Supporting Information for "Importance of Ionic Polarization Effect on the Electrophoretic Behavior of Polyelectrolyte Nanoparticles in Aqueous Electrolyte Solutions"

Li-Hsien Yeh*, Kuan-Liang Liu, and Jyh-Ping Hsu*

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617

* Corresponding author

Superposition Methodology

Due to the linear nature of the set of governing equations for the perturbed problem, the problem considered here can be decomposed into two hypothetical sub-problems.^{R1} In the first sub-problem the particle moves with a constant scaled velocity U^* in the absence of applied electric field **E**, and in the second sub-problem **E** is applied but the particle is held fixed. To determine the electrophoretic mobility of the polyelectrolyte, both the electrical force $\mathbf{F}_{\mathbf{e}}$ and hydrodynamic force $\mathbf{F}_{\mathbf{h}}$ acting on it need be calculated. Let F_{ei} and F_{hi} be, respectively, the components of $\mathbf{F}_{\mathbf{e}}$ and $\mathbf{F}_{\mathbf{h}}$ in the direction of **E** in sub-problem *i*, $F_{ei}^* = F_{ei} / \varepsilon (\phi_r)^2$ and $F_{hi}^* = F_{hi} / \varepsilon (\phi_r)^2$ be the corresponding scaled quantities, and $F_i^* = F_{ei}^* + F_{hi}^*$ be the scaled magnitude of total force acting on the polyelectrolyte in the direction of **E** in sub-problem *i*. Then $F_1^* = C_1 U^*$ and $F_2^* = C_2 E^*$, where the proportional constants C_1 and C_2 are independent of U^* and E^* , respectively. At steady state, $F_1^* + F_2^* = 0$, yielding^{R2}

$$\mu^* = \frac{U^*}{E^*} = -\frac{C_2}{C_1}$$
(S1)

where μ^* is the scaled electrophoretic mobility of the polyelectrolyte. F_{ei} and F_{di} can be evaluated by integrating the Maxwell stress tensor $\sigma^{\mathbf{E}} = \varepsilon \mathbf{E} \mathbf{E} - (1/2)\varepsilon E^2 \mathbf{I}$ and the hydrodynamic stress tensor $\sigma^{\mathbf{H}} = -\delta p \mathbf{I} + 2\eta \Delta$, respectively, over Ω_p in sub-problem *i*, where $E^2 = \mathbf{E} \cdot \mathbf{E}$ with \mathbf{I} , $\Delta = [\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}}]/2$, and the superscript \mathbf{T} being the unit tensor, the rate of deformation tensor, and matrix transpose, respectively, as^{R2,R3}

$$F_{ei}^{*} = \iint_{\Omega_{p}^{*}} \left[\left[\frac{\partial \phi_{e}^{*}}{\partial n} \frac{\partial \delta \phi^{*}}{\partial Z} + \frac{\partial \delta \phi^{*}}{\partial n} \frac{\partial \phi_{e}^{*}}{\partial Z} \right] - \left[\frac{\partial \phi_{e}^{*}}{\partial n} \frac{\partial \delta \phi^{*}}{\partial n} + \frac{\partial \phi_{e}^{*}}{\partial t} \frac{\partial \delta \phi^{*}}{\partial t} \right] n_{z} d\Omega_{p}^{*}, i=1,2$$
(S2)

$$F_{hi}^{*} = \iint_{\Omega_{p}^{*}} (\boldsymbol{\sigma}^{\mathbf{H}^{*}} \cdot \mathbf{n}) \cdot \mathbf{e}_{z} d\Omega_{p}^{*}, i=1,2$$
(S3)

In these expressions, Z = z/a; $\Omega_p^* = \Omega_p/a^2$, $\sigma^{\mathbf{E}^*} = \sigma^{\mathbf{E}}/[\varepsilon(\phi_r)^2/a^2]$, and $\sigma^{\mathbf{H}^*} = \sigma^{\mathbf{H}}/[\varepsilon(\phi_r)^2/a^2]$ are the scaled Ω_p , the scaled Maxwell tensor, and the scaled hydrodynamic stress tensor, respectively; n_z , n, and t are the z components of the unit normal vector **n**, the magnitude of **n**, and that of the unit tangential vector **t**, respectively. Because F_{h2}^{*} always acts against the motion of the polyelectrolyte, it is usually called the scaled electroosmotic retardation force,^{R2} which is dominated by an electroosmotic flow coming mainly from the motion of the counterions inside the double layer due to the application of **E**.

Note that in sub-problem one, $U^* \neq 0$ and $E^* = 0$, and in sub-problem two, $U^* = 0$ and $E^* \neq 0$. For a given E^* , the solution procedure includes the following steps.^{R2} (i) Assume an arbitrary value of U^* in sub-problem one and that of E^* in sub-problem two, and solve eqs 2-6 in the text subject to appropriate boundary conditions. (ii) Calculate F_{ei}^* and F_{hi}^* by eqs S2 and S3, respectively, and evaluate $F_i^* = F_{ei}^* + F_{hi}^*$, i=1,2. (iii) Use $F_1^* = C_1U^*$ and $F_2^* = C_2E^*$ to calculate C_1 and C_2 . (iv) Apply eq S1 to evaluate μ^* . Note that if we initially let $U^* = E^*$, then μ^* can also be evaluated directly by $-(F_2^*/F_1^*)$.

REFERENCES

(R1) O'Brien, R. W.; White, L. R. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1607.

- (R2) Yeh, L. H.; Hsu, J. P. Soft Matter 2011, 7, 396.
- (R3) Hsu, J. P.; Yeh, L. H.; Ku, M. H. J. Colloid Interface Sci. 2007, 305, 324.