Supporting Information

ADME-Guided Design and Synthesis of Aryloxanyl Pyrazolone Derivatives to Block Mutant Superoxide Dismutase 1 (SOD1) Cytotoxicity and Protein Aggregation: Potential Application for the Treatment of Amyotrophic Lateral Sclerosis

Tian Chen¹, *Radhia Benmohamed²*, *Jinho Kim³*, *Karen Smith³*, *Daniel Amante³*, *Richard I. Morimoto⁵*, *Donald R. Kirsch²*, *Robert J. Ferrante⁴*, *Richard B. Silverman^{1,6*}*

¹Department of Chemistry Northwestern University, Evanston, Illinois 60208-3113 USA, ²Cambria Pharmaceuticals, Cambridge, Massachusetts, 02142 USA, ³ Neurological Surgery, Neurology, and Neurobiology Departments, University of Pittsburgh, Pittsburgh, PA 15213, USA and the Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA, ⁵Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208-3500 USA, and ⁶Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113 USA. Table of Contents

1. Experimental details and data for 35 , 36 , 39 , 41 , and 42-47	S 3
2. HPLC data and spectra for 1-19	S 7
3. HPLC spectra and data of microsomal stability of minaprine and 1	S29
4. Data and spectra of metabolite profiling of 1 and 3	S33
5. Bioanalysis data of in vivo mouse steady-state level study and in vivo blood bra barrier study of 13	nin S38
6. Effect of 13 on hERG Potassium Channel	S42
7. Effect of 13 on Enzymes and Receptors	S43

Experimental details and data for 35, 36, 39, 41, and 42-47.

2-Bromo-*N***-methoxy-***N***-methylacetamide** (**36**). ¹ *N*,*O*-Dimethylhydroxylamine hydrochloride (16.0 g, 164 mmol) and K₂CO₃ (50.0 g, 362 mmol) were dissolved and stirred in Et₂O (200 mL) and H₂O (200 mL) at 0 °C. Bromoacetyl bromide (15.68 mL, 181 mmol) was added dropwise to the reaction at 0 °C, which was stirred for another 30 min after the ice bath was removed. The layers were separated, and the aqueous layer was extracted with Et₂O (2 × 200 mL). The organic layers were combined, dried over Na₂SO₄, and concentrated in vacuo to afford **36** (22.0 g, 74%) as a yellow oil. Compound **36** was directly used in the next step without further purification. ¹H NMR (500 MHz, CDCl₃, δ): 4.02 (s, 2H), 3.80 (s, 3H), 3.23 (s, 3H).

Biphenyl-3-ol (39). 3-Bromophenol (1.05 g, 6.07 mmol), phenylboronic acid (1.48 g, 12.1 mmol), K_2CO_3 (2.00 g, 14.5 mmol), and $PdCl_2(PPh_3)$ (1/200 eq.) were added to a solution of dioxane/H₂O (20 mL/5 mL). The resulting solution was refluxed for 16 h. The reaction mixture was then partitioned between Et₂O and water, and the aqueous phase was extracted with Et₂O. The combined organic layer was evaporated to dryness

and purified by flash column chromatography (ethyl acetate/hexanes = 1/9) to give **39** (1.02 g, 98%) as a transparent oil. ¹H NMR (500 MHz, CDCl₃, δ): 7.57 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37-7.30 (m, 2H), 7.17 (d, *J* = 7.7 Hz, 1H), 7.07-7.06 (m, 1H), 6.83-6.81 (m, 1H), 4.94 (br, 1H).

5-Phenylbiphenyl-3-ol (41). 3,5-Dibromophenol (1.0 g, 3.97 mmol), phenylboronic acid (2 g, 16.4 mmol), K₂CO₃ (2.7 g, 19.5 mmol), and PdCl₂(PPh₃) (1/200 eq.) were added to a solution of dioxane/H₂O (20 mL/ 5 mL). The resulting solution was allowed to reflux for 16 h. The reaction mixture was then partitioned between Et₂O and water, and the aqueous phase was extracted with Et₂O. The combined organic layer was evaporated to dryness and purified by flash column chromatography (ethyl acetate/hexanes = 1/9) to give **41** (0.83 g, 83%) as a transparent oil. ¹H NMR (500 MHz, CDCl₃, δ): 7.61 (d, *J* = 7.2 Hz, 4H), 7.43 (t, *J* = 7.6 Hz, 4H), 7.37-7.33 (m, 3H), 7.07 (s, 2H), 6.10 (br s, 1H).

Weinreb amide method B1.

2-(3,5-Dichlorophenoxy)acetic acid (35). To a solution of 3,5-dichlorophenol (60.0 g, 366 mmol) in EtOH (25 mL) was added NaOEt (21 wt% in EtOH, 137 mL, 362 mmol) at room temperature. The reaction was left stirring for another 10 min. To the reaction mixture, ethyl bromoacetate (20.5 mL, 370 mmol) was added. The reaction was gently brought to 70 °C overnight. NaOH (1 N in H₂O, 420 mL, 420 mmol), and 100 mL H₂O was added. The reaction mixture was then brought to 90 °C for 4 h. After ethyl 2-(3,5-dichlorophenoxy)acetate had disappeared by TLC analysis (ethyl acetate/hexanes = 1/9), the solution was cooled. Then it was washed with chloroform (3 × 500 mL), adjusted to pH 3 with HCl (1 N), extracted with chloroform (5 × 500mL), and concentrated to dryness to give the 3,5-dichlorophenoxyacetic acid **35** (70.0 g, 86%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 10.78 (br s, 1H), 7.03 (s, 1H), 6.83 (s, 2H), 4.68 (s, 2H).

2-(3,5-Dichlorophenoxy)-*N***-methoxy-***N***-methylacetamide (42).** To a solution of *N*,*O*-dimethylhydroxylamine HCl salt (5.30 g, 54.33 mmol) in DCM (250 mL) was added DIEA (24 mL, 137.8 mmol) at room temperature. The reaction mixture was stirred for 5 min. Acetyl chloride (13.0 g, 54.28 mmol) was then added in DCM drop by drop at 0 °C. The reaction mixture was stirred at room temperature for another 30 min. The resulting reaction solution was washed with HCl (1 N) and concentrated under vacuum. The crude solid product was washed with Et₂O to give **42** (12 g, 84%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 6.99 (s, 1H), 6.84 (s, 2H), 4.80 (s, 2H), 3.77 (s, 3H), 3.25 (s, 3H).

Weinreb amide method B2.

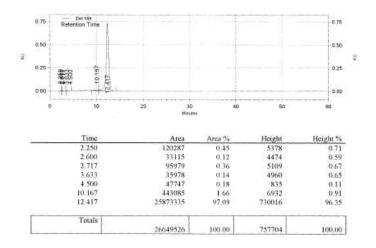
2-(3,5-Dichlorophenoxy)-*N*-methoxy-*N*-methylacetamide (42). To a solution of phenol (5.27 g, 32.33 mmol) in EtOH (10 mL) was added NaOEt (21 wt% in EtOH, 12.1 mL, 32.41 mmol) at room temperature. The reaction mixture was stirred for 10 min. Compound **39** (5.87 g, 32.25 mmol) was then gently added at room temperature. After the resulting solution was stirred at 70 °C overnight, the reaction mixture was cooled, poured into HCl (0.25 M), and the aqueous layer was extracted with EtOAc. The

combined organic layer was concentrated in vacuo and reconstituted in CHCl₃. The precipitate was filtered and washed with CHCl₃. Wienreb amide **42** (4.53 g, 53%) was obtained as a white solid.

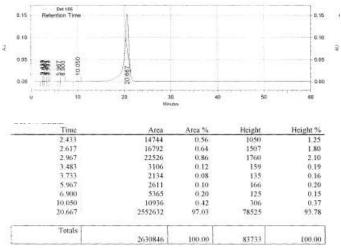
2-(3,5-Difluorophenoxy)-*N***-methoxy-***N***-methylacetamide (43).** Analogous to **42**, compound **43** was prepared via method B2. 3,5-Difluorophenol (1.00 g, 7.69 mmol) was treated with NaOEt (21 wt% in EtOH, 2.90 mL, 7.69 mmol) and **36** (1.40 g, 7.69 mmol). Further purification by flash chromatography (ethyl acetate/hexanes = 1/2) was applied to give **42** (1.24 g, 70%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 6.49-6.42 (m, 3H), 4.81 (s, 2H), 3.77 (s, 3H), 3.24 (s, 3H).

2-(3,5-Dibromophenoxy)-*N***-methoxy-***N***-methylacetamide (44).** Analogous to **42**, **44** was prepared via method B2. 3,5-Dibromophenol (1.00 g, 3.97 mmol) was treated with NaOEt (21 wt% in EtOH, 1.50 mL, 4.01 mmol) and **36** (0.72 g, 3.96 mmol). Further purification by flash chromatography (ethyl acetate/hexanes = 1/2) was applied to give **44** (1.07 g, 76%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 7.28 (s, 1H), 7.04 (s, 2H), 4.80 (s, 2H), 3.77 (s, 3H), 3.25 (s, 3H).

2-(3-Bromophenoxy)-*N***-methoxy-***N***-methylacetamide** (45). Analogous to 42, compound 45 was prepared via method B2. 3-Bromophenol (2.50 g, 14.5 mmol) was treated with NaOEt (21 wt% in EtOH, 5.40 mL, 14.5 mmol) and **36** (2.66 g, 14.6 mmol). Further purification by flash chromatography (ethyl acetate/hexanes = 1/2) was applied to give 45 (1.07 g, 61%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 7.16-7.09 (m, 3H), 6.90-6.88 (m, 1H), 4.80 (s, 2H), 3.76 (s, 3H), 3.24 (s, 3H).

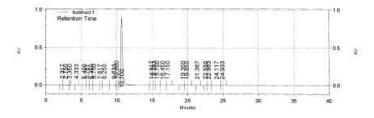

2-(Biphenyl-3-yloxy)-*N***-methoxy-***N***-methylacetamide** (46). Analogous to 42, compound 46 was prepared via method B2. Biphenyl-3-ol (1.02 g, 5.96 mmol) was treated with NaOEt (21 wt% in EtOH, 2.22 mL, 5.95 mmol) and **36** (1.08 g, 5.93 mmol). Further purification by flash chromatography (ethyl acetate/hexanes = 1/2) was applied to give 46 (0.95 g, 59%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 7.57 (d, *J* = 7.2 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.60-7.32 (m, 2H), 7.20 (s, 1H), 7.15-7.09 (m, 1H), 6.93-6.91(m, 1H), 4.88 (s, 2H), 3.77 (s, 3H), 3.24 (s, 3H).

2-(5-Phenylbiphenyl-3-yloxy)-*N*-methoxy-*N*-methylacetamide (47). Analogous to 42, 47 was prepared via method B2. 5-Phenylbiphenyl-3-ol (0.81 g, 3.29 mmol) was treated with NaOEt (21 wt% in EtOH, 1.25 mL, 3.35 mmol) and **36** (0.60 g, 3.30 mmol). Further purification by flash chromatography (ethyl acetate/hexanes = 1/2) was applied to give 47 (0.71 g, 62%) as a white solid. ¹H NMR (500 MHz, CDCl₃, δ): 7.63 (d, J = 7.2 Hz, 4H), 7.46-7.43 (m, 5H), 7.38-7.35 (m, 2H), 7.17 (s, 2H), 4.92 (s, 2H), 3.77 (s, 3H), 3.25 (s, 3H).

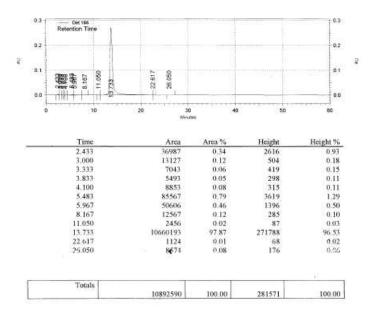

HPLC data and spectra for 1-19.

5-((4-Chlorophenylthio)methyl)-1H-pyrazol-3(2H)-one (1)

HPLC method A (isocratic; MeCN:H₂O 30:70, 60 min; 0.1% TFA): r.t. = 12.42 min, purity = 97.1%.



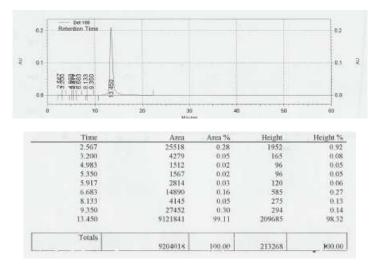
HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 20.67 min, purity = 97.0%.


5-((3,5-Dichlorophenylthio)methyl)-1*H*-pyrazol-3(2*H*)-one (2)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 10.70 min, purity = 98.4%.

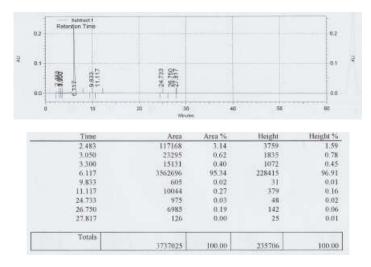
Time	Area	Area %	Height	Height %
2.317	18196	0.12	1240	0.14
2,750	58929	0.38	1436	0.16
3.350	10407	0.07	1154	0.13
4.333	1392	0.01	91	0.01
5,400	1223	0.01	89	0.01
5.767	1211	0.01	73	0.01
6,350	1913	0.01	134	0.01
6.750	58347	0.38	3603	0.39
7.617	1837	0.01	114	0.01
8.250	5551	0.04	212	0.02
9.633	28622	0.19	1900	0.21
10 000	5746	0.94	339	0.04
10,700	15206319	58.36	901686	98.59
14.917	10841	0.07	342	0.05
	10841	0.07	442	0.05
15.283	5354	0.03	349	0.04
15,700	10280	0.07	511	0.06
16.450	6099	0.04	177	0.02
17.150	2585	0.02	83	0.01
19.300	4726	0.03	215	0.02
19.850	7492	0.05	265	0.03
21.367	1359	0.01	72	0.01
22.550	1496	0.01	79	0.01
22.983	2768	0.02	118	0.01
24,117	5017	0.03	107	0.01
24.933	2035	0.01	85	0.01
Totals				
	15459745	100.00	914574	100.00

HPLC method B (isocratic; MeOH:H₂O 60:40, 60 min; 0.1% TFA): r.t. = 13.73 min, purity = 97.9%.

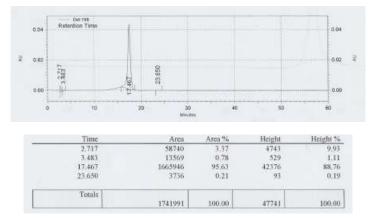


5-(4-Chlorophenylthio)-1*H*-pyrazol-3(2*H*)-one-¹⁵N₂ (3)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 8.22 min, purity = 97.4%.

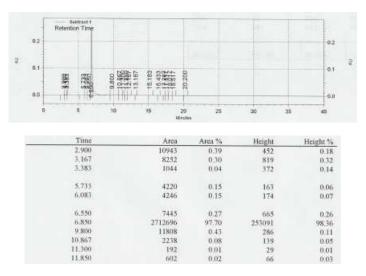

83	Sutract I Retention Time				0.3
0.7					0.2
0.1	1000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	12.533 13.167 13.167 16.483 16.483 16.500	264		0.1
0.0			222		0.0
0		10 15 2 Min	0 25 vites	30	35 40
	Time	Area	Area %	Height	Height %
	2.067	331	0.01	113	0.04
	2.333	3341	0.06	483	0.16
	2.533	8362	0.16	866	0.28
	2.817	238	0.00	33	0.01
	3.217	3865	0.07	345	0.11
	3.467	5788	0.11	660	0.22
	4.317	75599	1.43	3776	1.24
	5,317	20574	0.39	806	0,26
я.	8.217	5139711	97.35	296840	97.31
× .	11.717	1824	0.03	97	0.03
	12.333	4295	0.08	164	0,05
	13,167	4751	0.09	343	0.11
	14.917	274	0.01	32	0.01
	15.317	3236	0.06	132	0.04
	16.483	531	0.01	32	0.01
	18,550	2716	0.05	143	0.05
	19.500	340	0.01	24	0.01
	22.650	430	0.01	33	0.01
	23,300	1231	0.02	71	0.02
	24.267	2322	0.04	68	0.02
-	Totals			305061	100.00

HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 13.45 min, purity = 99.1%.

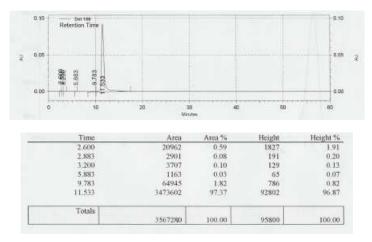


5-(4-Chlorophenylsulfinyl)-1*H*-pyrazol-3(2*H*)-one (4)

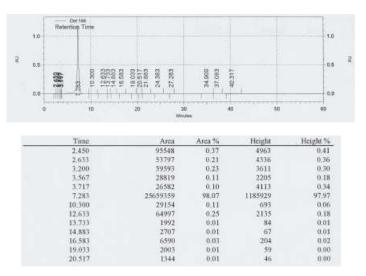
HPLC method A (isocratic; MeCN:H₂O 25:75, 60 min; 0.1% TFA): r.t. = 6.12 min, purity = 95.3%.



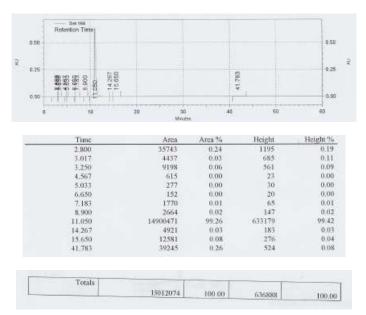
HPLC method B (isocratic; MeOH:H₂O 30:70, 60 min; 0.1% TFA): r.t. = 17.47 min, purity = 95.6%.


5-(4-Chloro-2,5-dimethylphenylsulfinyl)-1*H*-pyrazol-3(2*H*)-one (5)

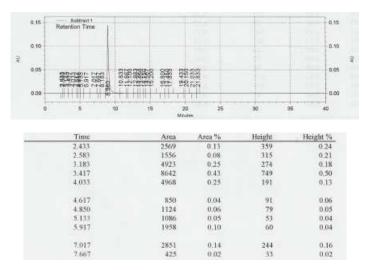
HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 6.85 min, purity = 97.7%.


Totals	2776495	100 00	257299	100.0
20.200	2393	0.09	189	0.0
18.517	872	0.03	69	0.0
18.017	2332	0.08	170	0.0
17.517	2305	0.08	162	0.0
17.267	1902	0.07	201	0.0
16.433	301	0.01	32	0.0
15.183	1816	0.07	139	0.0
13,167	190	0.01	24	0.0
12.167	698	0:03	57	0.0

HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 11.53 min, purity = 97.4%.


5-(4-Chlorophenylsulfonyl)-1*H*-pyrazol-3(2*H*)-one (6)

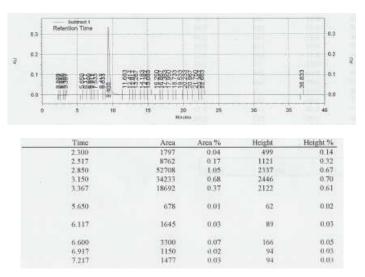
HPLC method A (isocratic; MeCN:H₂O 30:70, 60 min; 0.1% TFA): r.t. = 7.28 min, purity = 98.1%.


Totals	26165349	100.00	1210543	100.00
21.883	8116	0.03	207	0.02
24,383	17931	0.07	374	0.03
27,283	1327	0.01	46	0.00
34,900	36932	0.14	557	0.05
37,083	9632	0.04	176	0.01
40,317	58926	0.23	738	0.06

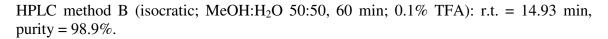
HPLC method B (isocratic; MeOH:H₂O 40:60, 60 min; 0.1% TFA): r.t. = 11.05 min, purity = 99.3%.

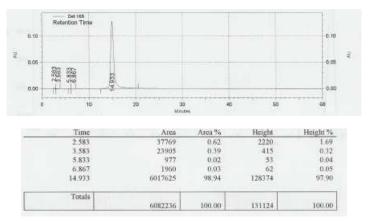
5-(3,5-Dichlorophenylsulfonyl)-1*H*-pyrazol-3(2*H*)-one (7)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 8.98 min, purity = 95.3%.

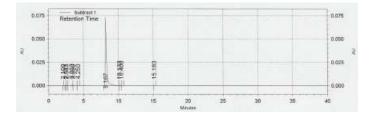

Totals	1991259	100.00	149671	100.00
 191408	300	11.312	27	0.03
21.833	360	0.02		
21.033	1112	0.06	41	0.0
20.150	3268	0.16	194	0.3
19,433	6553	0.33	497	0.3
17.833	1789	0.09	84	0,0
17.450	1529	0.08	77	0.0
16.800	725	0.04	44	0.0
15.200	2596	0.13	165	0.1
14.567	3841	0.19	160	0.1
14,150	1057	0.05	72	0,0
13.650	2935	0.15	157	0.1
13.383	2101	0.11	143	0.1
12.883	8430	0.42	523	0,3
12.100	5673	0.28	163	0.1
11,667	1466	0.07	136	0.0
the second s	18112	0.91	829	0.5
8.983	1897634	95.30	143856	96.1
8,183	1126	0.06	55	0.0

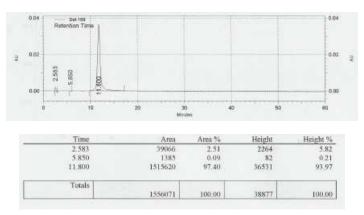
HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 11.50 min, purity = 95.8%.


1	Retention Time				
0.050					0.050
0.025	2,550 5,750 5,750 7,850 7,850 7,850 7,850				0.025
0.000	25 27 27 27 27 27 27 27 27 27 27 27 27 27	n			0.000
0	10	20 30	40	50	60
		Winu	tan.		
	Time	чил Агеа	Area %	Height	Height %
	Time 2,583				
	Time	Area	Area %	Height	Height %
	Time 2,583	Area 35291	Area % 1.48	Height 2135	Height %
	Time 2,583 3,333	Area 35291 27398	Area % 1.48 1.15	Height 2135 845	Height % 3.13 1.24
	Time 2,583 3,333 3,800	Area 35291 27398 6302	Area % 1.48 1.15 0.26	Height 2135 845 455	Height % 3.13 1.24 0.67
	Time 2,583 3,333 3,800 4,133	Area 35291 27398 6302 7034	Area % 1 48 1.15 0.26 0.29	Height 2135 845 455 301	Height % 3.13 1.24 0.67 0.44
	Time 2,583 3,333 3,800 4,133 5,750	Area 15291 27398 6302 7034 1205	Area % 1.48 1.15 0.26 0.29 0.05	Height 2135 845 455 301 56	Height % 3.13 1.24 0.67 0.44 0.08


5-(4-Chloro-2,5-dimethylphenylsulfonyl)-1H-pyrazol-3(2H)-one (8)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 9.40 min, purity = 95.4%.

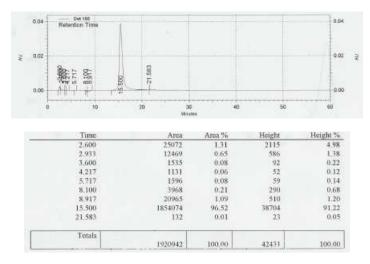

5006863	100.00	349741	100.00
674	-0.01	-44	0.01
			0.01
			0.02
			0.05
			0.04
			0.13
			0.04
			0.01
			0.07
			0.08
			0.02
			0.12
			0.04
			0.08
			0.04
			0.05
			0.05
			0.07
			0,33
			96.02
		2010/01/01/01	0.05
			0.07
2106	0.04	114	0.03
	4949 2572 4778629 35937 5092 3611 4383 2525 3484 1882 6586 600 4265 3267 419 3227 8021 4348 3916 1185 743 674	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


5-((4-Chlorophenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (9)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 8.17 min, purity = 98.2%.

Time	Area	Area %	Height	Height %
2.100	1207	0.13	178	0.24
2.417	2468	0.27	341	0.46
2.583	1061	0.11	210	0.28
3.333	7733	0.84	612	0.82
3,550	2200	0.24	109	0.15
4.250	479	0.05	40	0.05
8,167	906120	98.19	72854	97,80
10.133	835	0.09	62	0.08
10.400	327	0.04	39	0.05
15.183	387	0.04	46	0,06
Totale				
Totals	922817	100.00	74491	100.00

HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 11.80 min, purity = 97.4%.

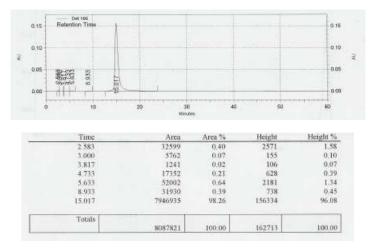

5-((4-Ethylphenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (10)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 9.03 min, purity = 95.3%.

0.075	Retention	mant 1 Time								0.075
0.050	_								-	0.050
0.025		6149 1233	10.583	12.267	15.267 16.663 17.633	-				0.025
0.000	11-11		1	d di	111	-	_			0.000
	U	5.	10	18	15	20 Miratee	25	30	36	40
	T	me			Area	A	ca %	Height	Hei	glut %
	2.1	233			2163		0.22	204		0.26
	2.	450			3452		0.35	365		0.47
	2.5	917			682		0.07	67		0.09
		a start i			11650		6	686		0.89
	- 32	400			11020		1.19	090		0.89
		900 833			1448		0.15	131		0.17
	3. 4.	833 050			1448 2287					
	3. 4.	83,3 050			1448 2287		0.15 0.23	131 124		0.17 0.16
	3.1 4.1 4.	833 050			1448 2287		0.15 0.23 0.14	131 124 80		0,17 0.16 0.10
	3.1 4.1 4.1 4.1	833 050 533 800			1448 2287 1416 695		0.15 0.23 0.14 0.07	131 124 80 52		0.17 0.16 0.10 0.07
	3. 4. 4. 4. 5.	833 050 533			1448 2287 1416		0.15 0.23 0.14	131 124 80		0,17 0.16 0.10

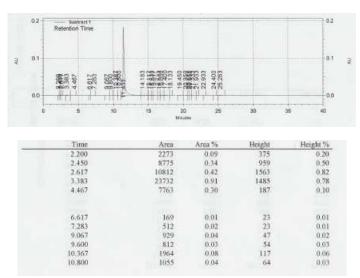
	977411	100.00	77378	100.00
Totals				
17.633	606	0.06	46	0.06
16.683	399	0.04	29	0.04
15.267	1282	0.13	95	0.13
13.950	816	0.08	47	0.06
13.400	1714	0.18	160	0.2
12.267	889	0.09	81	0.10
10.583	3339	0.34	245	0.33
9.033	931801	95.33	74386	96.13
8.183	2681	0.27	93	0.13

HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 15.50 min, purity = 96.5%.

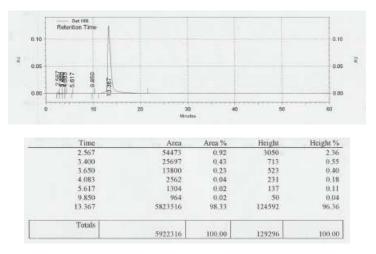

5-((3-Ethylphenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (11)

HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 8.87 min, purity = 95.0%.

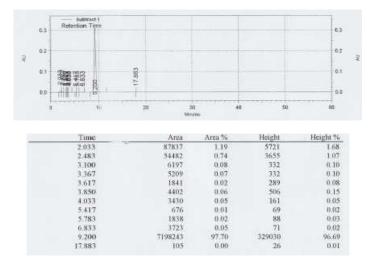
0.4	Battran 1 Retention Time		13		0.4
0.2					02
	8 417 8 417 9 467 9 467	13.000 13.000 13.000 11.300 12.300 12.300 12.300	010 010 000 000 000 000 000 000 000 000		
0.0	ang		- CACKGANGA	-	0.0
0	6	10 15	20 25 Mitaber	30	35 40
	Time	Агеа	Area %	Height	Height %
	Time 2.233	Area 9615		Height 1021	Height %
		1998.00	0.16		
	2.233	9615	0.16 0.15	1021	0,25
	2.233 2.417	9615 9086	0.16 0.15 0.25	1021 797	0.25 0.19
	2 233 2 417 3 417	9615 9086 14417	0.16 0.15 0.25 0.06	1021 797 1104	0.25 0.19 0.27
	2,233 2,417 3,417 3,717	9615 9086 14417 3772	0.16 0.15 0.25 0.06 0.38	1021 797 1104 239	0.25 0.19 0.27 0.06
	2.233 2.417 3.417 3.717 4.867 5.567	9615 9086 14417 3772 22268 47078	0,16 0,15 0,25 0,06 0,38 0,80	1021 797 1104 239 686 3088	0.25 0.19 0.27 0.06 0.16 0.74
	2,233 2,417 3,417 3,717 4,867 5,567 6,467	9615 9086 14417 3772 22268 47078 7156	0,16 0,15 0,25 0,06 0,38 0,80	1021 797 1104 239 686 3088 250	0.25 0.19 0.27 0.06 0.16 0.74 0.06
	2.233 2.417 3.417 3.717 4.867 5.567	9615 9086 14417 3772 22268 47078	0,16 0,15 0,25 0,06 0,38 0,80 0,12 0,24	1021 797 1104 239 686 3088	0.25 0.19 0.27 0.06 0.16 0.74


Totals	5866609	100.00	415935	100.00
24.300	1407	0.02	74	0.02
23.650	2676	0.05	134	0.03
22.867	11821	0.20	614	0.15
22.467	16574	0.28	1140	0.27
21.950	1190	0.02	70	0.02
21,317	8456	0.14	479	0.12
20.550	8199	0.14	560	0.13
19.600	493	0.01	49	0.01
18.200	1589	0.03	87	0.02
17.333	2663	0.05	94	0.02
15.667	5082	0.09	271	0.07
14.950	8217	0.14	456	0.11
13.550	28846	0.49	1708	0.41
13.017	20812	0.35	1147	0.28
12.183	11473	0.20	513	0.12
11.900	4392	0.07	426	0.10
11.633	12897	0.22	836	0.20
8,867	5570714	94,96	398367	95.78

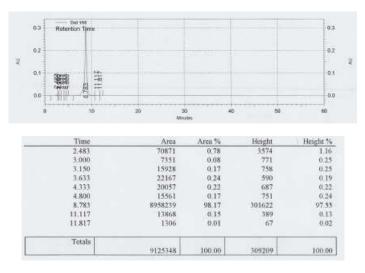
HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 15.02 min, purity = 98.3%.


5-((3-tert-Butylphenoxy)methyl)-1H-pyrazol-3(2H)-one (12)

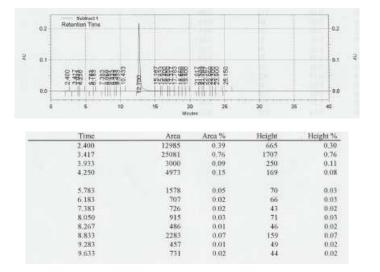
HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 11.43 min, purity = 95.7%.


E Totals	2603630	100.00	191146	100.00
25.283	7222	0.28	377	0.20
24.400	495	0.02	36	0.02
22.933	847	0.03	61	0.03
21.933	346	0.01	34	0.02
5 21.333	1641	0.06	92	0.05
19,450 4 20,350 20,717 20,950 21,333 21,933 VT 22,933	936	0.04	63	0.03
au 20,717	695	0.03	57	0.03
a. 20.350	2217	0.09	158	0.05
님 19.450	2410	0.09	186	0.10
18.133	365	0.01	33	0.02
17,400	8664	0.33	631	0.33
16.850	4563	0.18	315	0.16
16.533	1303	0.05	90	0.05
15.817	3276	0.13	123	0.06
15.533	1543	0.06	115	0,06
15.117	4440	0.17	219	0.11
14,183	11322	0.43	389	0.20
11.433	2492549	95.73	183270	95.88

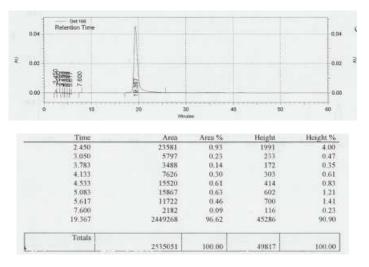
HPLC method B (isocratic; MeOH:H₂O 60:40, 60 min; 0.1% TFA): r.t. = 13.37 min, purity = 98.3%.


5-((3,5-Dichlorophenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (13)

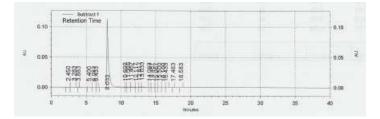
HPLC method A (isocratic; MeCN:H₂O 40:60, 60 min; 0.1% TFA): r.t. = 9.20 min, purity = 97.7%.



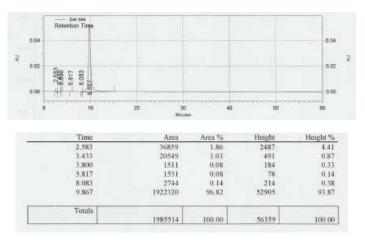
HPLC method B (isocratic; MeOH:H₂O 65:35, 60 min; 0.1% TFA): r.t. = 8.78 min, purity = 98.2%.


5-((3,5-Bis(trifluoromethyl)phenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (14)

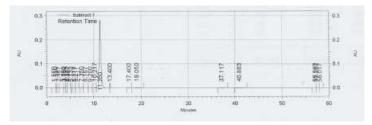
HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 12.70 min, purity = 96.0%.


Totals	3290075	100.00	224655	100.00
25,150	11226	0.34	537	0.24
23.900	3323	0.10	137	0.06
23.300	584	0.02	39	0.02
22.950	673	0.02	46	0.02
22.267	5474	0.17	368	0.16
21.783	251	0.01	29	0.01
21.533	872	0.03	57	0.03
21.017	845	0.03	78	0.03
19.400	917	0.03	53	0.03
18.950	1831	0.06	75	0.03
18.650	1856	0.06	95	0.04
17.783	3308	0.10	133	0.06
17.317	8153	0.25	350	0.10
16.850	2592	0.08	178	0.08
16.400	9646	0.29	240	0.11
15.833	2858	0.09	220	0.10
15.167	22073	0.67	1088	0.48
12,700	3158490	96.00	217534	96.83
	1181	45.454	59	0.03

HPLC method B (isocratic; MeOH:H₂O 60:40, 60 min; 0.1% TFA): r.t. = 19.37 min, purity = 96.6%.


5-((3,5-Difluorophenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (15)

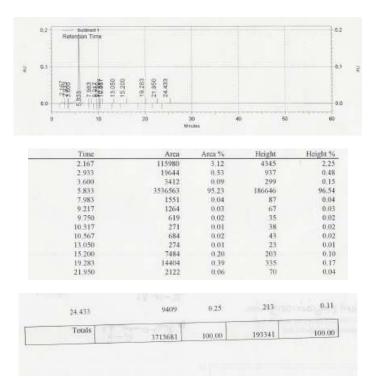
HPLC method A (gradient; MeCN:H₂O 30:70 to 80:20, 0 to 20 min, MeCN:H₂O 80:20 to 30:70, 20 to 40 min; 0.1% TFA): r.t. = 8.03 min, purity = 95.1%.


Time	Area	Area %	Height	Height %
2.450	2881	0.15	213	0.18
3.283	5973	0.31	293	0.25
3.883	98	0.01	23	0.02
5,400	1091	0.06	52	0.04
6.083	1519	0.08	84	0.07
6.433	339	0.02	46	0.04
8.033	1859218	95.12	112677	95.22
10.600	2714	0.14	228	0.19
11,000	9142	0.47	388	0.33
11,467	17702	0.91	970	0.82
12.117	3555	0.18	212	0.18
12.617	13814	0.71	1029	0.8
13.033	26683	1.37	1512	1.23
14,083	1673	0.09	105	0.0
14.467	3035	0.16	166	0.1-
15.067	1093	0.05	60	0.0
15,500	1816	0.09	114	0.1
16.100	914	0.05	57	0.0
16.433	284	0.01	21	0.0
17.483	435	0.02	44	0.0
18.583	725	0.04	42	0.0-
Totals				-
	1954704	100.00	118336	100.00

HPLC method B (isocratic; MeOH:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 9.87 min, purity = 96.8%.

5-((3,5-Dibromophenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (16)

HPLC method A (isocratic; MeCN:H₂O 40:60, 60 min; 0.1% TFA): r.t. = 11.35 min, purity = 96.2%.

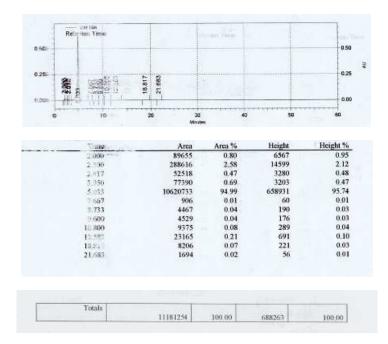

Time	Area	Area %	Height	Height %
1.500	11717	0.16	327	0.11
1.850	7874	0.11	810	0.28
2.467	13036	0.18	888	0.30
3.550	43079	0.61	832	0.28
3.767	12180	0.17	1037	0,35
4.133	5155	0.07	301	0.10
4.467	4987	0.07	244	0.08
5.133	335	0.00	31	0.01
5.817	2915	0.04	160	0.05
6,217	3285	0.05	192	0.07
7.350	11418	0.16	691	0.23
8.167	9807	0.14	491	0.17
9.200	1666	0.02	77	0.03
10.217	41180	0.58	1896	0.64
11.350	6840735	96.24	284415	96.62
13.400	114	0.00	30	0.01
17,400	5416	0.08	176	0.00
19.050	49742	0.70	1020	0.35
37.117	12082	0.17	206	0.0
40.883	23358	0.33	292	0.10
56.983	3566	0.05	102	0.0
57.267	3208	0.05	96	0.0
58.017	1226	0.02	56	0.03
Totals				
	7108081	100.00	294370	100.00

HPLC method B (isocratic; MeOH:H₂O 65:35, 60 min; 0.1% TFA): r.t. = 11.40 min, purity = 97.9%.

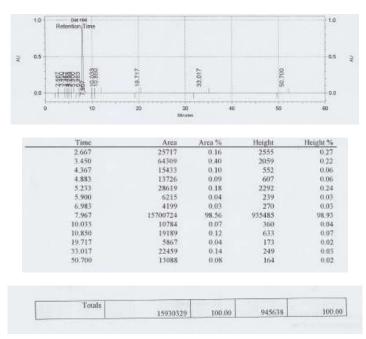
	Retention Time (Ŧ
2.0						-F
						1
.1	11					
0.1	General de la companya de la company	14.455 15.599 20.183 23.883	515 12 12 12 12 12 12 12 12 12 12 12 12 12	43,650	58.467	
0.0				1		1
0	10	20	30 Mirwaia	40	50	60
	Time		a Area	% Heij	tht Height	
-	2.450	An 1681			Party and the second	74
	2.550	1081				62
	3.117	2567				104
	3,500	595				15
	3.900	1117				1a
	4,500	996				1
		67(Ē
	5.167 5.633	355				H
		487				11
	5,867	48 541				0
	6.400 6.867	54. 809				0
	7.883					1
	8.467	886 1186				1
	11.400	9374683	97.86	237012	96.55	
	14.167	3150	0.03	135	0.05	
	14.933	81	0.00	25	0.01	
	16.500	4249	0.04	125	0.05	
	17.417	2615	0.03	82	0.03	
	20.183	1568	0.02	56	0.02	
	23.883	4551	0.05	63	0.03	
	26.367	1595	0.02	73	0.03	
	26.533	1547	0.02	67	0.03	
	27.217	91	0,00	22	0.01	
	31.383	18918	0.20	270	0.11	
	43.650	355	0.00	23	0.01	
	58,467	36576	0.38	343	0.14	
-	Totals					
	1101129200	9580025	100.00	245481	100.00	

5-((3-Bromophenoxy)methyl)-1*H*-pyrazol-3(2*H*)-one (17)

HPLC method A (isocratic; MeCN:H₂O 40:60, 60 min; 0.1% TFA): r.t. = 5.83 min, purity = 95.2%.

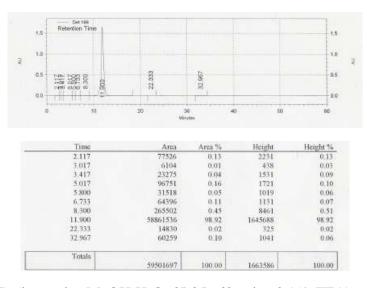


HPLC method B (isocratic; MeOH:H₂O 65:35, 60 min; 0.1% TFA): r.t. = 5.15 min, purity = 97.5%.

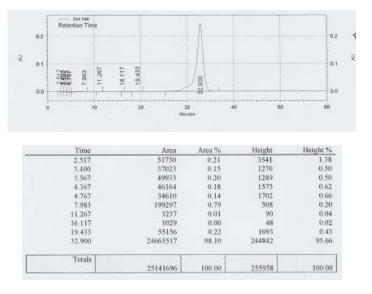

10	Det 105 Retention Time				
1.0					1.0
0.5					0.5
1.0	10.133	22.817			
0.0		- N		_	0.0
ŭ	10	20 30 Mede	40	50	60
		1471.52	11100000	1000000	120000000
_	Time	Atea	Area %	Height	Height %
	2.583	134519	1.01	17397	1.53
	3,483	40154	0,50	1314	0.12
	3.767	30478	0.23	1631	0.14
	4.217	28248	0.21	1219	0.11
	5.150	12941686	97_47	1114577	97.87
	7.333	7696	0.06	319	0.03
	8,200	7630	0.06	361	0.03
	8,917	2531	0.02	141	0.01
	9.833	2030 1773	0.02	91	0.01
	11.083		0.01	77	0.01
	16,133 17,783	1844 28181	0.01 0.21	67 596	0.01 0.05
	22.617	50348	0.21	1006	0.05
	24,017	20348	0,38	1000	0.09
12.00	Totals	13277118	100.00	1138796	100.0

5-((Biphenyl-3-yloxy)methyl)-1*H*-pyrazol-3(2*H*)-one (18)

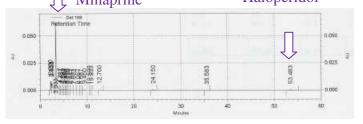
HPLC method A (isocratic; MeCN:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 5.03 min, purity = 95.0%.



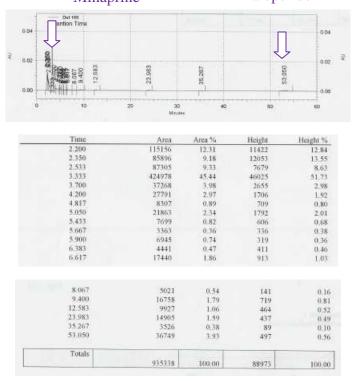
HPLC method B (isocratic; MeOH:H₂O 65:35, 60 min; 0.1% TFA): r.t. = 7.97 min, purity = 98.6%.



5-((5-Phenylbiphenyl-3-yloxy)methyl)-1*H*-pyrazol-3(2*H*)-one (19)

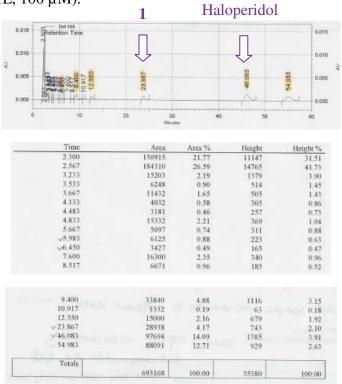

HPLC method A (isocratic; MeCN:H₂O 50:50, 60 min; 0.1% TFA): r.t. = 11.90 min, purity = 98.9%.

HPLC method B (isocratic; MeOH:H₂O 65:35, 60 min; 0.1% TFA): r.t. = 32.90 min, purity = 98.1%.



HPLC spectra and RR tata of microsomal stability for minaprine and 1. Minaprine

Time		Area	Area %	Height	Height %
2.200		66116	7.65	8408	9,31
2.333		46788	5.41	6522	7,22
2.533		77155	8.92	6962	7,70
3.333		541189	62.58	62572	69.23
4.217		11057	1.28	835	0.92
4,467		\$732	0.66	388	0.43
4.833		5661	0.65	427	0.4
5.067		11226	1.30	811	0.90
5,450		3991	0.46	349	0.34
5.700		4509	0.52	295	0.33
5.933		4609	0.53	213	0.2
6.667	1	7222	0.84	294	0.33
7.083		5226	0.60	151	0.1
8.067		4691	0.54	128	0.14
8.667		2568	0.30	111	0.1
9.450		13043	1.51	466	0.5
10.500		584	0.07	37	0.0
10.933		520	0.06	28	0.03
12.700		8483	0.98	414	0.46
24.150		19903	2.30	599	0.60
35,583		2475	0.29	71	0.09
53.483		21983	2.54	308	0.34
Totals		864731	100.00	90389	100.00


Figure S2. Minaprine, 20 min #3, reconstituted in DMSO:H₂O = 1:9, which contains haloperidol (100 μ L, 100 μ M).

1

Haloperidol

0.010	Det ros Retention Time				0.010	
	1	4		<	J	
0.005	12.00	월 [2] > 24667	35,433		0.005	
0.000	Still Alling	The Au	0		0.000	
0	10	20 30		50	60	
		Meut	11			
_	Time	Area	Area %	Height	Height %	
	2.217	165198	30.74	11671	42.74	
	2.533	81161	15.10	7179	26.29	
	3.233	17706	3.30	1100	4.03	
	3.667	5777	1.08	397	1.45	
	4.133	7476	1.39	321	1.18	
	4.467	4617	0.86	266	0.97	
	4.867	7036	1.31	320	1.17	
	5,250	3442	0.64	246	0.90	
	5.733	7042	1.31	329	1.20	
	6.017	20906	3.89	1006	3.68	
	7,183	5872	1.09	148	0.54	
	8,050	4949	0.92	114	0.42	
	8.600	1705	0.32	84	0.31	
	9.500					
	12.683	12385	2.30	531	1.94	
	12.683	9940	1.85	471	1.72	
	20 433	1317	0.25	44	0.16	
	21.083	138	0.03	23	0.08	
	24.667	1401 114693	0.26	46	0.17	
	35,433	4777	21.35 0.89	2151	7.88	
	53,750	36753		109	0,40	
	58.450	23017	6.84 4.29	490 260	1.79 0.95	
-	Totals				10.00	
		537328	100.00	27306	100.00	

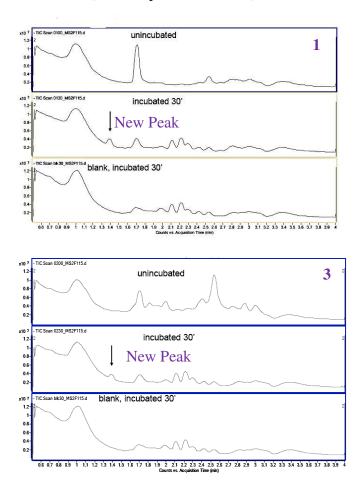
Figure S3. Compound 1, 0 min #2, reconstituted in DMSO:H₂O = 1:9, which contains haloperidol (100 μ L, 100 μ M).

Figure S4. Compound 1, 20 min #1, reconstituted in DMSO:H₂O = 1:9, which contains haloperidol (100 μ L, 100 μ M).

Sample Name	Time (min)	No	Analyte retention time (min)	Analyte Peak Area	Haloperidol retention time (min)	Haloperidol Peak Area	RR
		#1	3.367	450935	53.567	19994	22.55
	0	#2	3.350	536553	53.750	24992	21.47
Mineralian		#3	3.333	541189	53.483	21983	24.62
Minaprine		#1	3.333	512171	53.333	44233	11.58
	20	#2	3.333	565219	53.350	32329	17.48
		#3	3.333	424978	53.050	36749	11.56
		#1	24.750	80053	53.850	44525	2.667
	0	#2	24.667	114693	53.750	36753	3.121
1		#3	24.633	91344	46.233	34255	1.798
1		#1	23.867	28938	46.083	97694	0.296
	20	#2	23.967	19676	46.100	64179	0.307
		#3	23.900	17720	46.150	52317	0.339

Table S1. Raw data for microsomal stability study with minaprine and 1

 Table S2.
 Microsomal stability data processing of minaprine and 1


-

Sample Name	RR Mean	% Mean ± S.E.
Mina 0 min	22.88	100 ± 7.11

Mina 20 min	13.54	59.2 ± 14.9
1 0 min	2.529	100 ± 26.4
1 20min	0.314	12.4 ± 0.89

Metabolite profiling of 1 and 3

Only one new peak/metabolite was observed from either test agent 1 or 3 from microsomal incubation (Figure S5). Comparing the total ion current spectra of microsomal incubation with test agents to the ones with blank at 30 min., no new peaks were identified beyond the peaks at retention time 1.7 min (the unmetabolized parent 1 or 3), and retention time 1.4 min (the new peak/metabolite).

Figure S5. Total ion current chromatogram of MS2 full mass scan on samples incubated for 0 min (top) and 30 min (middle) with rat liver microsomes or blank microsomes (bottom). Microsomes were incubated with **1** (top panel) and **3** (bottom panel).

The complete parent molecular ion mass spectrum was then analyzed for the new peak that eluted at 1.4 min. The spectra are shown below. These spectra show that the new peak/metabolite shows a molecular ion $(M-H)^-$ of 255 (from 1) and 257 (from 3), which indicates the addition of oxygen to the parent compound (Figure S6).

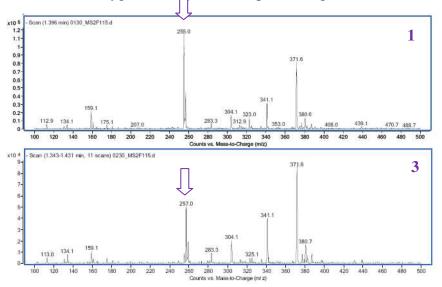
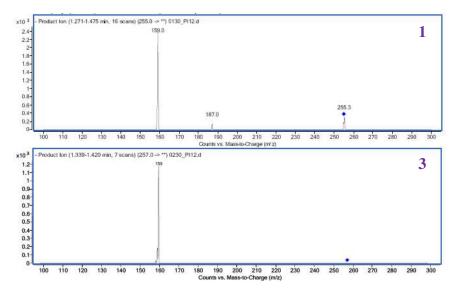



Figure S6. Mass spectra of new peak/metabolite from 1 (top) and 3 (bottom).

A product ion scan was run on the samples (peak m/z = 255 for 1; peak m/z = 257 for 3) to look for the generation of fragment ions in the mass spectrometer. The results of these scans show both test agents generated fragment ion of m/z = 159 (Figure S7).

Figure S7. Production ion scan of new peak/metabolite (r.t. = 1.4 min) for **1** (top) and **3** (bottom) from microsomal incubation.

To confirm the identity of **4** as a direct metabolite of **1** from microsomal incubation, an authentic sample of **4** was tested under identical mass spectrometric and chromatographic conditions (Figure S8 and S9).

Figure S8. Product ion spectrum of authentic **4** (top) and of the new peak/metabolite of **1** (bottom) from microsomal incubation.

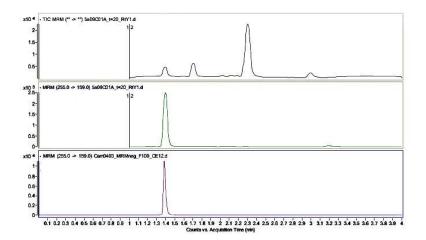


Figure S9. Total ion current chromatogram of microsomal incubation with 1 (top), of the new peak/metabolite, MRM, extracted from first chromatogram (middle), and of authentic 4 (bottom).

Rat liver microsomal stability data in the presence of NADPH with 1 and 3 are shown in Table S3. Compounds 1 and 3 showed poor rat liver microsomal stability, corresponding to the previous rat liver microsomal stability data for 1 by the HPLC detection method.

Table S3. Microsomal intrinsic clearance summary for 1 and 3 in the presence of	
NADPH	

ID	Test concentration (µM)	Cl' _{int} ^a (mL/min/kg)	$T_{1/2}$ (min) ^b	comment
Verapamil	1	> 400	< 3.3	highly metabolized control
Warfarin	1	< 8	> 180	poorly metabolized control

1	5	192	7.3	
3	5	195	7.2	
1/3 mixture	5	169	8.3	

^aThe intrinsic clearance was calculated as follows: $CL'_{int} = (0.693/T_{1/2}) \times (mL)$ incubation/mg microsomal protein) × (mg microsomal protein/g liver) × (g liver/kg bodyweight).² Reaction mixture contained 1 mg/mL microsomal protein. The scale-up factor for microsomes protein to g of liver is 45 mg/g of liver.³ Liver weights used for rats were 45 g/kg body weight.⁴ ^bHalf-life.

In vivo mouse steady-state level study and in vivo blood brain barrier study of 13. (All bioanalysis was done by Apredica, Watertown, MA)

To assess levels of drug present in blood and brain tissue specimens, a 50 mg/kg dose was peritoneal administered to wild-type B6SJL mice (n = 6). An untreated group (n = 6) was used a negative control. Blood and brain were removed 1 h after injection and rapidly quenched at -80 °C. Specimens were subsequently mixed with extraction buffer (100% ice-cold methanol), sonicated on ice for 20 s, and then spun at analyzed using a Ceas 16 channel EC-HPLC. Experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Blood samples were thawed on ice and kept at 4 °C. Blood samples from animals treated with test agent were dilute 50-fold in control blood prior to analysis. An aliquot of blood (25 μ L) was mixed with an equal volume of water, and 150 μ L methanol containing internal standard was added to precipitate the proteins. Brain samples were weighed, diluted with an equal volume of PBS (phosphate buffered saline, pH 7.2) and homogenized. Brain homogenates from test agent-treated animals were diluted 50-fold with commercial control brain homogenate prior to analysis.

A calibration curve was prepared in each media (blood and brain homogenate). Control blood and brain homogenate (from a commercial source) was used to prepare the calibration standards. Calibration samples were prepared by diluting 50x stock solution in DMSO with matrix to the appropriate concentration. Stock solutions were prepared by serial dilution according to the table S4.

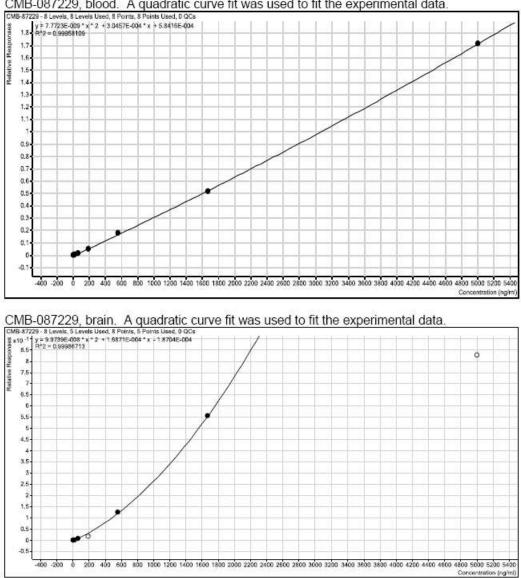

Nominal concentration (nM)	Stock concentration (μM)
0.254	0.0127

Table S4. Stock solution preparation

0.762	0.0381
2.29	0.114
6.86	0.343
20.6	1.03
61.7	3.09
185	9.26
556	28
1667	83
5000	250

Samples were analyzed by LC/MS/MS using an Agilent 6410 mass spectrometer coupled with an Agilent 1200 HPLC and a CTC PL chilled autosampler, all controlled by MassHunter software (Agilent). After separation on a C18 reverse phase HPLC column using an acetonitrile-water gradient system, peaks were analyzed by mass pectrometry (MS) using ESI ionization in MRM mode. MassHunter software was used to calculate sample concentration using the calibration standards of known concentration.

Two calibration curves were used for blood and brain samples, depending on the concentration (Figure S10).

CMB-087229, blood. A quadratic curve fit was used to fit the experimental data.

Figure S10. Quadratic curves for blood and brain samples.

Brain and blood sample analysis is given in Table S5. The lower limit of quantification (LLOQ) was 2.3 nM in the analytical samples. The upper limit of quantification for blood was 5000 nM in the analytical sample. The upper limit of quantification for brain homogenate was 1667 nM in the analytical sample.

Analyte	Blood (analytical sample) (nM)	Blood (after calibration) (µM)	Brain (analytical sample) (nM)	Brain (after calibration) (µM)
blank	< LLOQ		< LLOQ	
	24.3		8.3	
	5.2		10.1	
	< LLOQ		5.6	
	13.4		< LLOQ	
	108.7		5.5	
	< LLOQ		< LLOQ	
	71.3		6.4	
	176.7		27.0	
	< LLOQ		87.2	
	335.9		4.9	
	106.2		4.7	
	< LLOQ		4.7	
	< LLOQ		< LLOQ	
	75.4		< LLOQ	

< LLOQ	< LLOQ	
--------	--------	--

Effect of 13 on hERG Potassium Channel

A summary of the results of each test article is shown in Table S5 below. The positive control (E-4031) confirms the sensitivity of the test system of hERG inhibition.

Table S6.	Results	of hERG	inhibition
I able SU.	NESUIIS	UT HERU	IIIIIIUIIIUII

Test Article ID	Conc. (µM)	Mean % hERG Inhibition	Standard Deviation	Standard Error	n	Individual Data Points (% Inhibition)
13	10	0.6	2.2	1.5	2	2.1
	-				2	-0.9
E-4031	0.5	98.7	0.7	0.5	2	98.2
E-4031	0.3	98.7	0.7	0.5		99.1

Effect of 13 on Enzymes and Receptors

Radioligand binding assays for 13 (concentration = $10 \mu M$, n = 2) were carried out by MDS Pharma Services (Taipei, Taiwan).

Target (Species)	Inhibition (%)	Target (Species)	Inhibition (%)
Adenosine A ₁ (human)	15	Histamine H ₃ (human)	15
Adenosine A ₂ (human)	-2	Imidazoline I ₂ , Central (rat)	12
Adenosine A ₃ (human)	6	Interleukin IL-1 (mouse)	3
Adrenergic α_{1A} (rat)	-2	Leukotriene, Cysteinyl CysLT ₁ (human)	0
Adrenergic α_{1B} (rat)	0	Melatonin MT ₁ (human)	3
Adrenergic α_{1D} (human)	3	Muscarinic M ₁ (human)	2
Adrenergic α_{2A} (human)	8	Muscarinic M ₂ (human)	-2

 Table S7.
 Competitive binding assays of 13

Adrenergic β_1 (human)	1	Muscarinic M ₃ (human)	-4
Adrenergic β_2 (human)	-2	Neuropeptide Y Y ₁ (human)	-1
Androgen (Testosterone) AR (rat)	3	Neuropeptide Y Y ₂ (human)	6
Bradykinin B1 (human)	5	Nicotinic Acetylcholine (human)	7
Bradykinin B2 (human)	-10	Nicotinic Acetylcholine D ₁ , Bungarotoxin (human)	6
Calcium Channel L-Type, Benzothiazepin (rat)	-5	Opiate δ (OP1, DOP) (human)	-15
Calcium Channel L-Type, Dihydropyridin (rat)	-2	Opiate κ (OP2, KOP) (human)	25
Calcium Channel N-Type (rat)	3	Opiate µ (OP3, MOP) (human)	-9
Dopamine D ₁ (human)	3	Phorbol Ester (mouse)	1
Dopamine D ₂₅ (human)	14	Platelet Activating Factor (PAF)	-1
Dopamine D ₃ (human)	-4	Potassium Channel [KATP] (hamster)	-17
Dopamine D _{4.2} (human)	-3	Potassium Channel hERG (human)	-7
Endothelin ET _A (human)	3	Prostanoid EP ₄ (human)	-8
Endothelin ET _B (human)	0	Purinergic P _{2x} (rabbit)	1
Epidermal Growth Factor (EGF) (human)	5	Purinergic P _{2y} (rat)	5
Estrogen ERα (human)	10	Rolipram (rat)	-2
G Protein-Coupled Receptor GPR103 (human)	3	Serotonin (5- Hydroxytryptamine) 5- HT _{1A} (human)	-6
GABA _A , Flunitrazepam, Central (rat)	12	Serotonin (5- Hydroxytryptamine) 5-HT ₃ (human)	7
GABA _A , Muscimol, Central (rat)	1	Sigma δ_1 (human)	-18
GABA _{B1A} (human)	-7	Sigma δ_2 (rat)	5
Glucocorticoid (human)	4	Sodium Channel, Site 2 (rat)	4

Glutamate, Kainate (rat)	24	Tachykinin NK ₁ (human)	3
Glutamate, NMDA, Agonism (rat)	-3	Thyroid Hormone (rat)	10
Glutamate, NMDA, Glycine (rat)	5	Transporter, Dopamine (DAT) (human)	11
Glutamate, NMDA, Phencyclidine (rat)	-11	Transporter, GABA (rat)	-4
Histamine H ₁ (human)	1	Transporter, Norepinephrine (NET) (human)	-10
Histamine H ₂ (human)	3	Transporter, Serotonin (5- Hydroxytryptamine) (SERT) (human)	-6

References

¹ Hierner, S.; Pankin, O. Edefuhr, M.; Somfai, P. Synthesis of aryl glycinnes by the α arylation of wienreb amides, *Angew, Chem. Int. Ed.*, **2008**, *47*, 1907-1909.

² Obach, R. S. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes, *Drug Metab. Dispos.*, **1999**, *27*, 1350-1359.

³ Houston, J. B. Utility of in vitro rug metabolism data in predicting in vivo metabolic clearance, *Biochem. Pharmacol.*, **1994**, *47*, 1469-1479.

⁴ Lu C., Li P., Gallegos R., Uttamsingh V., Xia C. Q., Miwa G. T., Balani S.K., Gan L.
Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes, *Drug Metab. Dispos.*, **2006**, *34*, 1600-1605.