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Figure S1. Schematic illustration of PEI-coated KGdF4:Ln3+ NCs. The uncoordinated amino groups of 

branched PEI extend into the aqueous solution, rendering the NCs water-soluble and functionalized for 

further linkage of biomolecules through bioconjugate chemistry.[1]  
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Figure S2. ζ-potential for PEI capped KGdF4 NCs obtained from the dynamic light scattering. The ζ-

potential for PEI capped KGdF4 NCs dispersed in aqueous solution (pH = 7.6) was determined to be 

+23.2 mV. 
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Figure S3. Schematic illustration of the bioconjugation of KGdF4 NC with biotin through a well-

established protocol by employing 1-ethyl-3-(3-dimethly-aminopropyl) carboxylate (EDC) and N-

hydroxysuccinimide (NHS) as cross-linking reagents. The EDC firstly reacts with the surface carboxyl 

(-COOH) groups on the biotin to yield an O-acylisourea active intermediate. Then this intermediate 

reacts with the NHS to generate a more stable active NHS ester intermediate. Finally, this intermediate 

is attacked by a primary amine (NH2) group on the KGdF4 NCs, forming a stable amide covalent bond 

between the biotin and the NCs. 
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Figure S4. RT emission spectrum of KGdF4:Tb3+ NCs (green); RT excitation and emission spectra 

(pink) of FITC. The excitation peak of FITC matches well with the emission band of Tb3+ centered at 

488 nm, and the emission peak of FITC at 518 nm is located within the gap between two emission 

peaks of Tb3+ (488 and 545 nm). Accordingly, FITC and KGdF4:Tb3+ NCs are selected as energy 

acceptor and energy donor in TR-FRET assays, respectively. 

 



 

 
S6  

 

475 500 525 550
0

1

2

3

4  Exp
 Fit

Tb
488

FITC
518

In
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

Tb
545

 

Figure S5. An example showing the determination of the integrated PL intensities of Tb488 and FITC518 

from the deconvolution of the TR-FRET spectrum. The experimentally observed spectrum within 470-

570 nm was best fit and deconvoluted to three Gaussian curves with their peaks centered at 488, 518 

and 545 nm, respectively. 
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Figure S6. TR-FRET spectra for the control experiments by employing the as-prepared NCs instead of 

the biotinylated NCs as bioprobes under otherwise identical conditions, where no binding and hence no 

FRET occurs. The spectra were measured at different concentration of FITC-labeled avidin as indicated 

(nM) and normalized to unity at the maximum emission peak at 545 nm. Each data point represents 

average of quintuplicate measurements. 
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Figure S7. Schematic illustration of KGdF4 NCs in longitudinal relaxation measurement. To 

quantitatively estimate the longitudinal relaxivity per KGdF4 NC, we assume that only Gd3+ ions 

residing within a spherical shell (< 5 nm) of each KGdF4 NC (diameter of 25 nm) contribute to the 

observed relaxivity, based on the fact that the close-to-surface Gd3+ ions in NCs play a dominant role in 

changing the relaxation of the water proton.[2] The number of Gd3+ ions NGd in the surface shell of one 

KGdF4 NC can be calculated by the following equation to be 6.82 × 104, and the longitudinal relaxivity 

per KGdF4 NC rNC was then calculated to be 3.99 × 105 S-1·mM-1. 
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where r0 is the radius of KGdF4 NC, which is 12.5 nm; rcore is the inner radius of KGdF4 NC, which is 

7.5 nm; the space group of cubic KGdF4 is Fm3m with unit cell a = 5.73 Å,[3] and every unit cell 

contains two KGdF4 molecules. 



 

 
S9  

 

References  

(1) Yi, G. S.; Peng, Y. F.; Gao, Z. Q. Chem Mater 2011, 23, 2729.  

(2) Park, Y. II.; Kim, J. H.; Lee, K. T.; Jeon, K.-S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S. 

H.; Baik, S.-II.; Kim, H.; Park, S. P.; Park, B.-J.; Kim, Y. W.; Lee, S. H.; Yoon, S.-Y.; Song, I. C.; 

Moon, W. K.; Suh, Y. D.; Hyeon, T. Adv Mater 2009, 21, 4467. 

(3) Wong, H.-T.; Vetrone, F.; Naccache, R.; Chan, H. L. W.; Hao, J.; Capobianco, J. A. J. Mater. Chem. 

2011, 21, 16589. 

 


