Identification of $3,N^4$ -etheno-5-methyl-2'-deoxycytidine in human DNA: a new modified nucleoside which may perturb genome methylation

Jagadeesan Nair¹, Roger W. L. Godschalk²*, Urmila Nair¹, Robert W. Owen¹, William E. Hull¹ & Helmut Bartsch¹

*email: r.godschalk@maastrichtuniversity.nl

Supplementary Methods

Synthesis Scheme 1.

5'-O-(4,4'-dimethoxytrityl)-thymidine-3'-bis(2-cyanoethyl)phosphate (2).

A solution of the commercially available thymidine phosphoramidite (1) (3'-O-[(diisopropylamino)(2-cyanoethoxy)phosphino]-5'-O-(4,4'-dimethoxytrityl)-thymidine, 500 mg, 0.67 mmol) in 10 mL acetonitrile was incubated at ambient temperature with 0.5 mL 3-hydroxypropanenitrile and 2.36 mL of a 1 mM solution of tetrazole in acetonitrile. After 90 min 10 mL of a solution of 3% cumene hydroperoxide in acetonitrile was added to oxidize the phosphite moiety to a phosphate triester. After 2 h the reaction was stopped by addition of 3 mL ethanol. The resulting solution was diluted with 50 mL chloroform and washed with a concentrated aqueous solution of NaHCO₃ (2 × 30 mL) and water (2 × 30 mL). The organic layer was separated, dried with Na₂SO₄ and filtered; the solvent was removed *in vacuo*. The product was purified by flash chromotography (silica gel, chloroform/methanol 95/5 v/v) to yield 5'-O-(4,4'-dimethoxytrityl)-thymidine-3'-bis(2-cyanoethyl)phosphate (2) (187 mg, 38%). For C₃₇H₃₉N₄O₁₀P, exact mass M = 730.2404; ESI-MS: [M+Na]⁺ m/z calcd. 753.2296, found 753.0 (100%).

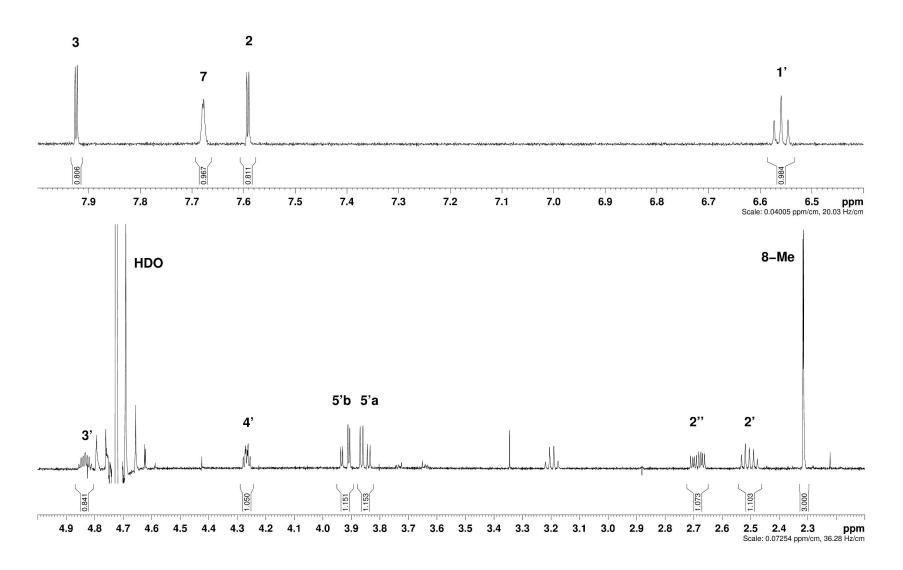
O⁴-Ethyl-5'-O-(4,4'-dimethoxytrityl)-thymidine-3'-bis(2-cyanoethyl)phosphate (3).

A freshly prepared solution of diazoethane (ca. 8 mmol) in diethylether (10 mL) was poured into a solution of 2 (185 mg, 0.25 mmol) in 5 mL methanol (*Caution*: diazoethane is a hazardous alkylating compound and should be handled carefully). After 30 min the solvents were removed in vacuo, and the residue was purified by flash chromatography (chloroform/ethanol: 98/2 v/v) to yield the O^4 -ethyl

¹German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.

²School for Nutrition, Toxicology and Metabolism (NUTRIM), Dept. of Toxicology, Maastricht University, Universiteitssingel 50, PO box 616, Maastricht, The Netherlands.

adduct **3** (26 mg, 13%). For $C_{39}H_{43}N_4O_{10}P$, exact mass M = 758.2716; ESI-MS (m/z): $[M+Na]^+$ calcd. 781.2609, found 781.2 (40%); $[2M+Na]^+$ calcd. 1539.5326, found 1539.6 (100%).


5-methyl-2'-deoxycytidine-3'-phosphate (4).

For the 5' deprotection step, compound **3** (25 mg, 33 mmol) was dissolved in 2 mL dry nitromethane, and 2 mL of a saturated solution of ZnBr₂ in nitromethane was added. The reaction mixture turned bright orange. The reaction was then quenched with 1 M ammonium acetate in H₂O (40 mL) followed by extraction with chloroform (80 mL). The organic solvent was dried over Na₂SO₄, filtered and removed *in vacuo*. The residue was incubated with 10 mL ammonia for 16 h to deprotect the 3' phosphate and to replace the O^4 -ethyl group with an NH₂ group. Ammonia was roughly removed *in vacuo*, and the solution was lyophilized. Reversed-phase HPLC (Instrumentation: Hewlet Packard, column: prep-C18 reversed phase, solvent: gradient 0 to 50% acetonitrile in water over 30 min; flow rate: 1 mL/min) yielded pure 5-methyl-2'-deoxycytidine-3'-phosphate (5mdCyd-3'-P, 4). For C₁₀H₁₆N₃O₇P, exact mass M = 321.0726; LC-ESI-MS (m/z): [M–H]⁻ calcd. 320.0653, found 320.0; [2M–H]⁻ calcd. 641.1379, found 641.0; [M–(C₅H₇N₃O)–H]⁻ calcd. 195.0064, found 195.0 (neutral loss of 5mCyt).

$3.N^4$ -etheno-5-methyl-2'-deoxycytidine-3'-phosphate (5).

Compound **4** was incubated overnight in 1 M chloroacetaldehyde (CAA) in water (1 mL) and subsequently subjected to reversed-phase HPLC (conditions as above for **4**), yielding pure $3,N^4$ -etheno-5-methyl-2'-deoxycytidine-3'-phosphate (ϵ 5mdCyd-3'-P, **5**) (100%). This new synthetic compound was characterized by mass spectrometry and UV spectrophotometry (Fig. 1) as well as 1 H-NMR at 500 MHz (Table 1) as shown in Suppl. Fig. 1 below).

Suppl. Fig. 1. 500 MHz ¹H-NMR spectrum of 3,N⁴-etheno-5-methyl-2'-deoxycytidine-3'-phosphate (ε5mdCyd-3'-P, **5**), 0.5 mg in 0.4 mL D₂O, 30 °C, with Lorentz-Gauss resolution enhancement. Multiplets are labeled as in Table 1; unlabeled signals represent residual solvent impurities, e.g. acetonitrile, methanol, acetone, unknown ethyl-X with triplet at 1.28 ppm (not shown) and quartet at 3.20 ppm. Residual HDO signal was not suppressed and exhibits spinning sidebands.

