
SUPPORTING INFORMATION

Spectrometric Study of AOT-Hydrolysis Reaction in Water/AOT/Isooctane

Microemulsions Using Phenolphthalein as a Chemical Probe

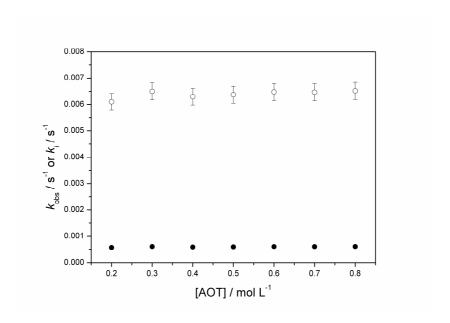

Shiyan Mao, Zhiyun Chen, Dashuang Fan, Xueqin An, and Weiguo Shen

Figure S-1. Plots of $\ln k_{\rm obs}$ or $\ln k_{\rm i}$ vs 1/T for the alkaline hydrolysis of AOT in water/AOT/isooctane microemulsions with various ω and [AOT] = 0.4 mol L⁻¹. The points represent experimental results; for $\ln k_{\rm obs}$: (\blacksquare) $\omega = 8$, (\square) $\omega = 10$, (\bullet) $\omega = 12$, (\circ) $\omega = 14$, (\blacktriangledown) $\omega = 16$, (\bigtriangledown) $\omega = 18$; for $\ln k_{\rm i}$: (\bigtriangleup). The solid lines represent the results of the fits of eq 16 (see manuscript).

[†]Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China

[‡]School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China

Figure S-2. Plots of k_{obs} and k_{i} vs [AOT] for the alkaline hydrolysis of AOT in water/AOT/isooctane microemulsions with $\omega = 14$ at 298.2 K: (\circ) k_{i} and (\bullet) k_{obs} .