Supplementary Information

Probing Side Chain Dynamics in Proteins by the Measurement of Nine Deuterium Relaxation

Rates Per Methyl Group

Xinli Liao, ^{†,‡} Dong Long,[§] Da-Wei Li,[§] Rafael Brüschweiler,[§] and Vitali Tugarinov^{‡,}*

[‡]Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, and [§]Chemical Sciences Laboratory, Department of Chemistry and Biochemistry and the National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 Simulations of $R_2(CHD_2)$ Decay in (¹³CH)D₂ Methyl Groups. Relaxation of ²H single-quantum transitions in (¹³CH)D₂ methyl groups ρ_{i-j} (Figure 2 of the main text) can be conveniently represented in the following form,

$$\frac{d}{dT} \begin{bmatrix} \rho_{1,2} \\ \rho_{2,3} \\ \rho_{5,6} \\ \rho_{5,6} \\ \rho_{5,6} \end{bmatrix} = -\left(\frac{1}{80}\right) (2\pi QCC)^2 \begin{pmatrix} 9 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 19 & -\sqrt{6} & 15 & 0 & 3\sqrt{2} \\ 3\sqrt{2} & 0 & 3\sqrt{3} & 0 & -3\sqrt{2} & 0 \\ 0 & 1 & -2 & -\sqrt{6} & 3\sqrt{3} & 0 \\ 0 & 1 & -2 & -\sqrt{6} & 3\sqrt{3} & 0 \\ 0 & 0 & -\sqrt{6} & 6 & 0 & -3\sqrt{2} \\ -3\sqrt{2} & 0 & 3\sqrt{3} & 0 & -3\sqrt{2} & 3 & -6 \\ \end{pmatrix} \right] J^{c}(\omega_{p})$$

$$+ \begin{pmatrix} \rho_{1,2} \\ -\sqrt{6} & -2 & 1 & 0 & 0 & 3\sqrt{3} \\ 0 & 1 & -2 & -\sqrt{6} & 3\sqrt{3} & 0 \\ 0 & 0 & -\sqrt{6} & 6 & 0 & -3\sqrt{2} \\ -3\sqrt{2} & 0 & 3\sqrt{3} & 0 & -3\sqrt{2} & 3 & -6 \\ \end{pmatrix} J^{c}(\omega_{p})$$

$$+ \begin{pmatrix} \rho_{1,2} \\ -\sqrt{6} & 0 & 10 & 0 & -2\sqrt{6} & 0 & 0 \\ 0 & -2\sqrt{6} & 0 & 18 & -6\sqrt{2} & 0 \\ 0 & 0 & 0 & -6\sqrt{2} & 18 & 0 \\ -6\sqrt{2} & 0 & 0 & 0 & 0 & 18 \\ \end{pmatrix} J^{c}(2\omega_{p})$$

$$+ \begin{pmatrix} 0 & 0 & -2\sqrt{6} & 0 & 0 & 6\sqrt{2} \\ 0 & 4 & 0 & -2\sqrt{6} & 0 & 0 \\ 0 & -2\sqrt{6} & 0 & 0 & 6\sqrt{2} & 0 \\ 0 & 0 & 0 & 6\sqrt{2} & -12 & 0 \\ 0 & 0 & 0 & 6\sqrt{2} & -12 & 0 \\ 0 & 0 & 0 & 6\sqrt{2} & -12 & 0 \\ \end{pmatrix} J^{c}(2\omega_{p})$$

where $QCC = (e^2 q Q/h)$ is a quadrupolar coupling constant (167 kHz¹) and $J(\omega)$ is the spectral density function,²⁻⁴

$$J(\omega) = \frac{1}{9} S_{axis}^2 \left(\frac{\tau_C}{1 + (\omega \tau_C)^2} \right) + \left(P_2(\cos \alpha) - \frac{1}{9} S_{axis}^2 \right) \frac{\tau_e}{1 + (\omega \tau_e)^2}$$
(S1)

where S_{axis}^2 is the generalized order parameter of the methyl 3-fold symmetry axis; $P_2 = (1/2)[3\cos^2(x)-1]$; $\alpha = 0^\circ$ and $P_2(\cos\alpha) = 1$ for the auto-correlation spectral density function, $J^4(\omega)$, while $\alpha = 109.5^\circ$ and $P_2(\cos\alpha) = -1/3$ for the quadrupolar cross-correlation spectral density, $J^{C}(\omega)$; τ_{C} is the (isotropic) correlation time of overall molecular re-orientation; $1/\tau_{e} = 1/\tau_{f} + 1/\tau_{C}$ where τ_{f} is the correlation time of fast local motions.

Simulations of the transverse magnetization decay in $({}^{13}\text{CH})\text{D}_2$ groups, $R_2(\text{CHD}_2)$, have been performed using the matrix exponential of the matrices in eqs S1 expanded to include the triple-quantum (3Q) terms present during relaxation delay T, $(\rho_{1-4}^{3Q} + \rho_{2-5}^{3Q})$ (see expression 5 of the main text). The following initial conditions for ρ_{i-i} have been used:

$$\rho(0) = (1/9) \left[\sqrt{F_1} \rho_{1-2}; \sqrt{F_2} \rho_{2-3}; \sqrt{F_2} \rho_{3-4}; \sqrt{F_1} \rho_{4-5}; \sqrt{F_3} \rho_{5-6}; \sqrt{F_3} \rho_{6-7}; \sqrt{F_{3Q}} (\rho_{1-4}^{3Q} + \rho_{2-5}^{3Q}) \right]^T, \text{ where } \rho(0) = (1/9) \left[\sqrt{F_1} \rho_{1-2}; \sqrt{F_2} \rho_{2-3}; \sqrt{F_2} \rho_{3-4}; \sqrt{F_1} \rho_{4-5}; \sqrt{F_3} \rho_{5-6}; \sqrt{F_3} \rho_{6-7}; \sqrt{F_{3Q}} (\rho_{1-4}^{3Q} + \rho_{2-5}^{3Q}) \right]^T, \text{ where } \rho(0) = (1/9) \left[\sqrt{F_1} \rho_{1-2}; \sqrt{F_2} \rho_{2-3}; \sqrt{F_2} \rho_{3-4}; \sqrt{F_1} \rho_{4-5}; \sqrt{F_3} \rho_{5-6}; \sqrt{F_3} \rho_{6-7}; \sqrt{F_{3Q}} (\rho_{1-4}^{3Q} + \rho_{2-5}^{3Q}) \right]^T$$

 F_i is the 'out-and-back' transfer function of each individual transition in the experiment of Figure 1 of the main text, and superscript *T* denotes the transposition operation. From expression (5) of the main text it follows that:

$$F_{1} = 0.25 \left[2\sin\left(4\pi J_{CD}T_{C}\right) + \sin\left(8\pi J_{CD}T_{C}\right) \right]^{2}$$
(S2a)

$$F_2 = 1.5 \sin^2 \left(8\pi J_{CD} T_C \right)$$
(S2b)

$$F_3 = 2\sin^2\left(4\pi J_{CD}T_C\right) \tag{S2c}$$

$$F_{3Q} = \left[0.5\sin(8\pi J_{CD}T_{C}) - \sin(4\pi J_{CD}T_{C})\right]^{2}$$
(S2d)

The sum of all transfer functions in eqs S2 above gives $4\sin^2(4\pi J_{CD}T_C) + 2\sin^2(8\pi J_{CD}T_C)$ - the transfer function used for the sum of *all* transitions relaxing during the delay *T* in the experiment for $R_2(\text{CHD}_2)$ measurement (Figure 1, inset *A*). To account for the differential transfer efficiency of $\rho_{i,j}$ in the reverse pathway of the scheme, after the relaxation period *T* each of the transitions has been pre-multiplied by its corresponding $\sqrt{F_i}$ before summation. Note the scaling of $\rho(0)$ as above ensures that the sum of all transitions at T = 0 is normalized to unity.

Thus simulated $R_2(\text{CHD}_2)$ decays have been fitted to a single-exponential function $I = I_0 \exp(-RT)$, where *I* is the simulated intensity and *R* is the relaxation rate. The results of these simulations expressed as relative errors in $R_2(\text{CHD}_2)$ arising from non-single-exponential decay at higher frequencies, $100*R_2(\text{CHD}_2)$ - $R(D_+,\text{CH}_2\text{D}))/R(D_+,\text{CH}_2\text{D})$, are illustrated in Figure 4 of the main text for several global molecular correlation times.

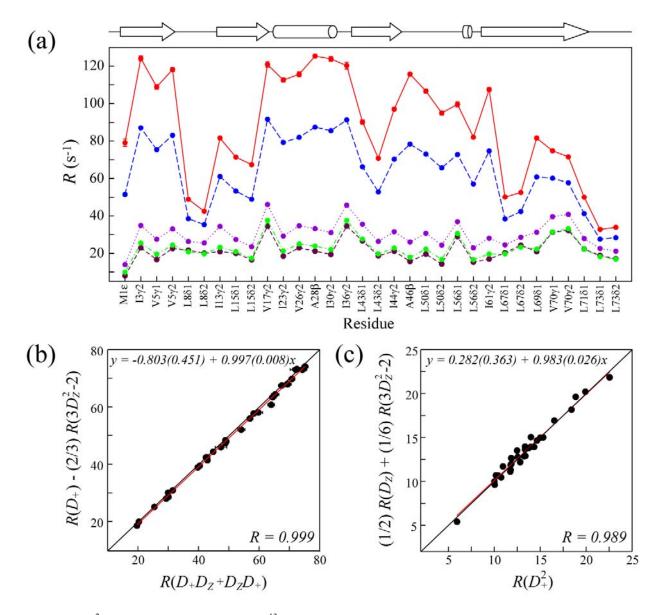


Figure S1. (a) All ²H relaxation rates measured in ¹³CH₂D methyl groups of ubiquitin at 27 °C satisfy the consistency relations. (a) $(5/3)R(D_+D_Z+D_ZD_+) \ge R(D_+) \ge (5/3)R(3D_Z^2-2) \ge (5/3)R(D_+^2) \ge R(D_Z)$. The rates $(5/3)R(D_+D_Z+D_ZD_+)$, $(5/3)R(D_+)$, $R(3D_Z^2-2)$, $(5/3)R(D_+^2)$ and $R(D_Z)$ are shown with red, blue, purple, green and brown circles/lines, respectively, vs. methyl positions; (b-c) Linear correlation plots of (b) $R(D_+D_Z+D_ZD_+)$ rates (x-axis) vs. $R(D_+) - (2/3)R(3D_Z^2-2)$ (y-axis), and (c) $R(D_+^2)$ (x-axis) vs. $(1/2)R(D_Z) + (1/6)R(3D_Z^2-2)$ (y-axis) for 32 methyl groups in ubiquitin.

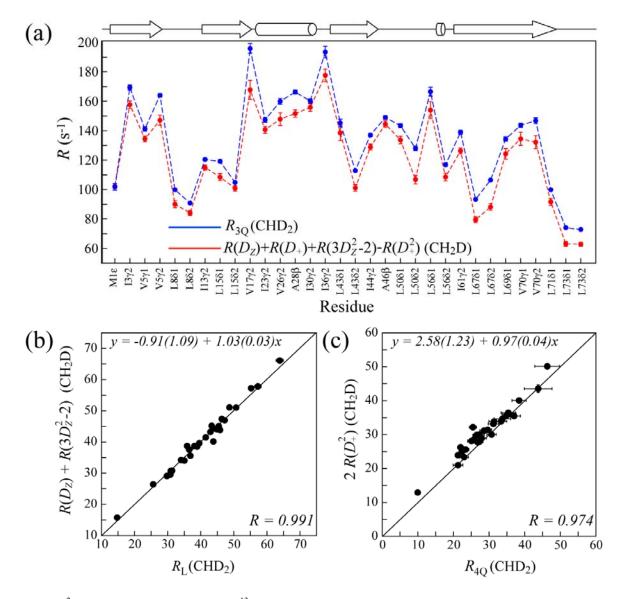


Figure S2. (a) All ²H relaxation rates measured in ¹³CHD₂ methyl groups of ubiquitin at 10 °C satisfy the consistency relations. (a) $R_{3Q}(CHD_2) \le R(D_Z) + R(D_+) + R(3D_Z^2 - 2) - R(D_+^2)$ (CH₂D) (shown with red and blue circles/lines, respectively, *vs.* methyl position). (b-c) Linear correlation plots of (b) $R_L(CHD_2)$ rates (*x*-axis) *vs.* $R(D_Z) + R(3D_Z^2 - 2)$ (CH₂D) (*y*-axis) and (c) R_{4Q} (CHD₂) (*x*-axis) *vs.* $2R(D_+^2)$; CH₂D) (*y*-axis) for 29 methyl groups of ubiquitin. Three residues with large errors in the measurements (> 6 %) have been eliminated from the plots in (b-c).

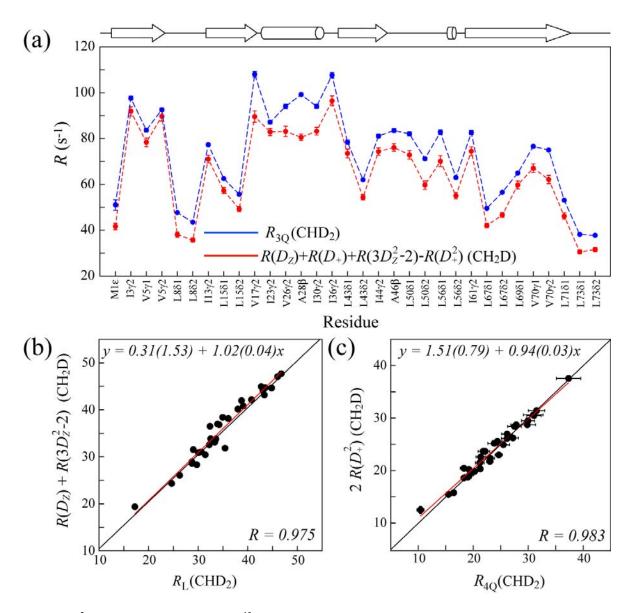


Figure S3. (a) All ²H relaxation rates measured ¹³CHD₂ methyl groups of ubiquitin at 40°C satisfy the consistency relations. (a) $R_{3Q}(CHD_2) < R(D_Z) + R(D_+) + R(3D_Z^2 - 2) - R(D_+^2)$ (CH₂D) (shown with red and blue circles/lines, respectively *vs.* methyl position). (b-c) Linear correlation plots of (b) $R_L(CHD_2)$ rates (*x*-axis) *vs.* $R(D_Z) + R(3D_Z^2 - 2)$ (CH₂D) (*y*-axis) and (c) R_{4Q} (CHD₂) (*x*-axis) *vs.* $2R(D_+^2)$; CH₂D) (*y*-axis) for 31 methyl groups in ubiqutin. 1 residue has been eliminated from the plots in (b-c) due to very high errors in the extracted relaxation rates.

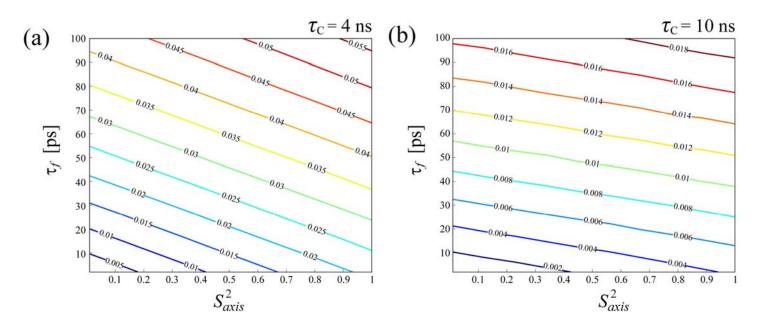


Figure S4. Contour plots showing simulated absolute differences between synthetic-[R_L ; R_2 (CHD₂)]-derived and input S^2_{axis} values $(S^2_{axis}(CHD_2) - S^2_{axis})$ as a function of $(S^2_{axis}; \tau_j)$ for the global isotropic molecular reorientation correlation times (τ_C) of (**a**) 4 ns; (**b**) 10 ns. The R_2 (CHD₂) rates have been simulated as described in the Supporting Information and best-fit to $R(D_+;CH_2D) = (1/80)(2\pi QCC)^2[9J(0) + 15J(\omega_D) + 6J(2\omega_D)]$, while R_L (CHD₂) have been fit to $(3/40)(2\pi QCC)^2[4J(\omega_D) + 4J(2\omega_D)] = R(3D_Z^2-2; CH_2D) + R(D_Z; CH_2D)$.

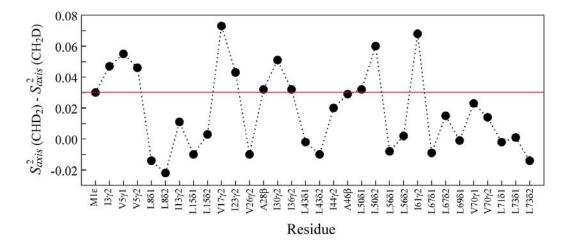


Figure S5. The differences between the $[R_2, R_L(CHD_2)]$ -derived and $[D_+, D_Z(CH_2D)]$ -derived S^2_{axis} values in ubiquitin at 40°C $[S^2_{axis}(CHD_2) - S^2_{axis}(CH_2D)]$ plotted versus methyl-containing residue numbers. The approximate position of the average absolute deviation $[S^2_{axis}(CHD_2) - S^2_{axis}(CH_2D)]$ predicted from simulations for $\tau_C = 4$ ns is shown with horizontal red line.

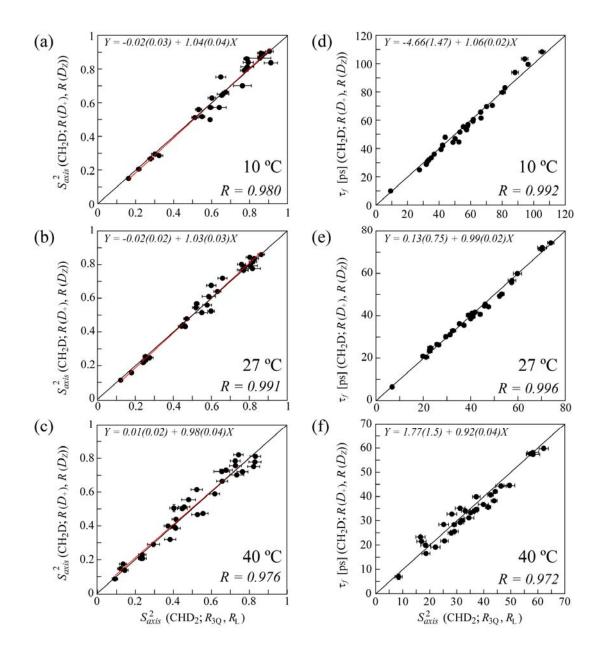


Figure S6. Linear correlation plots of (**a-c**) $[R_{3Q}, R_L(CHD_2)]$ -derived S^2_{axis} (x-axis) vs. $[R(D_+, D_Z; CH_2D)]$ -derived S^2_{axis} (y-axis) at 10, 27 and 40°C; (**d-f**) $[R_{3Q}, R_L(CHD_2)]$ -derived τ_f values (x-axis) vs. $[R(D_+, D_Z; CH_2D)]$ -derived τ_f (y-axis) at 10, 27 and 40°C. Linear regression parameters are shown for each plot along with Pearson correlation coefficients, R. Solid diagonal lines correspond to y = x.

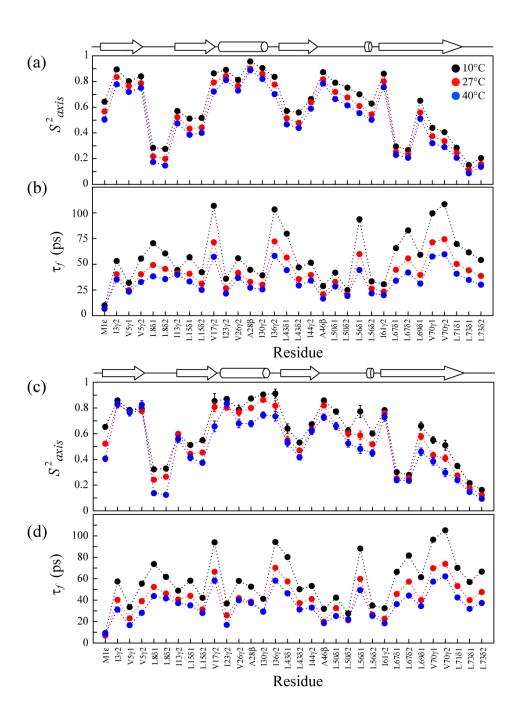


Figure S7. Comparisons of S^2_{axis} and τ_f values obtained for 32 methyl groups of ubiquitin at 10°C (black circles), 27°C (red circles) and 40°C (blue circles): (a) $[R(D_+,D_Z; CH_2D)]$ -derived S^2_{axis} , (b) $[R(D_+,D_Z; CH_2D)]$ -derived τ_f values (ps); (c) $[(R_{3Q},R_L; CHD_2)]$ -derived S^2_{axis} and (d) $[(R_{3Q},R_L; CHD_2)]$ -derived τ_f values.

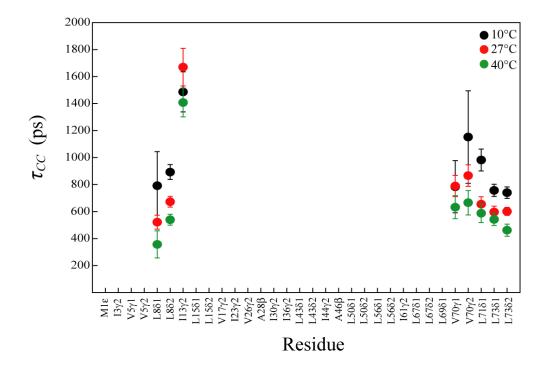


Figure S8. Temperature dependence of the time-scales of slow methyl axis motions/rotameric jumps (τ_{CC} ; ps) for the subset of methyl groups of ubiquitin that have statistically significant reduction in reduced χ^2 when five ²H relaxation rates (see main text) are best-fit to the spectral density function in eq. 2b. The values of τ_{CC} are shown at 10°C (black circles), 27°C (red circles) and 40°C (green circles).

Supplementary References

- (1) Mittermaier, A.; Kay, L. E. J. Am. Chem. Soc. 1999, 121, 10608.
- (2) Lipari, G.; Szabo, A. J. Am. Chem. Soc. 1982, 104, 4559.
- (3) Woessner, D. E. J. Chem. Phys. 1962, 37, 647.
- (4) Skrynnikov, N. R.; Millet, O.; Kay, L. E. J. Am. Chem. Soc. 2002, 124, 6449.