mathrm{A}-\mathrm{A}_{\mathrm{I}}\right)$
Where A is measured absorbance, A_{RI} is absorbance of the receptor-indicator complex, and A_{I} is absorbance of free indicator.
$\mathrm{P}=[\mathrm{R}]-1 /\left(\mathrm{QK}_{\text {ars }}\right)-\left[\mathrm{I}_{0}\right] /(\mathrm{Q}+1)$
where $\left[\mathrm{I}_{0}\right]$ is total indicator concentration (ARS).
$[\mathrm{S}] / \mathrm{P}=\left(\mathrm{K}_{\mathrm{ars}} / \mathrm{K}_{\mathrm{a}}\right) \mathrm{Q}+1$
where $[\mathrm{S}]$ is substrate concentration.

The association constant of the ARS-boronic acid ($\mathrm{K}_{\text {ars }}$) is the quotient of the intercept and the slope in a plot of $1 / \Delta \mathrm{A}$ versus $1 /[\mathrm{S}]$ (Equation 1).

V. Binding constant determination plots - examples

9

