Supporting Information

Aggregation of Donor Base stabilized 2-Thienyllithium in the Single Crystal and in Solution – Distances from X-ray and NOE

Markus Granitzka[†], Ann-Christin_Pöppler[†], Eike K. Schwarze[†], Daniel Stern[†], Thomas Schulz[†], Michael John[†], Regine Herbst-Irmer[†], Sushil K. Pandey[‡] and Dietmar Stalke^{†*}

[†]Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, 37077 Göttingen.

[‡]Department of Chemistry, University of Jammu, Jammu-180 006, India.

Email: dstalke@chemie.uni-goettingen.de

Content:

Experimental Details, Physical and Spectroscopic data for componds 1-5

Synthesis and Characterization of 1-5	S2
¹ H, ⁷ Li HOESY spectra	S4
Build-up curves	S5
Calculation vs. Experiments	S6
Reactivity of 4 and 5 (temporary lithiation of toluene- d_8)	S6
Stacked plots (¹ H and ⁷ Li)	S7
Selected bond length and angles from the X-ray analysis	S7
References	S8

Experimental details and physical data

General Consideration

All experimental manipulations were performed either in an inert gas atmosphere of purified dry nitrogen with standard Schlenk techniques.^{S1} or in an argon glove box. The glassware's were dried at 140 °C, assembled hot and cooled down under vacuum. All solvents were dried over sodium-potassium alloy, distilled and degassed prior to use. The chemicals and solvents were commercially purchased, dried, freshly distilled before use and stored under inert atmosphere. The *n*-butyllithium, which was kindly contributed by the CHEMETALL GMBH, was filtered through Celite[®] before use and the concentration determined.^{S2} All NMR spectra were recorded on a BRUKER Avance III 400 Microbay and BRUKER DPX 500 spectrometer using the protons of C₇D₈ as internal standard. Elemental analyses were carried out on a VARIO EL3 device at the Analytisches Labor, Institut für Anorganische Chemie, University of Göttingen.

Synthesis and Characterization

To a solution of thiophene (2.0 mL, 27.6 mmol) in 20 mL diethyl ether a solution of one equivalent of *n*-BuLi (1.51 M in *n*-hexane) over 30 minutes at 0 °C was added. An excess of donor base (2.5 eq.) was added followed by constant stirring for another 30 minutes. The solution was then cooled to -78° C. The crystals thus formed were filtered, washed twice with pre cooled *n*-hexane (-78° C) and finally dried in *vacuo*.

This general method was applied for the synthesis of all presented compounds (1-5).

Figure S1. Assignment of 2-thienyllithium.

[2-Thienyllithium · **Et**₂**O**]₄ (1): Colorless crystals were obtained in a yield of 2.4 g (3.6 mmol, 52 %). $C_{32}H_{52}Li_4O_4S_4$ (656.74 g/mol); $\delta^{1}H$ (C_7D_8): 7.80 (d, ${}^{3}J_{HH} = 4.3$ Hz, 1 H, H₅), 7.63 (d, ${}^{3}J_{HH} = 2.7$ Hz, 1 H, H₃), 7.33 (dd, ${}^{3}J_{HH} = 4.3$ Hz, ${}^{3}J_{HH} = 2.8$ Hz, 1H, H₄), 3.19 (q, ${}^{3}J_{HH} = 7.0$ Hz 6 H, CH₃), 0.96 (t, ${}^{3}J_{HH} = 7.0$ Hz 4 H, CH₂); $\delta^{13}C\{{}^{1}H\}(C_7D_8)$: 166.9 (C₂), 137.5 (C₅), 133.1 (C₃), 128.1 (C₄), 65.7 (CH₃), 15.1 (CH₂); $\delta^{7}Li\{{}^{1}H\}$: 2.1 (s).

[2-Thienyllithium · 2 THF]₂ **(2):** Colorless crystals were obtained in a yield of 1.2 g (2.6 mmol, 18.5 %). $C_{24}H_{38}Li_2O_4S_2$ (468.54 g/mol); $\delta^{1}H$ (C_7D_8): 7.88 (d, ${}^{3}J_{HH} = 4.3$ Hz, 1 H, H₅), 7.70 (dd, ${}^{3}J_{HH} = 2.7$ Hz, ${}^{4}J_{HH} = 2.4$ Hz, 1 H, H₃), 7.430 (dd, ${}^{3}J_{HH} = 4.28$ Hz, ${}^{3}J_{HH} = 2.76$ Hz, 1H, H₄), 3.41 (m, 8 H, OCH₂), 1.39 (m, 8 H, CH₂); $\delta^{13}C\{{}^{1}H\}$ (C_7D_8): 170.9 (C_2), 137.2 (C_5), 131.6 (C_3), 127.7 (C_4), 65.7 (OCH₂), 25.7 (CH₂); $\delta^{1}Li\{{}^{1}H\}$: 1.9 (s). [2-Thienyllithium · DME]₂ (3): Colorless crystals were obtained in a yield of 3.6 g (10.0 mmol, 79 %). $C_{16}H_{26}Li_2O_4S_2$ (360.39 g/mol); $\delta^{1}H$ (C_7D_8): 7.95 (dd, ${}^{3}J_{HH} = 4.3$ Hz, ${}^{4}J_{HH} = 0.4$ Hz, 1 H, H₅), 7.69 (dd, ${}^{3}J_{HH} = 2.8$ Hz, ${}^{4}J_{HH} = 0.4$ Hz, 1 H, H₃), 7.57 (dd, ${}^{3}J_{HH} = 4.4$ Hz, ${}^{3}J_{HH} = 2.8$ Hz, 1 H, H₄), 3.02 (s, 6 H, CH₃), 2.72 (s, 4 H, CH₂); $\delta^{13}C\{{}^{1}H\}$ (C_7D_8): 172.1 (C_2), 136.5 (C_5), 130.7 (C_3), 127.5 (C_4), 70.1 (CH_3), 58.8 (CH_2); $\delta^{7}Li\{{}^{1}H\}$: 1.7 (s).

[2-Thienyllithium · TMEDA]₂ **(4)** Yellow crystals were obtained in a yield of 2.8 g (6.8 mmol, 49 %). $C_{20}H_{38}Li_2N_4S_2$ (412.55 g/mol); $\delta^{1}H$ (C_7D_8): 7.92 (d, ${}^{3}J_{HH} = 5.0$ Hz, 1 H, H₅), 7.66 (s_{br}, 1 H, H₃), 7.50 (d, ${}^{3}J_{HH} = 4.8$ Hz, 1 H, H₄), 2.28 (s, 12 H, CH₃), 2.09 (s, 4 H, CH₂); $\delta^{13}C\{{}^{1}H\}$ (C_7D_8): 174.4 (C_2), 137.2 (C_5), 130.8 (C_3), 127.4 (C_4), 58.4 (CH_2), 46.0 (CH_3); $\delta^{7}Li\{{}^{1}H\}$: 2.0 (s).

[2-Thienyllithium · PMDETA] (5): Light-red crystals were obtained in a yield of 3.4 g (12.9 mmol, 47 %). $C_{13}H_{26}LiN_{3}S$ (263.3 g/mol); $\delta^{1}H$ ($C_{7}D_{8}$): 7.95 (dd, ${}^{3}J_{HH} = 4.2$ Hz, ${}^{4}J_{HH} = 0.4$ Hz, 1 H, H₅), 7.64 (dd, ${}^{3}J_{HH} = 4.2$ Hz, ${}^{3}J_{HH} = 2.7$ Hz, 1 H, H₄), 7.49 (dd, ${}^{3}J_{HH} = 2.7$ Hz, ${}^{4}J_{HH} = 0.4$ Hz, 1 H, H₃), 2.11 (s, 3 H, NCH₃), 2.01 (s, 12 H, $N(CH_{3})_{2}$), 1.86 (br, 8 H, CH_{2}); $\delta^{13}C\{{}^{1}H\}$ ($C_{7}D_{8}$): 180.1 (C_{2}), 137.5 (C_{5}), 133.3 (C_{3}) 126.8 (C_{4}), 57.3 ($Me_{2}NCH_{2}$), 53.9 ($CH_{2}NMe$), 45.9 ($N(CH_{3})_{2}$), 44.6 (NCH_{3}); $\delta^{7}Li\{{}^{1}H\}$: 2.1 (s).

Further NMR data (COSY, of 1-5

All NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer (Bruker Biospin, Rheinstetten) with a broadband-observe-probe, z-gradient and temperature unit. The spectra were measured at RT in toluene*d*₈ if not indicated otherwise. All spectra were processes with Topspin 2.1 (Bruker Biospin, Rheinstetten) and further plotted with MestreNova, Version 7.0 (Mestrelab Research, Santiago de Compostela, Spain).

¹H,⁷Li HOESY spectra

Build-up curves

Calculation vs. Experiments

 $[(\mathsf{PMDETA})\mathsf{Li}(\mathsf{C}_{_4}\mathsf{H}_{_3}\mathsf{S})]~(\textbf{5})$

CH₂
 CH₃

7x10⁷

6x10⁷

S5

Reactivity of 4 and 5 (temporary lithiation of toluene- d_8)

Left: ¹H NMR spectra of solutions containing different concentrations of **5**. The aromatic protons of toluene are superimposed adequately and a different intensity for the methyl group becomes obvious (due to protonation). Right: Aromatic region from the ¹H-EXSY spectrum of **5** in toluene- d_8 . (traces do not match 2D spectrum, less numbers on f1 axis)

Stacked plots (¹

Left: ¹H NMR spectra of **1-5**, right: ⁷Li{¹H} NMR spectra of **1-5**. All spectra were recorded in toluene-*d*₈ at 25 °C.

Selected bond length and angles from the X-ray analysis

Table S1. Additional selected bond	l length [pm] and angle	[°] of 1-5 .
------------------------------------	--------------	-------------	---------------------

Bond length[pm] and angle[°]	1	2	3	4 ^{S8}	5
C1–Li1	230.1(4)	220.9(3)	217.5(4)	220.9	211.5(3)
C1–Li2	225.7(4)	224.4(3)	225.3(3)	217.9	_
C1–Li3	227.2(4)	_	_	_	_
C1'–Li1	_		200(4) <10%		195.(2) <10%
C1'-Li2	_		193(4) <10%		_
C5–Li1	228.9(4)	223.0(4)	223.1(14)	220.5	_
C5–Li3	225.1(4)	216.0(4)	218.8(9)	217.9	_
C5–Li4	228.9(4)			_	_
C9–Li2	233.2(4)			_	_
C9–Li3	229.2(4)			_	_
C9–Li4	225.7(4)			_	_
C13–Li1	227.9(4)			_	_
C13–Li2	229.1(4)			_	_
C13–Li4	227.6(4)			_	_
C5'–Li1		215.2.(14)	215(2) <40%	_	_
C5'–Li2		237.5(13)	214.2(16) <40%	_	_

C1-S1	173.8(2)	172.95(15)	172.4(3)	171.2	172.5(2)
C5–S2	173.9(2)	174.5(3)	172.0(9)	171.1	-
C1–C2	138.8(3)	137.8(4)	136.4(5)	144.2	136.5(5)
C5–C6	139.3(3)	139.5(6)	136.4(12)	149.6	-
01–L1	193.8(4)	196.3(2)		_	-
O1–Li2			199.2(3)	_	-
O2–Li1		204.8(6)		_	-
O2–Li2	198.3(4)		201.7(3)	-	-
O3–Li1	184.6(7)	194.8(2)	201.1(3)	_	-
O4–Li1		195.9(3)	198.8(3)	_	-
N1–Li1	-	_	_	215.5	212.1(2)
N2–Li1	-	_	_	213.9	213.7(2)
N3–Li1	-	_	-	216.8	214.5(2)
N4–Li2	-	_	-	219.2	-
S1'–Li1	~300		303.6(17) <10%	_	
S2'–Li1			303.9(6) <40%	_	
C2-C1-S1	105.06(15)	104.9(2)	104.22(14)	107.53	103.6(2)
Li1-C1-Li2		67.90(9)	68.85(12)	72.04	-
Li1–C5–Li2		68.98(12)	69.0(2)	70.80	-
C1-Li1-C5	100.17(15)	109.65(12)	110.2(3)	103.73	-
C1-Li2-C5		110.94(13)	108.9(5)	103.24	-
Av. Li–Li	271.4(5)	248.7(3)		258.1	-
Av. C–Li	228.2(4)	222.83(14)	213.3(14)	218.73	211.5(3)

References

- S1 a) Schlenk W. Die Methoden der Organischen Chemie 1924 J. Houben. Leipzig, G. Thieme, 720. b)
 Schlenk, W.; Holtz, J. Berichte der Deutschen Chemischen Gesellschaft 1917, 50, 262-274.
- S2 Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41(10), 1879-1880.