Supporting Information

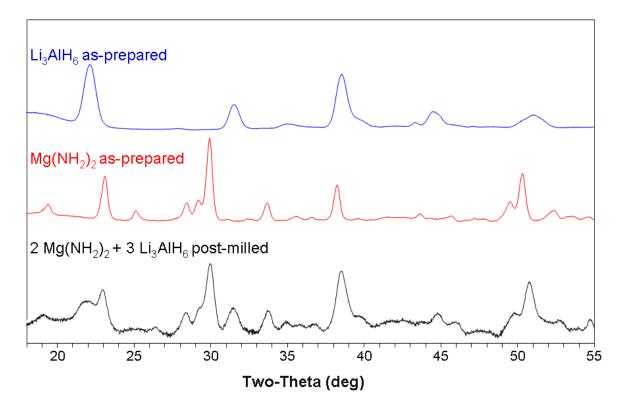
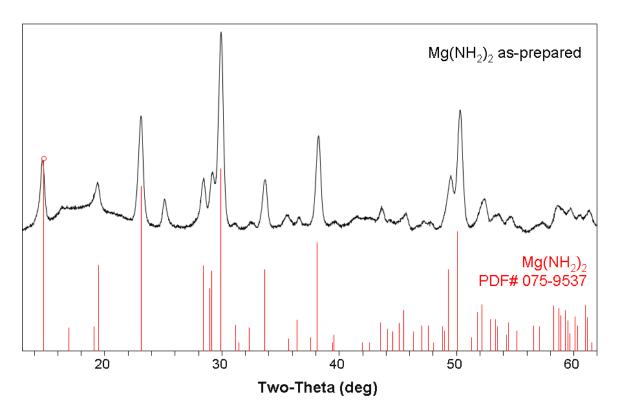
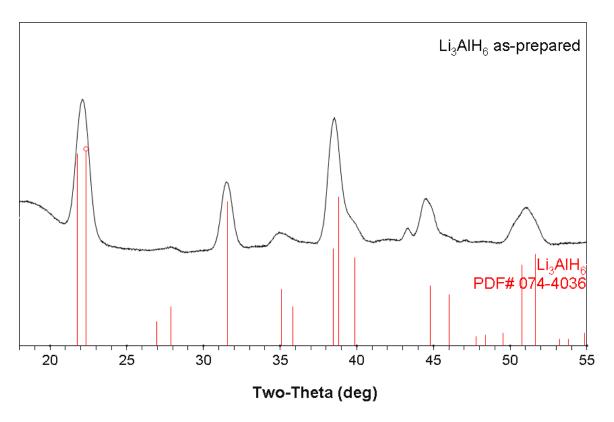
Hydrogen Storage Properties of the 3Mg(NH₂)₂–2Li₃AlH₆ System

Jun Yang,* Dongan Liu⁺, Andrea Sudik, Chris Wolverton, Patrick Ferro^{\$}

+ Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building, 2350 Hayward Street, Ann Arbor, MI 48109,USA

§Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA

\$Department of Mechanical Engineering, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258, USA

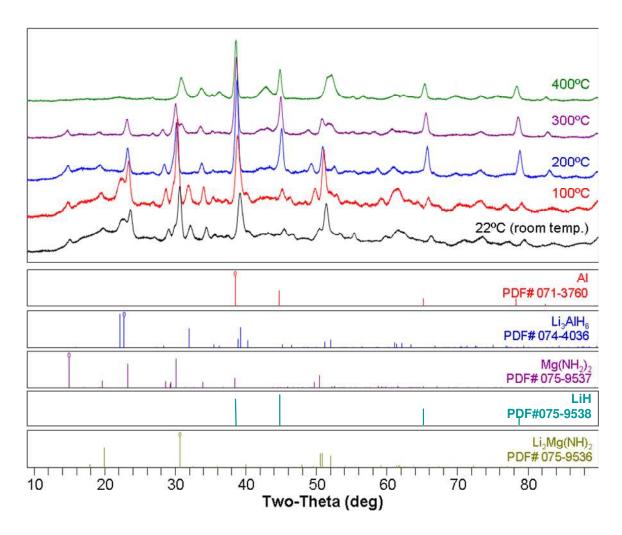

Figure S1. Room temperature PXRD patterns for post-milled $3Mg(NH_2)_2$ - $2Li_3AlH_6$ (black) as compared to PXRD patterns for as-prepared $Mg(NH_2)_2$ (red) and Li_3AlH_6 (blue).

Figure S2. Room temperature PXRD patterns for as-prepared $Mg(NH_2)_2$ (black). Phase assignment is made based on comparisons with PDF data for $Mg(NH_2)_2$ (#075-9537).

Figure S3. Room temperature PXRD patterns for as-prepared Li₃AlH₆ (black). Phase assignment is made based on comparisons with PDF data for Li₃AlH₆ (#074-4036).

Figure S4. Select in-situ PXRD data for 3Mg(NH₂)₂–2Li₃AlH₆ as a function of temperature at 22°C (black), 100°C (red), 200°C (blue), 300°C (purple), and 400°C (green). Phase assignments were made based on comparisons with PDF data for Al (#071-3760, red), Li₃AlH₆ (#074-4036, blue), Mg(NH₂)₂ (#075-9537, purple), LiH (#075-9538, light blue) and Li₂Mg(NH)₂ (#075-9536, green).

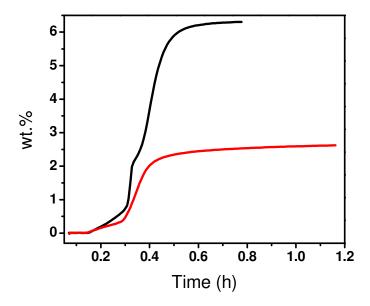


Figure S5. Hydrogen desorption kinetics at 300° C to 1 bar H₂ back-pressure for $3Mg(NH_2)_2$ - $2Li_3AlH_6$ mixed at low-energy for the first (black) and second (red) desorption cycles after recharging at 230° C and 180 bar H₂ for 10 hours.