Supporting information for ## Electro-Thermally Induced Highly Responsive and Highly Selective Vanadium Oxide Hydrogen Sensor based on Metal-insulator Transition Ji Won Byun¹, Min-Bin Kim¹, Myung Hwa Kim², Sung Youb Kim¹, Sang Hyun Lee³, Byung Cheol Lee³, and Jeong Min Baik^{1*} ¹School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea ²Department of Chemistry & Nano Science, Ewha Womans University, Seoul, 120-745, Korea ³Radiation Instruments Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, Korea *To whom all correspondence should be addressed. Email: jbaik@unist.ac.kr **Figure 1S.** Plots of LnI vs. 1000/T of VO₂ under Ar, Pd-VO₂ under Ar and H₂. **Table 1***S*. Dimension, electrical and thermal conductivity of VO₂ nanowire and SiO₂ substrate. | VO ₂ nanowire dimension W×H×L [μm] | $0.10\times0.07\times20.0$ | |--|---| | SiO ₂ substrate dimension W×H×L [μm] | $100 \times 100 \times 100$ | | Current density of nanowire J [A/cm ²] | 0.5×10^4 , 1.0×10^4 , 2.0×10^4 , 3.5×10^4 | | Thermal conductivity of nanowire k_n [W/(m·K)] | 5.10 | | Thermal conductivity of substrate k_s [W/(m·K)] | 1.05 | | Applied voltage E _{app} [V] | 5.0 | | Ambient and Initial Temperatures [°C] | 45.0 | | | | **Figure 2S.** (a) 3D model in COMSOL of a VO₂ nanowire (lateral dimension: 70×100 nm) on a SiO₂/Si substrate (Inset shows the SEM image of the VO₂ nanowire) (b) Plots of ΔT versus distance along the axis of the nanowire shown in (a) measured at 5 V as a function of e-beam irradiation power and dose. (c) temperature difference of nanowires before H_2 exposure and near MIT as a function of e-beam irradiation power and dose. Figure 3S. I-V curve and SEM image of Pd-VO $_2$ after e-beam irradiation at 0.7 MeV.