Supporting information for:

D-79104 Freiburg, Germany

The ternary borides Cr_2AlB_2 , Cr_3AlB_4 and Cr_4AlB_6 – the first members of the series $(CrB_2)_nCrAl$ with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases

*Dr. Martin Ade, Prof. Dr. H. Hillebrecht

Albert-Ludwigs-Universität Freiburg

Institut für Anorganische und Analytische Chemie

Albertstr. 21

D-79104 Freiburg, Germany

and

Freiburger Materialforschungszentrum FMF

Stefan-Maier-Str. 25

S1-S7: powder XRD patterns (Cu-K α) of MAB phases with calculated patterns, reflections and Miller Indices given on top and measured patterns at the bottom. Impurity phases are indicated by symbols.

Figure S1: Cr₂AlB₂, (*) CrB (oC8, *Cmcm*, ICSD No.: 44249, ICDD PDF No. 089-3587).

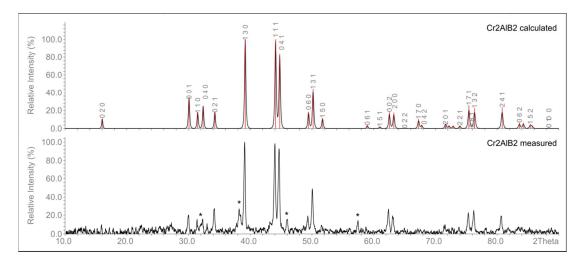


Figure S2: Cr₃AlB₄

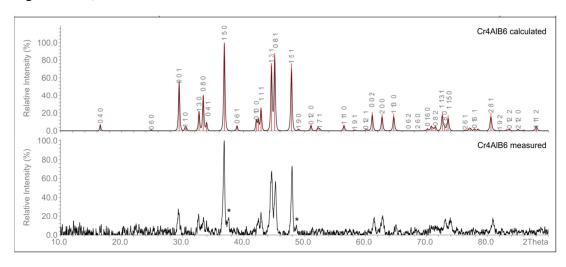


Figure S3: Cr₄AlB₆, (*) Cr₃AlB₄.

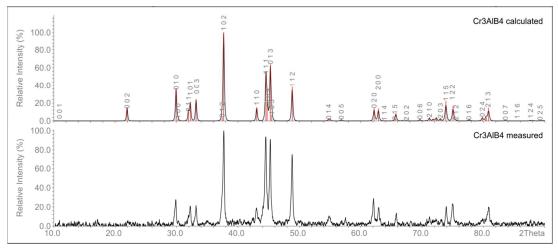


Figure S4: **Mn₂AlB₂**, (*) MnAl₆ (oS28, *Cmcm*, ICSD No. 57973; ICDD PDF No. 71-5858), (o) Al_{0,9}B₂ (hP3, *P6/mmm*, ICSD No. 99639, ICDD PDF No. 74-4445).

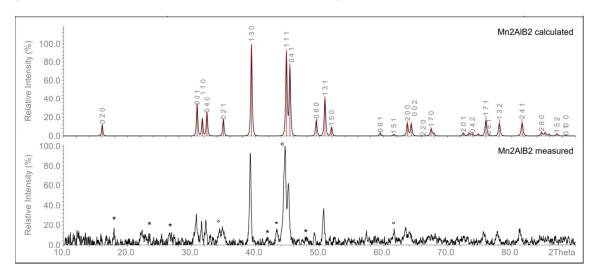


Figure S5: Fe₂AlB₂, (*) Fe₄Al₁₃, mS102, C2/m, ICSD No. 151129, ICDD PDF No. 73-3008;

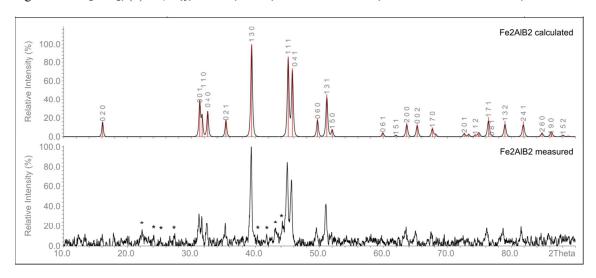
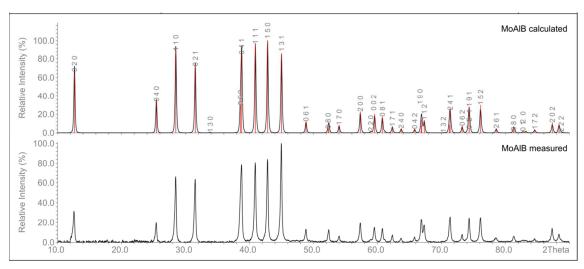



Figure S6: MoAlB

S7: **WAIB**; on top: WB calculated (t116, $I4_1/amd$, ICSD No. 424240) middle: WAIB calculated; bottom: WAIB sample measured, (*) Al₂O₃ from crucible (hR10, $R\bar{3}c$, ICSD No. 26790; ICDD PDF No. 74-1081), (o) SiO₂ (quartz, from agate mortar, hP9, $P3_121$, ICSD No. 29210, ICDD PDF No. 85-0865).

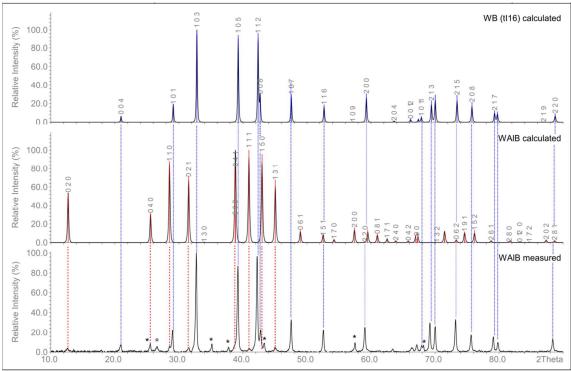
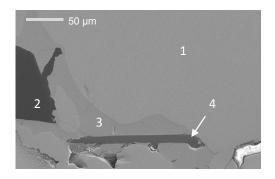
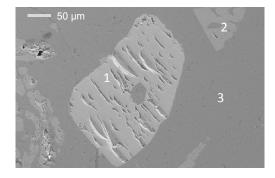




Figure S8: SEM pictures of polished samples – phase identification by EDX:

 Fe_2AlB_2

- 1: Fe₂AlB₂
- 2: AlB₁₂
- 3: Fe₄Al₁₃
- 4: (Al,Fe)B₂

 Mn_2AlB_2

- 1. Mn₂AlB₂ (with inclusion of Al)
- $2. MnAl_6$
- 3. Al