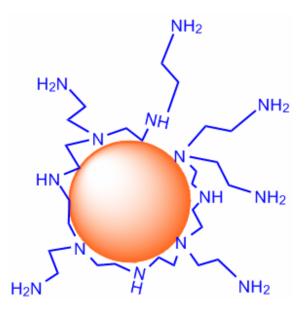
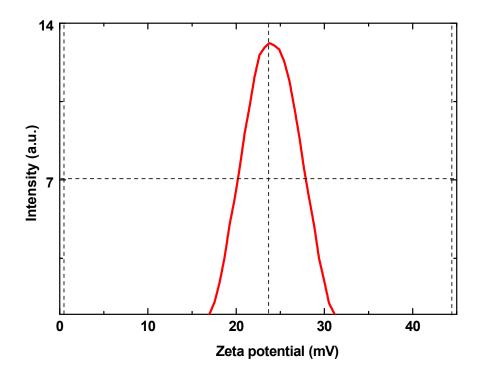
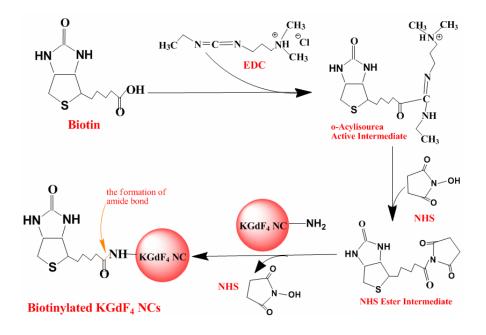
Supporting Information

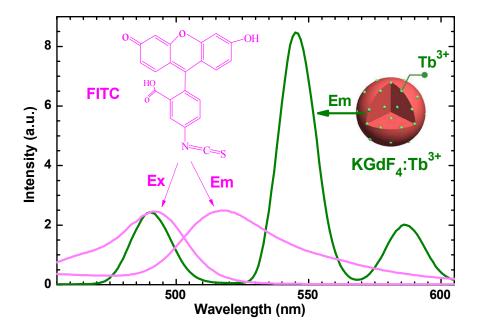

Amine-Functionalized Lanthanide-Doped KGdF₄ Nanocrystals as Potential Optical/Magnetic Multimodal Bioprobes

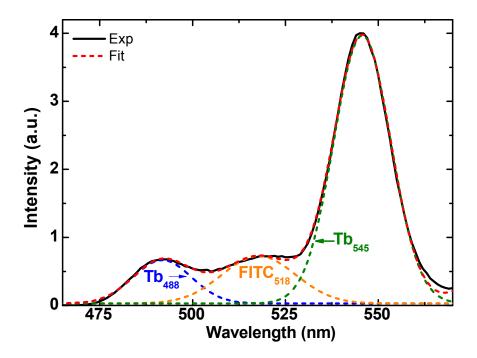
Qiang Ju,[†] Datao Tu,[†] Yongsheng Liu,[†] Renfu Li,[†] Haomiao Zhu,^{†,‡} Jincan Chen,[‡] Zhuo Chen,[‡] Mingdong Huang,[‡] and Xueyuan Chen^{*,†,‡}

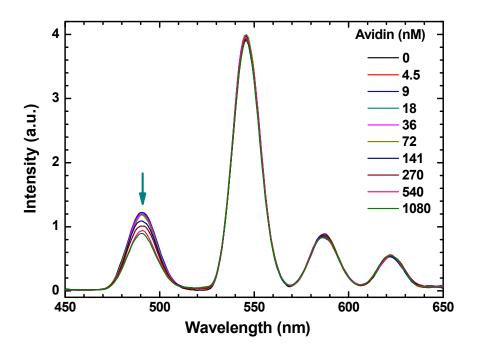

[†]*Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China*

[‡]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China


*xchen@fjirsm.ac.cn


Figure S1. Schematic illustration of PEI-coated $KGdF_4:Ln^{3+}$ NCs. The uncoordinated amino groups of branched PEI extend into the aqueous solution, rendering the NCs water-soluble and functionalized for further linkage of biomolecules through bioconjugate chemistry.^[1]


Figure S2. ζ -potential for PEI capped KGdF₄ NCs obtained from the dynamic light scattering. The ζ -potential for PEI capped KGdF₄ NCs dispersed in aqueous solution (pH = 7.6) was determined to be +23.2 mV.


Figure S3. Schematic illustration of the bioconjugation of KGdF₄ NC with biotin through a wellestablished protocol by employing 1-ethyl-3-(3-dimethly-aminopropyl) carboxylate (EDC) and Nhydroxysuccinimide (NHS) as cross-linking reagents. The EDC firstly reacts with the surface carboxyl (-COOH) groups on the biotin to yield an O-acylisourea active intermediate. Then this intermediate reacts with the NHS to generate a more stable active NHS ester intermediate. Finally, this intermediate is attacked by a primary amine (NH₂) group on the KGdF₄ NCs, forming a stable amide covalent bond between the biotin and the NCs.

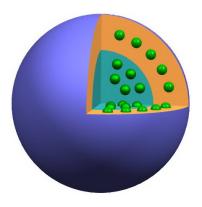

Figure S4. RT emission spectrum of $KGdF_4:Tb^{3+}$ NCs (green); RT excitation and emission spectra (pink) of FITC. The excitation peak of FITC matches well with the emission band of Tb^{3+} centered at 488 nm, and the emission peak of FITC at 518 nm is located within the gap between two emission peaks of Tb^{3+} (488 and 545 nm). Accordingly, FITC and $KGdF_4:Tb^{3+}$ NCs are selected as energy acceptor and energy donor in TR-FRET assays, respectively.

Figure S5. An example showing the determination of the integrated PL intensities of Tb_{488} and $FITC_{518}$ from the deconvolution of the TR-FRET spectrum. The experimentally observed spectrum within 470-570 nm was best fit and deconvoluted to three Gaussian curves with their peaks centered at 488, 518 and 545 nm, respectively.

Figure S6. TR-FRET spectra for the control experiments by employing the as-prepared NCs instead of the biotinylated NCs as bioprobes under otherwise identical conditions, where no binding and hence no FRET occurs. The spectra were measured at different concentration of FITC-labeled avidin as indicated (nM) and normalized to unity at the maximum emission peak at 545 nm. Each data point represents average of quintuplicate measurements.

Figure S7. Schematic illustration of KGdF₄ NCs in longitudinal relaxation measurement. To quantitatively estimate the longitudinal relaxivity per KGdF₄ NC, we assume that only Gd³⁺ ions residing within a spherical shell (< 5 nm) of each KGdF₄ NC (diameter of 25 nm) contribute to the observed relaxivity, based on the fact that the close-to-surface Gd³⁺ ions in NCs play a dominant role in changing the relaxation of the water proton.^[2] The number of Gd³⁺ ions N_{Gd} in the surface shell of one KGdF₄ NC can be calculated by the following equation to be 6.82×10^4 , and the longitudinal relaxivity per KGdF₄ NC r_{NC} was then calculated to be 3.99×10^5 S⁻¹·mM⁻¹.

$$N_{Gd} = \frac{4}{3} \times \pi \times (r_0^3 - r_{core}^3) \times 2/a^3$$
$$r_{NC} = r_1 \times N_{Gd}$$

where r_0 is the radius of KGdF₄ NC, which is 12.5 nm; r_{core} is the inner radius of KGdF₄ NC, which is 7.5 nm; the space group of cubic KGdF₄ is *Fm*3*m* with unit cell a = 5.73 Å,^[3] and every unit cell contains two KGdF₄ molecules.

References

- (1) Yi, G. S.; Peng, Y. F.; Gao, Z. Q. Chem Mater 2011, 23, 2729.
- (2) Park, Y. II.; Kim, J. H.; Lee, K. T.; Jeon, K.-S.; Na, H. B.; Yu, J. H.; Kim, H. M.; Lee, N.; Choi, S.
- H.; Baik, S.-II.; Kim, H.; Park, S. P.; Park, B.-J.; Kim, Y. W.; Lee, S. H.; Yoon, S.-Y.; Song, I. C.;
- Moon, W. K.; Suh, Y. D.; Hyeon, T. Adv Mater 2009, 21, 4467.
- (3) Wong, H.-T.; Vetrone, F.; Naccache, R.; Chan, H. L. W.; Hao, J.; Capobianco, J. A. J. Mater. Chem.
 2011, 21, 16589.