Supporting information

(1) The effect of symmetry structure in Bi₂₆O₃₉

Figure S1. (Color online) The band structures of un-optimized $Bi_{26}O_{39}$ (a) and optimized $Bi_{26}O_{39}$ (b), where an energy level (labeled by star) lies in the band gap of un-optimized $Bi_{26}O_{39}$, but it is absent in the band structure of optimized $Bi_{26}O_{39}$.

optimized Bi26O39

Figure S2. (Color online) PDOSs projected on (a) symmetric BiO_4 , (b) BiO_3 units of un-optimized $Bi_{26}O_{39}$ and on (c) distorted BiO_4 , (d) BiO_3 units of optimized $Bi_{26}O_{39}$, where the antibonding Bi 6s-O 2p states at the Fermi level of un-optimized $Bi_{26}O_{39}$ in (a) is labeled by star.

It can be seen from Figure S1 that an energy level present in the band gap of the un-optimized $Bi_{26}O_{39}$ (Figure S1(a)), whereas nothing appear in the band gap of the optimized $Bi_{26}O_{39}$ (Figure S1(b)). The comparison between the PDOSs projected on symmetric BiO_4 (Figure S2(a)) of un-optimized $Bi_{26}O_{39}$ and that projected on distorted BiO_4 (Figure S2(c)) of optimized $Bi_{26}O_{39}$ indicates that, under symmetric BiO_4 condition, the antibonding Bi 6s-O 2p

states at the Fermi level results in an energy level in the band gap of the un-optimized $Bi_{26}O_{39}$. Under the distorted BiO_4 condition, the antibonding Bi 6s-O 2p states interact with Bi 6p states and shift down along the valence band, they can not form any energy level in the band gap of the optimized $Bi_{26}O_{39}$. Compared with optimized $Bi_{26}O_{39}$, the un-optimized $Bi_{26}O_{39}$ does not have any additional oxygen atom and it has only a symmetric tetrahedral BiO_4 unit different from the distorted one of optimized $Bi_{26}O_{39}$. So it can be concluded that the energy level in the band gap of un-optimized $Bi_{26}O_{39}$ is just introduced by a symmetric structure. This symmetric structure is similar with the BiO_4 unit of $Bi_{26}O_{40}$.

(2) The formation energies calculation of S^{4+} , Se^{4+} or Te^{4+} substitution

The formation energies E_f of S⁴⁺, Se⁴⁺ or Te⁴⁺ doped systems were calculated according to the following formulas:

$$E_{f} = E_{tot} (doped) - [E_{tot} (host) + n\mu_{dopant} - n\mu_{Bi}]$$
$$E_{f} = E_{tot} (doped) - [E_{tot} (host) + n\mu_{dopant} - n\mu_{O}]$$

Table S1. The calculated formation energies E_f for one S⁴⁺ ion substituted at five different sites and for two identical S⁴⁺, Se⁴⁺ or Te⁴⁺ ions substituted at two Bi2 (2a) sites.

doping ions			S ⁴⁺			S ⁴⁺	Se ⁴⁺	Te ⁴⁺
number of doping ions (n)			1				2	
substitutional sites	01	O2	03	Bi1	Bi2		Bi2	
FormationEnergies (eV)	94.77	45.01	46.94	0.54	-1.27	4.519	3.286	2.809

The calculated formation energies E_f for S⁴⁺, Se⁴⁺ or Te⁴⁺ substituted at different sites are shown in Table S1. It can be seen that the formation energies for S⁴⁺ substitutions on three different oxygen sites are extremely high, while the formation energies for S⁴⁺ substitutions on bismuth sites are much lower. The formation energy for S⁴⁺ substitutions on Bi2 (2a) site is the lowest (-1.27 eV), which indicates that the S⁴⁺ ion is energetically preferred to substitute the Bi2 (2a) site.

Then we calculated the formation energies for two identical S^{4+} , Se^{4+} or Te^{4+} ions substituted at two Bi2 (2a) sites and the results are 4.519 eV for S^{4+} , 3.286 eV for Se^{4+} , 2.809 eV for Te^{4+} , respectively. The formation energy of Te^{4+} ions doped system is lower than that of S^{4+} and Se^{4+} ions doped systems, and the $Bi_{24}Te_2O_{40}$ structure is the most energetically preferred structure.

(3) The relationship between ionic radius, ionization energies, Pauling electronegativities and formation energies

Table S2. The ionic radius, ionization energies and Pauling electronegativities for S^{4+} , Se^{4+} or Te^{4+} ion, and the formation energies for $Bi_{24}Te_2O_{40}$, $Bi_{24}Te_2O_{40}$ and $Bi_{24}Te_2O_{40}$.

eliments	S ⁴⁺	Se ⁴⁺	Te ⁴⁺	Bi ³⁺ (Bi ⁵⁺)
ionic radius (nm)	0.37	0.5	0.7	0.96 (0.74)
ionization energies (eV)	4556	4144	3610	2466(5400)
Pauling electronegativities	2.58	2.55	2.1	2.02
formation energies (eV)	4.519	3.286	2.809	_

The ionic radius, ionization energies and Pauling electronegativities for S^{4+} , Se^{4+} or Te^{4+} ion, and the formation energies for $Bi_{24}Te_2O_{40}$, $Bi_{24}Te_2O_{40}$ and $Bi_{24}Te_2O_{40}$ are shown in Table S2. We find that S, Se and Te in the same group exhibit a clear trend in properties, as the period increases, the ionic radii increase, whereas the ionization energy, Pauling electronegativity and formation energy decrease.

(4) The calculated structural parameters of $Bi_{24}S_2O_{40}$

The $Bi_{24}S_2O_{40}$ compound has been synthesized by our group, and its physical properties are under investigation. The calculated structural parameters of $Bi_{24}S_2O_{40}$ are given in Table S3.

Table S3. The calculated structural parameters of $Bi_{24}S_2O_{40}$, where the atomic positions are given in fractional coordinates, and the symbols in the brackets are the multiplicity and Wyckoff letter. Z represents the number of molecules in one conventional cell.

parameters	$Bi_{24}S_2O_{40}$		
numbers of space group	197		
standard Hermann-Mauguin symbols	123		
crystal system	body-centered cubic		
crystallographic point groups	23		

	a, b, c	(Å)	9.79683, 9.79683, 9.79683		
Lattice parameters	α, β, γ	(Deg)	90, 90, 90		
	cell volun	ne $(Å^3)$	940.279		
	density	(g/cm^3)	10.1009		
Z			2		
cell formula			$Bi_{12}SO_{20}$		
			Bi(24f) 0.01583,0.1723,0.3226		
			S(2a)0.0000,0.0000,0.0000		
fractional c	coordinates	O(8c)0.1931,0.1931,0.1931			
			O(24f)0.2440,0.4945,0.1305		
			O(8c)0.3937,0.3937,0.3937		