
TABLES 
 
Table S1: Time- and cost-savings estimates for j5 compared with traditional cloning and DNA synthesis  
 

 
DNA construction tasks: 

A) Metabolic pathway construction: vector backbone 4kb + 2 promoters (200 bp each) + 5 ORFs (with 
RBS, 1000 bp each) + 1 terminator (100 bp) 

B) Protein chimera construction: vector backbone 4kb + 3 domains (500 bp each) 
C) Combinatorial library (243 constructs = 3^5 [3 orthologs for each of the 5 ORFs]) of task A) above 
D) Combinatorial library (216 constructs = 6^3 [6 orthologs for each of the 3 domains]) of task B) above 

 
1Best-case scenario (viable restriction enzyme choices). Binary ligations with maximum intermediate re-use.  
2Assumes perfect parallel process scaling, $0.39/bp, $50/construct for custom destination vector.  
3SLIC/Gibson/CPEC can be used interchangeably to assemble the same j5-designed fragments (see Results). 
4No automation of transformation/clonal isolation process 
5Fully burdened-labor cost estimate: $100/hr. Design time includes sequence validation. 
6Design time refers here to DNA sequence file manipulation (i.e., pasting each insert into the vector backbone) 
7Almost exclusively sequence validation 
8Almost exclusively transformation/clonal isolation processes 
9Dominated by DNA sequencing service costs ($2.50 per 800-bp read) 

Task  Traditional 
cloning1 
and robotics4 

 

DNA 
Synthesis2 

SLIC/Gibson/CPEC3 

with j5 and robotics4 
Golden Gate 

with j5 and robotics4 

Hands-on time5 5.7 hr design 
6.7 hr lab 

0.1 hr design6 
0.1 hr order 

1.2 hr design 
4.4 hr lab 

0.4 hr design 
4.4 hr lab 

Materials cost $212 $2345 $174 $174 
Total cost $1452 $2365 $734 $654 

A 

Total duration 2.5 weeks 2 months 2 weeks 2 weeks 
 

Hands-on time 3.1 hr design 
4.1 hr lab 

0.1 hr design 
0.1 hr order 

0.5 hr design 
4.2 hr lab 

0.2 hr design 
4.2 hr lab 

Materials cost $73 $785 $64 $64 
Total cost $793 $805 $534 $504 

B 

Total duration 2 weeks 3 weeks 2 weeks 2 weeks 
 

Hands-on time 176.3 hr design 
767.0 hr lab 

20.3 hr design 
20.3 hr order 

N/A 29.0 hr design7 
82.9 hr lab8 

Materials cost $27,8139 $533,535  $18,6869 
Total cost $122,143 $537,585  $29,876 

C 

Total duration 11 months 2.3 months  1.5 months 
 

Hands-on time 67.9 hr design 
229.9 hr lab 

18.0 hr design 
18.0 hr order 

N/A 7.8 hr design7 
74.9 hr lab8 

Materials cost $8,1029 $137,310  $5,8349 
Total cost $37,882 $140,910  $14,104 

D 

Total duration 3.5 months 1 month  1.3 months 



METHODS 
 
All DNA sequences and E. coli strains identified as JPUB_XXXXXX have been accessioned in the JBEI public 
registry (http://public-registry.jbei.org) and are available upon request.  j5 design files, related oligo lists, and 
chromatogram sequence trace files are linked to the JPUB entries and can be downloaded or viewed there. 
 
Plasmid pNJH00010 construction 
Plasmid pNJH00010 (JPUB_000226) was constructed as designed by j5 (see the j5 design file 
pNJH00010.csv that is attached to the pNJH00010 registry entry). Briefly, plasmid pBbS8c-RFP (1) 
(JPUB_000041) was purified from E. coli strain JBEI-2566 (JPUB_000199) by Qiagen miniprep kit (per 
manufacturer’s instructions), 3.5 ug was digested with 25 units each EcoRI and XhoI (Fermentas), and the 
vector backbone fragment gel purified (Qiagen). Insert parts were generated by PCR using Phusion 
polymerase (New England Biosciences, manufacturer’s instructions) and primers RDR00130/132, 
RDR00134/136, and RDR00138/140 (see the pNJH00010.csv design file for the primer specifications). For the 
initial SLIC chew-back step, 360 ng of each assembly piece was digested with T4 DNA polymerase. 
Subsequently, 275 ng digested backbone was combined with equimolar parts 1 & 3, and 4-fold molar excess 
of part 2 due to its small size to mitigate the risk of excessive exonuclease degradation. The CPEC and Gibson 
assembly reactions used 100 ng vector, equimolar parts 1 and 3, and 4-fold molar excess part 2. Assembly 
reactions proceeded according to published methods (2-4) and 5 µL each reaction was transformed into 100 
µL Keasling-1484 (E. coli DH10b ΔaraFGH ΔaraE PCP18::araE (1)) chemically competent cells, yielding strain 
JBEI-2804 (JPUB_000235). Transformants were selected for on LB-agar plates with 30 µg/mL 
chloramphenicol, and screened by PCR (primers RDR00001 and RDR00142, see the DNA_oligo_file.csv 
attached to the pNJH00010 registry entry for the primer specifications) for the correct inserts. Plasmid DNA 
was isolated by miniprep (Qiagen kit) and the success of plasmid assembly verified by Sanger sequencing of 
plasmid DNA (sequencing trace files are attached to the Seq. Analysis tab of the pNJH00010 registry entry). 
 
Construction of plasmids pRDR00001 – pRDR00008 
Eight GFPuv-signal peptide plasmid variants (pRDR00001 – pRDR00008; JPUB_000227-234) were 
assembled by the Golden Gate method (5, 6) from linear PCR products amplified from pNJH00010. 
Specifications of all oligos, PCR reactions, and assembly combinations are provided in the j5 design files 
attached to the respective JBEI public registry entries. Briefly, the vector backbone was amplified with primers 
incorporating either a sig1 or sig2 signal peptide, and the gfpuv open reading frame was amplified with primers 
incorporating either a long or short linker sequence at the 5’ end of the gene and either a regular or enhanced 
ssrA tag at the 3’ end of the gene.  PCR amplicons were purified by Qiagen column (manufacturer’s 
instructions) and DNA concentrations determined by nanodrop. Golden Gate assembly reactions were set up 
in 15 µL containing 100 ng vector backbone and equimolar insert, 1/10th volume 10X T4 DNA ligase buffer, 
2,000 cohesive end units T4 DNA ligase (i.e. 1 μL high concentration) and 10 units BsaI (all enzymes, New 
England Biosciences). Reactions proceeded at 37˚C for 1 hour, followed by 5 minute incubations at 50˚C and 
80˚C. Five µL of each reaction was transformed into E. coli strain Keasling-1484 (1), yielding strains JBEI-
2747-9,2923,2751-3,2755 (JPUB_000236-43) and cells plated on LB-agar with 30 μg/mL chloramphenicol. 
Transformants were screened by colony PCR, plasmid DNA isolated by miniprep (Qiagen kit) and the success 
of plasmid assembly verified by Sanger sequencing of plasmid DNA (sequencing trace files are attached to the 
Seq. Analysis tab of the pRDR00001 – pRDR00008 registry entries). 
 
Markerless deletion of clpX 
In order to test the efficacy of the ssrA degradation tag on the GFPuv variants, the protease encoding gene 
clpX was removed from the Keasling-1484 (1) genome by a markerless deletion strategy (7) (see also Figure 
S8). Keasling-1484 was transformed with pREDI (7) (JPUB_000019), encoding the lambda red recombinase 
machinery under the control of Pbad and I-SceI homing endonuclease under the control of PrhaB with a 
temperature sensitive origin of replication, resulting in strain JBEI-2948 (JPUB_000253). A j5-designed linear 
deletion cassette containing a kanamycin resistance marker, sacB sucrose counter-selection marker, I-SceI 
cleavage motif, and genomic sequence flanking clpX for targeted recombination regions was amplified using 
Phusion polymerase and primers RDR00044 and RDR00045 from template pSKI (7) (JPUB_000270), resulting 
in DNA part ΔclpX_cassette (JPUB_000255) (see the j5 design file DclpX_j5_design.csv that is attached to the 
ΔclpX_cassette registry entry). Because our aim was to generate a linear cassette rather than a circularized 
plasmid, these primers were manually modified from the j5 design file to remove the 5’ overlapping regions 



introduced by the software. Due to the length of the oligos and formation of inhibitory primer dimers, successful 
amplification required the addition of 1M betaine, 5% DMSO, and 50 µM 7deaza-GTP (8). Amplicons were 
incubated with 10 units DpnI for 1 hour at 37˚C, gel purified, and concentrated to ~ 100 ng/uL. Four µL (400 
ng) of deletion cassette was transformed into electrocompetent JBEI-2948, cells were recovered at 30˚C, and 
plated on LB-agar with 100 µg/mL ampicillin, 50 µg/mL kanamycin, and 10 mM arabinose. Four recovered 
clones were screened by colony PCR with primers flanking (RDR00050/051) and specific to (RDR00050/052) 
the inserted deletion cassette (see the DNA_oligo_file.csv attached to the ΔclpX_cassette registry entry for the 
primer specifications). Those colonies yielding the expected PCR products were replica plated on LB-agar with 
ampicillin and kanamycin versus LB-agar with ampicillin and sucrose. One of the two clones demonstrating 
kanamycin resistance and sucrose sensitivity was archived as JBEI-3080 (JPUB_000269). The insertion 
cassette was then excised by growing JBEI-3080 to O.D.600 ~ 0.4 in LB plus ampicillin and 10 mM rhamnose 
over three 10% dilutions and plating on LB-agar plus ampicillin, rhamnose and 5% sucrose. Recovered 
colonies were replica plated on agar containing either sucrose or kanamycin, and strain JBEI-3083 
(JPUB_000254) was selected for sucrose growth and kanamycin sensitivity. Markerless deletion was 
confirmed by colony PCR using flanking and insert specific primers, as above, and by Sanger sequencing of 
the resulting amplicons (sequencing trace files are attached to the Seq. Analysis tab of the JBEI-3083 registry 
entry). 
  
GFP expression from plasmid variants 
Plasmid pNJH00010 and each GFPuv plasmid variant were transformed by heat shock into chemically 
competent JBEI-3083, resulting in strains JBEI-3144,3133-40 (JPUB_000244-52). Recovered colonies were 
grown overnight at 42˚C to cure pREDI and restreaked on LB-agar plus chloramphenicol. Cells harboring the 
GFPuv plasmid but not pREDI were selected by colony PCR. Four colonies per plasmid variant for each host 
JBEI-3083 and Keasling-1484 (1) were grown overnight in deep well 96-well plates containing 1 mL LB + 30 
µg/mL chloramphenicol per well.  These were diluted 1:100, grown to an average O.D. ~ 0.2, induced with 5 
mM arabinose, and grown an additional 6 hours. Cells were pelleted, washed twice in M9 minimal media, and 
GFP fluorescence and optical density measured in duplicate in a SpectroMax Plus384 (Molecular Devices) 
plate reader.  
  
 

 



FIGURES 
 

 
Figure S1. Example j5 input. Zoom in with PDF display software as desired to improve legibility. (A) Example 
parts list CSV input file, stylized for clarity. The user must specify the name of each part (first column) to be 
included in the DNA assembly design process, the sequence source for each part (second column), if each 
part should be defined as the reverse compliment (i.e. bottom strand; third column) of the specified 
subsequence, and where each part starts (fourth column) and ends (fifth column) in its specified sequence 
source. (B) Example sequences list CSV input file, stylized for clarity. The user must specify the filename (first 
column) and format (second column) for each sequence file to be utilized in the DNA assembly design 
process. (C-D) Example target part order list CSV input files, stylized for clarity. (C) Single construct target part 



order list example. The user must specify the sequential order (from top to bottom, first column) of the parts to 
be assembled together, the direction of each part (second column), and as well as optionally whether to force 
j5 to use a particular assembly strategy for each part (third column), whether to force j5 to use a particular 
relative overhang position (in bp, Golden Gate assembly only) following each part (fourth column), and whether 
to place a direct DNA synthesis firewall following each part (fifth column). (D) Combinatorial library target part 
order list example. The user must specify the sequential order (from top to bottom, first column) of the 
combinatorial part bins to be assembled together (each denoted by a leading ‘>’ character, grey rows) and the 
parts within each bin (immediately following each bin name). Other columns are as in (C). (E) Eugene design 
specification rules example file. When designing assemblies with j5, it is possible to set design specification 
rules that limit the total number of times a given part appears in a given assembly (NOTMORETHAN statements, 
rules r1-r9), if two given parts should not appear together in the same assembly (NOTWITH statements, rules 
r10-r11), or if two given parts should only appear together in the same assembly (WITH statement, rules r12-
r15). The design specification rules understood by j5 (shown as those shown here) are derived from (and are a 
strict subset of) the Eugene biological design specification computer language (9, 10). (F) Example j5 
parameters CSV input file, stylized for clarity. The user may optionally change parameter values by modifying 
entries in the second column. Default values (third column) and descriptions (fourth column) are provided as a 
reference for each parameter. (G) Example Target Part Ordering/Selection/Strategy section of an assembly 
design CSV output file, stylized for clarity. The assembly order (top to bottom) and direction (fourth column), 
and the optimal assembly strategy (as determined by Algorithm S1, fifth column), are shown for each part to be 
assembled (third column). 
 



 
Figure S2. The search for compatible sets of homology and overhang sequences. (A-C) SLIC, Gibson, and 
CPEC assembly piece putative incompatibilities. (A) Schematic of a hypothetical plasmid to be assembled, 
demarcated at the boundaries of DNA assembly pieces “0” through “6”. Pieces “2” and “5” are identical, 
containing the Plac promoter, which is also internally present in piece “0”. (B) j5-predicted assembly piece 
incompatibilities. The right end of assembly piece “4” (which contains 3’ flanking sequence homologous to the 
5’ end of the Plac in piece “5”) is incompatible with assembly pieces “0” and “2”. (C) j5 utilizes Algorithm S3 to 
design a hierarchical assembly strategy that circumvents these incompatibilities by first SOEing together 
pieces “1”, “2” and “3” (Contig 1), and separately “4”, “5”, “6” (Contig 2), and then assembling together Contig 0 
(fragment “0”) with Contig 1 and Contig 2. (D-E) Search for optimal Golden Gate overhang sequences. j5 
utilizes Algorithm S4 to search through all possible combinations of putative overhang sequences (constrained 
by the maximum oligo size and the extents of combinatorial sequence identity about each assembly junction) 
and selects the set of overhangs that 1) are compatible with themselves and each other, and that 2) are as 



neutral as possible. (D) An example three-part (vector backbone, red part, purple part) Golden Gate assembly 
with red, grey, and blue overhang junctions. Directional type IIs endonuclease (e.g. BsaI) recognition sites are 
schematically indicated by rectangular boxes below the DNA strand, with arrowheads pointing to the adjacent 
cute site. Checking for overhang compatibility consists of making sure that (top right) each single stranded 
overhang sequence (e.g. “TGCC”, blue top overhang) is cohesive with its desired cognate partner (e.g. 
“GGCA”, blue bottom overhang), but not with itself nor with off-target sequences (e.g. “AACG”, red bottom 
overhang, middle right). If an overhang is sufficiently cohesive with an off-target sequence (e.g. “GGGA”, grey 
bottom overhang, bottom right, 3 cohesive base-pairs), the set of overhang sequences is declared 
incompatible and rejected. (E) Three possible Golden Gate overhang sequence options (blue sequences) are 
shown for a particular assembly junction that each result in the scar-less assembly of the preceding part (top 
left, grey sequence) and the subsequent part (top right, white sequence) into the desired assembled sequence 
(bottom). The first overhang sequence selection “TTTG” (top) draws all four base pairs from the preceding part 
(a negative 2-bp relative overhang position), the second selection “TGCC” (middle) draws two base pairs from 
the preceding part and two from the subsequent part (a neutral overhang), and the third selection “CCTA” 
(bottom) draws all four base pairs from the subsequent part (a positive 2-bp relative overhang position). 
  



 
Figure S3. Example j5 output. Zoom in with PDF display software as desired to improve legibility. (A) Example 
master oligos list CSV input file, stylized for clarity. The user may specify the names (first column), lengths (in 
bp, second column), full-length (third column) and template-annealing 3’ end (fourth column) melting 
temperatures, and DNA sequences (fifth column) of oligos in the user’s collection. Subsequent to the design 
process, j5 appends to this list the new oligo(s) to be ordered, following the naming and numbering convention 
the user specifies (first column). (B) Example master direct DNA syntheses list CSV input file, stylized for 
clarity. The user may specify the name (first column), alias (second column), contents (part names enclosed in 
parentheses separated by underscores; third column), length (in bp, fourth column), and DNA sequence (fifth 
column) of directly synthesized DNA sequences in the user’s collection. Subsequent to the design process, j5 
appends to this list the new direct synthesis sequence(s) to be ordered, following the naming and numbering 
convention used in the first column. (C) Example PCR Reactions section of an assembly design CSV output 
file, stylized for clarity. The primary (second column) and alternative (third column) templates, forward (fifth 
column) and reverse (seventh column) primers (as determined by Algorithm S2), full-length (mean, eleventh 



column; delta, twelfth column) and template-annealing 3’ end (mean, thirteenth column; delta, fourteenth 
column) primer melting temperatures, product length (in bp, fifteenth column) and sequence (sixteenth 
column), are shown for each PCR reaction. The parts contained within each PCR product (from first part, 
eighth column, to the last part, ninth column, corresponding to that shown in Figure S1F), and a note (tenth 
column) indicating whether the PCR product should be SOE’d together with adjacent assembly pieces prior to 
the DNA assembly process, are also shown for each PCR reaction. (D-E) Example Assembly Pieces section of 
an assembly design CSV output file, stylized for clarity. (D) SLIC/Gibson/CPEC assembly. The upstream 
(seventh column) and downstream (eighth column) flanking homology sequence melting temperatures, 
corresponding upstream (ninth column) and downstream (tenth column) flanking homology sequence overlap 
lengths, length (in bp, eleventh column) and sequence (twelveth column), are shown for each assembly piece. 
The parts contained (from first part, fourth column, to the last part, sixth column, corresponding to that shown 
in Figure S1F), derivation (e.g. PCR or digest; second column), and corresponding PCR reaction number (if 
applicable, third column, corresponding to that shown in (C) are also shown for each assembly piece. (E) 
Golden Gate assembly. The upstream (seventh column) and downstream (eighth column) top strand overhang 
sequences (as determined by Algorithm S4), and the downstream relative overhang position (in bp, ninth 
column; see Figure S2E), are shown for each assembly piece. Other columns are as in (D). (F) Example 
Combinations of Assembly Pieces section of an assembly design CSV output file, stylized for clarity. The 
assembly method (third column) and the assembly piece in each combinatorial bin corresponding to the variant 
(fourth and columns thereafter) is shown for each plasmid variant to be constructed (second column). (G) 
Example master plasmids list CSV input file, stylized for clarity. The user may optionally specify the names 
(first column), aliases (second column), contents (part names enclosed in parentheses separated by 
underscores, third column), lengths (in bp, fourth column), and DNA sequences (fifth column) of plasmids in 
the user’s collection. Subsequent to the design process, j5 appends to this list the new plasmid(s) to be 
constructed, following the naming and numbering convention the user specifies (first column). 
 

 
Figure S4. Plasmid map of pNJH00010 derived from the Genbank-format sequence file resulting from j5-
designed SLIC/Gibson/CPEC assembly (Figure 2). 
 



 
Figure S5. Example multi-well plate j5 input and output. Zoom in with PDF display software as desired to 
improve legibility. (A) Example multi-well plate CSV input file, stylized for clarity. The user must specify the 
volume (in µL; fourth column) for each liquid component (third column) for each well (second column) for each 
plate that will be utilized in the DNA assembly process. (B) Example downstream automation parameters CSV 
input file, stylized for clarity. Default values (third column) and descriptions (fourth column) are provided as a 
reference for each parameter name (first column). The user may change parameter values by modifying the 
entries in the second column. (C) PCR Reactions section of a distribute PCR reactions CSV output file, stylized 
for clarity. The plate (second column), well (third column), and volume (in µL; fourth column) of each template; 
the plate (fifth column), well (sixth column), and volume (in µL; seventh column) of each forward primer; the 
plate (eighth column), well (ninth column), and volume (in µL; tenth column) of each reverse primer; the 



volume of water to be added (eleventh column); the destination plate (twelfth column) and well (thirteenth 
column); the optimal annealing temperature (fifteenth column); the destination thermocyler block (sixteenth 
column), zone (seventeenth column), and annealing temperature (eighteenth column); and the expected 
product size (in bp, nineteenth column) are shown for each PCR reaction (fourteenth column, corresponding to 
that shown in Figure S3C). (D) Thermocycler Blocks section of a distribute PCR reactions CSV output file, 
stylized for clarity. The annealing temperature (third column) for each zone (second column) in each 
thermocycle block (first column). (E) Optimal distribution of PCR reactions across thermo-cycler annealing 
temperature gradients. Given the optimal annealing temperatures of each of the PCR reactions required for an 
assembly process and the thermocycler block gradient constraints (e.g. each neighboring zone must differ by 
less than 5 °C, as shown, see (B), j5 optimizes the thermocycler block annealing temperature gradient(s), and 
distributes the PCR reactions across multi-well plate(s) that will be placed in these optimized gradient(s). (F) 
NextGen (eXeTek) Expression workstation control CSV output file, stylized for clarity. The NextGen-specific 
template (second column), forward primer (third column), and reverse primer (fourth column) control 
parameters; the plate (fifth column), well index (sixth column), and volume (in µL; seventh column) of each 
template; the plate (eighth column), well index (ninth column), and volume (in µL; tenth column) of each 
forward primer; the plate (eleventh column), well index (twelfth column), and volume (in µL; thirteenth column 
column) of each reverse primer; the volume of water to be added (fourteenth column); and the destination plate 
(fifteenth column) and well index (sixteenth column) are shown for each PCR reaction. 
 

 
Figure S6. Algorithm S5 convergence as a function of MAXMCSTEPSPERZONE and MCTEMPERATUREINITIAL 
parameters for the PCR reactions shown in Figure S5E. Algorithm S5 was run 10 times for each choice of 
MAXMCSTEPSPERZONE (here “STEPS”) and MCTEMPERATUREINITIAL (here “TINITIAL”), with all other parameters 
set to their respective j5 default values. The best objective function encountered for each run is plotted with 
either a red triangle indicating a non-global minima, or a blue circle indicating the global minimum. All runs with 
50 or more MAXMCSTEPSPERZONE (with the exception of MCTEMPERATUREINITIAL = 10, which required 500 or 
more MAXMCSTEPSPERZONE) identified the global minimum. The default parameters for j5 are 
MCTEMPERATUREINITIAL = 0.1 and MAXMCSTEPSPERZONE = 1000. 



 
Figure S7. Colony PCR screening. (A-C) Colony PCR screening of pNJH00010 transformants of (A) CPEC, 
(B) Gibson, and (C) SLIC assemblies. (A-C) Lane 1 – 1 kb+ DNA ladder “M”; lanes 2 through 9 – amplicons 
from colonies “1” through “8” (respectively). (C) Lane 11 – plasmid DNA positive control “C”. (D) Agarose gel 
electrophoresis of colony PCRs of combinatorial Golden Gate assembly transformants. Four colonies were 
screened for each transformation of plasmids pRDR00001 - pRDR00008 (indicated as -01, -02, -03, … -08). 
Lane 1 – 1 kb+ DNA ladder “M”. 
 



 



Figure S8. clpX deletion. (A-B) clpX deletion cassette design. (A) Schematic of the linear clpX deletion 
cassette (JPUB_000255) assembly task. The deletion cassette region from plasmid pSKI (7), spanning from 
the promoter region upstream of kanR through the I-SceI homing-endonuclease recognition sequence is PCR 
amplified, with the forward primer introducing a sequence homologous to the E. coli genome immediately 
upstream of the clpX coding sequence (H1) and a sequence homologous to the genome immediately 
downstream of the clpX coding sequence (H3), and the reverse primer introducing a sequence homologous to 
a portion of clpX coding sequence (H2). (B) Schematic of the marker-less deletion of the genomic copy of clpX 
utilizing the linear deletion cassette. The deletion cassette depicted in (A) is transformed into E. coli (strain 
ecRDR10001/JBEI-2948) expressing the λ-red recombinase system from plasmid pREDI (7). Following λ -red 
mediated double-homologous recombination (at the H1 and H2 loci), replacing clpX in situ with the deletion 
cassette, transformant colonies are selected from kanamycin agar plates (strain ecRDR10002/JBEI-3080). 
Following the expression of the I-SceI homing-endonuclease from the pREDI plasmid, double stranded break 
at the I-SceI recognition site within the deletion cassette, and homologous recombination at the H3 locus, 
colonies are selected from sucrose (sacB counter-selection) agar plates, and counter-screened for kanamycin 
sensitivity, indicating the markerless deletion of clpX (strain ecRDR10003/JBEI-3083). (D-E) Colony PCR clpX 
protease deletion validations. (D) Schematic of diagnostic colony PCR reactions. Reaction 1: forward primer 
(black arrows) anneals to sequence flanking the 5’ end of the clpX coding sequence (CDS), reverse primer 
(red arrow) anneals within the kanR CDS. Reaction 1 should result in an 800 bp product for the clpX deletion 
cassette integration intermediate, but in no product for ΔclpX mutant nor wildtype. Reaction 2: forward primer 
(black arrows) anneals to sequence flanking the 5’ end of the clpX CDS, reverse primer (blue arrows) anneals 
to sequence flanking the 3’ end of the clpX CDS. Reaction 2 should result in a 368 bp product for a ΔclpX 
mutant, a 3 kb product for the clpX deletion cassette integration intermediate, or a 1.7 kb product for WT. (E) 
Colony PCR validations of clpX markerless deletion (JBEI-3083). For each reaction 1 and reaction 2: Lane 1 – 
1kb DNA ladder “M”, lanes 2 through 6 – ΔclpX mutants 1 through 5 (respectively), lane 7 – clpX deletion 
cassette integration intermediate (strain JBEI-3080), lane 8 – WT control (JBEI-2948), lane 9 – no DNA 
template control. All bands were observed at the expected size. In reaction 2, the integration intermediate band 
is faint but present, while the expected wildtype band was not detected.  
 



 
Figure S9. Detailed workflow for SLIC/Gibson/CPEC assembly. A researcher begins the DNA assembly 
process by selecting parts to assemble from a registry of biological parts (such as the JBEI-ICE repository) or a 
local collection of DNA sequences; biological computer-aided design (BioCAD) tools may assist this process. 
The parts to assemble are categorized into either the linearized destination vector, or insert parts. The 
linearized destination vector is physically achieved by digesting the destination vector with restriction enzymes 
(as in Figure 2) or by PCR-amplifying the vector backbone (as in Figure 3). Given the sequences of the 
linearized destination vector and the insert parts, j5 designs flanking homology sequences for each assembly 
piece, and performs an analysis to determine for which (if any) portions of the assembly direct synthesis would 
be more cost-effective than either PCR/SOE or oligo embedding. j5 then designs DNA oligos for synthesis, 
and/or suggests re-use of existing oligos where possible, to amplify the desired assembly pieces. The parts to 
be assembled do not need to physically exist before using j5 to design the assembly, since it is possible to 
specify a direct synthesis strategy for any assembly fragment. Liquid handling robotics or other devices may 
assist the execution of PCR/SOE to generate the assembly pieces, as well as their subsequent 
SLIC/Gibson/CPEC assembly. j5 facilitates this process by condensing/aggregating designs for multiple 
independent assemblies into 96-well plate format including optimally distributing reactions across a thermo-
cycler annealing temperature gradient (as in Figure S5E). After transforming a competent cloning strain with 
the assembly reaction, a clonal isolate of the assembled plasmid is sequence verified, assayed for function as 
desired, and then deposited into the parts registry or local collection for subsequent re-use. The Golden Gate 
process is analogous that shown, with the design of overhang sequences substituting for the design of flanking 
homology sequences. S1-S5 (bold red lettering) refer to locations within the workflow where Algorithms S1-S5 
are utilized. Algorithm S1 determines when DNA synthesis is cost-effective, S2 assists the design of new DNA 
oligos, S3 determines if a hierarchical assembly strategy is required, S4 optimizes the design of Golden Gate 
overhang sequences, and S5 optimizes the placement of PCR reactions across thermocycler gradients. 



ALGORITHMS 
 
Algorithm S1: After the user has selected an assembly methodology (SLIC/Gibson/CPEC or Golden Gate), 
heuristically determine the most cost-effective strategy to incorporate each part into an assembly fragment 
prior to executing the full assembly design process. 
 

1:  for all part ∈ part_list do 
2:  if not defined part.strategy then 
3:   if part.length < minimum_PCR_length then 
4:    if CanEmbedInPrimer(part) then 
5:     part.strategy ← embed_in_primer 
6:    else 
7:     part.strategy ← synthesis 
8:    end if 
9:   else 
10:    part.strategy ← PCR 
11:   end if 
12:  end if 
13: end for 
14:  for all part ∈ part_list do 
15:  if part.strategy ≠ synthesis then 
16:    if MarginalPCRCost(part) > SynthesisCost(part) then 
17:    part.strategy ← synthesis 
18:   end if 
19:  end if 
20:  end for 
21:  for all part ∈ part_list do 
22:  if part.strategy = synthesis then 
23:   if part.next.strategy ≠ synthesis then 
24:    if MarginalPCRCost(part.next) > MarginalSynthesisCost(part.next) then 
25:     part.next.strategy ← synthesis 
26:    end if 
27:    end if 
28:   end if 
29:  end for 
30:  for all part ∈ part_list do 
31:  if part.strategy = synthesis then 
32:   if part.previous.strategy ≠ synthesis then 
33:    if MarginalPCRCost(part.previous) > MarginalSynthesisCost(part.previous) then 
34:     part.previous.strategy ← synthesis 
35:    end if 
36:    end if 
37:   end if 
38:  end for 
 
where MarginalPCRCost() returns the (in context) marginal cost of adding the part to its designated PCR 
reaction; 
 
where MarginalSynthesisCost() returns the (in context) marginal cost of adding the part to the adjacent direct 
synthesis fragment. 
 
Direct synthesis orders often have minimum charges per synthesized sequence (e.g. $0.39/bp and a $159 
minimum per sequence), so the marginal cost of adding a part to an adjacent direct synthesis fragment might 
be significantly less expensive than directly synthesizing the part by itself (since an additional minimum charge 
will not be incurred). This is the justification for the third step of Algorithm S1. Algorithm S1 assumes that the 



most likely primer lengths, and flanking sequence lengths (SLIC, Gibson or CPEC) or relative overhang 
positions (Golden Gate) will be used throughout the assembly process. Since primer, flanking sequence, and 
relative overhang positions are optimized during the design process and thereby differ from the most likely 
values, this heuristic may fail at non-continuities in the MarginalPCRCost() function. For example, extending 
the length of a primer from 60 to 61 bp may result in an abrupt additional DNA oligo PAGE-purification cost 
which may be as much as an additional $60/primer. For this reason, further development will focus on 
integrating the determination of the most cost-effective assembly strategy into the full design process.  

Algorithm S1 is currently utilized after the user has already selected an assembly methodology. Further 
development of Algorithm S1 could assist the user in deciding which assembly method to select by comparing 
the cost and time requirements for the various assembly methods. This could include a refined distinction 
between SLIC, Gibson, and CPEC assembly from a method cost-perspective, associating differential 
anticipated failure rate risks as costs embodied in extra time, labor and DNA sequencing requirements. 
Furthermore, Algorithm S1 provides a reasonable heuristic for determining the most cost-effective assembly 
strategy for a single construct, but does not properly account for part re-use across a combinatorial library. For 
example, it may be less expensive to directly synthesize two parts in a single contiguous fragment (due to a 
minimum per sequence charge as described above). However, if each of the two parts can be repeatedly re-
used across a combinatorial library, but the concatenation of the two parts is only used in one of the 
combinations, synthesizing the two parts separately can be effectively amortized over multiple combinations 
and provide the most cost-effective strategy. Further development will target combinatorial amortization 
accounting. In the meantime, a manual software control mechanism (direct synthesis firewalling) is in place 
that allows the user to prevent directly synthesizing adjacent parts together across combinatorial assembly 
junctions. Algorithm S1 does not account for the costs of enzymatic reagents, competent cells, sequencing 
reactions, nor labor charges (which may dominate in industry). Further development will target a more 
sophisticated cost function that includes these factors. Finally, j5 outputs only the Algorithm S1-calculated cost-
optimal strategy, but could be further developed to provide a set of comparable alternatives when the 
difference in cost falls within a user-specifiable threshold. 
 
Algorithm S2: Progressively relieve violated constraints during primer (or flanking sequence) design. 
 
Existing programs such as Primer3 (11) can be successfully leveraged to optimize the design of primers or 
flanking homology sequences (effectively primers for adjacent assembly pieces during Gibson and CPEC 
assembly). One drawback to these existing software packages is that they provide primer pair designs only if a 
given set of design criteria is met. For example, if all considered primers fall outside of a desired melting 
temperature range, an error message is issued, but no primer designs are returned. While it may be possible 
to force the software to design at least one (if sub-optimal) primer pair per desired PCR reaction, this may 
result in many undesirable design constraint violations, even if primer pairs with fewer constraint violations (but 
perhaps with lower overall design scores, constraint violations aside) are accessible. Algorithm S2 first 
attempts to design optimal primers that meet all design constraints; if unable to do so, constraints are 
progressively relieved until an acceptable primer pair has been achieved. In addition to the primers (or flanking 
homology sequences) designed, warning messages are issued if any design constraints were violated/relieved 
during the design process and/or if any putative template mis-priming events with above threshold melting 
temperatures are identified via BLAST (12). 
 
1:  constraints ← target 
2:  repeat 
3:  primers ← DesignPrimers(constraints) 
4:  constraints.gc_clamp ← constraints.gc_clamp - 1 
5: until defined primers or constraints.gc_clamp < 0 
6: constraints.gc_clamp ← constraints.gc_clamp + 1 
7: if not defined primers then 
8:  repeat 
9:   EliminateFirstViolatedConstraint(constraints) 
10:   primers ← DesignPrimers(constraints) 
11:  until defined primers 
12: end if 
13: while defined primers and constraints.gc_clamp < target.gc_clamp do 



14:  constraints.gc_clamp ← constraints.gc_clamp + 1 
15:  primers ← DesignPrimers(constraints) 
16: end while 
17: if not defined primers then 
18:  constraints.gc_clamp ← constraints.gc_clamp – 1 
19:  primers ← DesignPrimers(constraints) 
20: end if 

 
where DesignPrimers() returns the optimal primer pair if the design constraints can be met; 
 
where EliminateFirstViolatedConstraint() identifies (via a rank-ordered triage process) the next violated 
constraint to relieve; the constraint rank-ordering (first eliminated to last) is as follows: too many Ns, too many 
poly-X, GC content, minimum Tm, maximum Tm, maximum difference in Tm, self-complementarity, and pair-
complementarity. 
 
For the SLIC/Gibson/CPEC design shown in Figure 2, of the 6 primers (required for the 3 PCR reactions) and 
the 6 PCR-derived assembly junction termini, only the 4 primers for PCR reactions “1” and “3” could be 
successfully designed by Primer3 without Algorithm S2 constraint relief. For this design, the particular rank-
ordering of constraint relief had no impact on the total number or type of constraints relieved. For the 
combinatorial Golden Gate design shown in Figure 3, of the 12 primers required for the 6 PCR reactions, the 8 
primers for PCR reactions “1”, “2”, “3”, and “4” could be successfully designed by Primer3 without Algorithm S2 
constraint relief. Here too, the particular rank-ordering of constraint relief had no impact on the total number or 
type of constraints relieved. For other designs, the particular rank-ordering of constraint relief may have a more 
significant impact. Algorithm S2’s constraint rank-ordering is currently subjective. Over time, given an 
accumulated data set of PCR successes and failures, it would be possible to objectively analyze the 
relationship between relaxed constraint type and PCR or SLIC/Gibson/CPEC assembly failure rate. 

It should be pointed out that (at least for Primer3), GC clamp length is associated only with a constraint, 
unlike primer melting temperature, for example, for which there are constraints (e.g. maximum and minimum 
acceptable temperature) in addition to a scoring function (distance from the target melting temperature) that 
rank-orders multiple putative primers that fall within constraint tolerances. As a consequence, no GC clamp is 
considered equivalent to a one or two-bp GC clamp if they are all shorter than the design constraint. For this 
reason, Algorithm S2 treats the GC clamp separately from all other constraints that have associated scoring 
functions; other constraint-only parameters could be similarly treated. 
 
Algorithm S3: Identify SLIC/Gibson/CPEC assembly piece incompatibilities; if found, design a hierarchical 
assembly strategy 
 
The SLIC (3), Gibson (2), and CPEC (4) assembly methodologies utilize sequence homology at assembly 
piece termini to direct the assembly process. If two or more assembly pieces have sufficiently identical 
sequence at their respective termini (e.g. fragments “2” and “5” in Figure S2A), there is an ambiguity in the 
assembly process, which can lead to undesirable products (e.g. pieces assembled in the incorrect order or 
sections missing altogether). These assembly pieces are said to be incompatible with one another, since 
placing them into the same assembly reaction can lead to undesired products. For the CPEC method in 
particular, and potentially for the Gibson method, there is an additional concern that the terminus of an 
assembly piece will mis-prime an internal portion of itself or another assembly piece (e.g. the 3’ end of 
fragment “4” could mis-prime the Plac subsequence in fragment “0” in Figure S2A), which can also lead to 
undesired assembly products. Algorithm S3 first identifies any putative assembly piece incompatibilities, and 
then attempts to design a hierarchical assembly strategy that mitigates the risk of incorrect assembly products. 
If no such hierarchical assembly strategy is possible, a warning message is issued. 
 
1:  for all start_piece ∈ piece_list do 
2:  contig ← new Contig 
3:  piece ← start_piece 
4:  while piece.next ≠ start_piece and Compatible(contig, piece.next) 
5:   push contig piece.next 
6:   piece ← piece.next 



7:  end while 
8:  push contig_list contig 
9: end for 
10: EliminateEmptyOrSubsetContigs(contig_list) 
11:  for all contig ∈ contig_list do 
12:   for all piece ∈ contig do 
13:   unique ← true 
14:    for all other_contig ∈ contig_list and contig ≠ other_contig do 
15:    if Contains(other_contig, piece) then 
16:     unique ← false 
17:     last 
18:    end if 
19:   end for 
20:   if unique then 
21:    for all other_contig ∈ contig_list and contig ≠ other_contig do 
22:     for all other_piece ∈ contig do 
23:      Remove(other_contig, other_piece) 
24:     end for 
25:    end for 
26:   end if 
27:  end for 
28: end for 
29: EliminateEmptyOrSubsetContigs(contig_list) 
30:  for all contig ∈ contig_list do 
31:   for all piece ∈ contig do 
32:   for all other_contig ∈ contig_list and contig ≠ other_contig do 
33:    Remove(other_contig, piece) 
34:   end for 
35:  end for 
36: end for 
37: EliminateEmptyOrSubsetContigs(contigs_list) 
38: failure ← false 
39:  for all contig ∈ contig_list do 
40:  compatible ← false 
41:  while not failure and not compatible do 
42:   for all other_contig ∈ contig_list and contig ≠ other_contig do 
43:    if not 3’Compatible(contig, other_contig) then 
44:     if not Move3’Piece(contig, contig.next) then 
45:      failure ← true 
46:     else 
47:      contig.next.5’adjusted  ← true 
48:     end if 
49:     last 
50:    end if 
51:   end for 
52:  end while 
53:  compatible ← false 
54:  while not failure and not compatible do 
55:   for all other_contig ∈ contig_list and contig ≠ other_contig do 
56:    if not 5’Compatible(contig, other_contig) then 
57:     if contig.5’adjusted or not Move5’Piece(contig, contig.previous) then 
58:      failure ← true 
59:     end if 



60:     last 
61:    end if 
62:   end for 
63:  end while 
64: end for 
65: if length contig_list > 1 
66:  hierarchical ← true 
67: else 
68:  hierarchical ← false 
69: end if 
 
where Compatible() returns true if the passed assembly piece is compatible with all of the pieces in the passed 
contig; otherwise returns false; 
 
where 3’Compatible() returns true if the 3’ terminus of the first passed contig is compatible with the second 
passed contig; otherwise returns false; 
 
where 5’Compatible() returns true if the 5’ terminus of the first passed contig is compatible with the second 
passed contig; otherwise returns false; 
 
where Move3’Piece() returns true if the 3’ assembly piece of the first passed contig is compatible with each 
piece contained within the second passed contig. If so, moves the 3’ assembly piece of the first passed contig 
to the 5’ end of the second passed contig; otherwise returns false; 
 
where Move5’Piece() returns true if the 5’ assembly piece of the first passed contig is compatible with each 
piece contained within the second passed contig. If so, moves the 5’ assembly piece of the first passed contig 
to the 3’ end of the second passed contig; otherwise returns false; 
 
If a hierarchical assembly strategy cannot be found to mitigate the identified assembly piece incompatibilities, it 
is likely that a manual user adjustment (such as breaking a part into two sub-parts) will be required to design a 
successful assembly. For example, consider a variation of the assembly task shown in Figure S2A in which 
fragments “3” and “4” are a single contiguous assembly piece. The 5’ end of this contiguous piece would be 
incompatible with the immediately downstream fragment “5”, and the 3’ end would be incompatible with the 
immediately upstream fragment “2”. These incompatibilities are not able to be resolved using a hierarchical 
assembly strategy. However, as shown in Figure S2A, splitting this contiguous assembly piece into separate 
fragments “3” and “4”, it is possible to identify a workable hierarchical assembly strategy. Further development 
will target the identification of such assembly piece splitting resolutions to incompatibilities that cannot be 
hierarchically resolved. It should be pointed out that Algorithm S3 is also directly applicable to the in vivo yeast 
method DNA assembler (13), which also uses sequence homology to direct the assembly process. 
 While the case for a hierarchical assembly mitigation strategy is clear for the example shown in Figure 
S2A with two sequence-identical assembly junctions (“1” to “2”, and “5” to “6”), the inverse relationship 
between assembly junction similarity and assembly efficiency has yet to be quantitatively explored. A 
reasonable way to approach this would be to capture the assembly efficiency (i.e., success rate) of each 
reaction as an integral part of the workflow depicted in Figure S9. This large accumulated meta-data set could 
then be continually analyzed towards a refined quantitative relationship between assembly efficiency and 
junction similarity, which would inform the cost-benefit calculus for one-pot vs. hierarchical assembly 
strategies. 
 
Algorithm S4: Search for the optimal set of Golden Gate assembly piece overhangs 
 
The Golden Gate assembly method (6) utilizes 4-bp 5’ overhang sequences to direct the assembly process. If 
two or more overhang sequences are sufficiently cohesive to a cognate overhang (e.g. the blue and grey 
bottom overhangs are both cohesive to the blue top overhang shown in Figure S2D), there is an ambiguity in 
the assembly process, which can lead to undesirable products (e.g. pieces assembled in the incorrect order or 
sections missing altogether). These overhang sequences are thus said to be incompatible with one another. 
Algorithm S4 first identifies putative overhang sequence regions (constrained by the maximum oligo size and 
the extents of combinatorial sequence identity about each assembly junction) and then searches these regions 



for the set of overhang sequences that are compatible with themselves and each other, and that are as neutral 
as possible (see Figure S2E). If no set of compatible Golden Gate overhangs is found, an error message is 
issued. 
 
1:  for all junction ∈ junction_list do 
2:  GenerateOverhangList(junction) 
4:  sort junction.full_overhang_list by increasing Position() 
5:   for all overhang ∈ junction.full_overhang_list do 
6:   if not Compatible(overhang) 
7:    Remove(overhang) 
8:   else 
9:     for all prior_overhang ∈ junction.full_overhang_list before overhang do 
10:     if prior_overhang = overhang 
11:      Remove(overhang) 
12:      last 
13:     end if 
14:    end for 
15:   end if 
16:  end for 
17: end for 
18: undefine stable 
19: current_junction ← First(junction_list) 
20: current_junction.overhang_list ← junction.full_overhang_list 
21: resume ← false 
22: while true do 
23:  if not FindCompatibleOverhangs(junction_list, stable, current_junction, resume) 
24:   last 
25:  end if 
26:  resume ← true 
27:  if not defined best or MaxPosition(junction_list) < max 
28:   best ← junction_list 
29:   max ← MaxPosition(junction_list) 
30:    for all junction ∈ junction_list do 
31:     for all overhang ∈ junction.full_overhang_list do 
32:     if Position(overhang) > max then 
33:      Remove(overhang) 
34:     end if 
35:    end for 
36:    for all prior ∈ junction_list before junction do 
37:     for all overhang ∈ junction.prior.full_overhang_list do 
38:      if Position(overhang) > max then 
39:       Remove(overhang) 
40:      end if 
41:     end for 
42:    end for 
43:   end for 
44:  end if 
45: end while 
 
46: procedure FindCompatibleOverhangs(junction_list, stable, junction, resume) 
47:  while true do 
48:   for all prior ∈ junction_list after stable before junction do 
49:    if prior = First(junction_list) then 



50:     junction.prior.overhang_list ← junction.full_overhang_list 
51:    else 
52:     junction.prior.overhang_list ← junction.Previous(prior).overhang_list 
53:    end if 
54:     for all overhang ∈ junction.prior.overhang_list do 
55:     if not Compatible(prior.current_overhang, overhang) 
56:      Remove(overhang) 
57:     end if 
58:    end for 
59:   if junction = Last(junction_list) and resume 
60:    Remove(First(junction.Previous(junction).overhang_list)) 
61:   end if 
62:   if junction = First(junction_list) then 
63:    junction.current_overhang ← First(junction.overhang_list) 
64:   else  
65:    junction.current_overhang ← First(Previous(junction).overhang_list) 
66:   end if 
67:   while not defined junction.current_overhang do 
68:    if junction = First(junction_list) then 
69:     return false 
70:    end if 
71:    junction ← Previous(junction) 
72:    stable ← Previous(junction) 
73:    repeat 
74:     if junction = First(junction_list) then 
75:      Remove(junction.current_overhang) 
76:      junction.current_overhang ← First(junction.overhang_list) 
77:     else 
78:      Remove(junction.Previous(junction).current_overhang) 
79:      junction.current_overhang ← First(junction.Previous(junction).overhang_list) 
80:     end if 
81:    until not (defined junction.current_overhang and RedundantSearchPath(junction)) 
82:   end while 
83:   if junction = Last(junction_list) then 
84:    return true 
85:   else 
86:    junction ← Next(junction) 
87:  end while 
88: end procedure 
 
89: procedure RedundantSearchPath(junction_list, junction) 
90:  for all prior ∈ junction_list before junction do 
91:   if junction.current_overhang ∈ prior.overhang_list and 
92:    prior.current_overhang ∈ junction.overhang_list then 
93:    if Max(Position(junction.current_overhang),Position(prior.current_overhang)) > 
94:     Max(Position(junction.overhang_list.(prior.current_overhang)), 
95:      Position(prior.overhang_list.(junction.current_overhang))) then 
96:     return true 
97:    else if Max(Position(junction.current_overhang),Position(prior.current_overhang)) = 
98:      Max(Position(junction.overhang_list.(prior.current_overhang)), 
99:        Position(prior.overhang_list.(junction.current_overhang))) then 
101:    if junction.current_overhang ∈ junction.overhang_list after 
102:     prior.current_overhang ∈ junction.overhang_list then 
103:     return true 



104:    end if 
105:   end if 
106:  end if 
107: end for 
108: return false 
109: end procedure 
 
where GenerateOverhangList() returns the list of putative 4-bp overhangs that are located within the putative 
overhang sequence region (see Figure S2E) that spans the assembly junction (constrained by the maximum 
oligo size and the extents of combinatorial sequence identity about the assembly junction) from which to select 
a 4-bp overhang; 
 
where Compatible() returns true for a single passed overhang if the overhang is compatible with itself (the 
maximum number of ungapped aligned identities (all frame shifts, both strands) is below threshold, see Figure 
S2D); similarly returns true for two passed overhangs if the two overhang sequences are compatible with one 
another (see Figure S2D); utilizes a hash lookup table to avoid redundant calculations; otherwise returns false; 
 
where Position() returns the relative overhang position in bp from neutral (see Figure S2E); 
 
where MaxPosition() returns the maximum relative overhang position in bp from neutral across all assembly 
junctions; 
 
If no set of compatible set of Golden Gate overhangs is found, it is likely that a manual user adjustment (such 
as adding scar sequences at one or more assembly piece junctions) will be required to design a successful 
assembly. Further development will target the automated design of minimal scar sequences that allow for a 
compatible set of Golden Gate overhangs to be identified. A scar-less alternative option is to utilize a variant of 
Algorithm S3 to design a hierarchical Golden Gate assembly, analogous to that shown in Figure S2A-C. 
Further development will target the automated design of this alternative hierarchical Golden Gate assembly 
strategy. It should be pointed out that Algorithm S4 is also directly applicable to the USER DNA assembly 
methodology (14), which also uses overhang sequences (although frequently longer than 4-bp) to direct the 
assembly process. A variant of Algorithm S4 could also be applied to (combinatorial) SLIC, Gibson, CPEC, in 
vivo yeast DNA assembler, or other methods, and would likely be preferable to the utilization of hierarchical 
assembly processes (depicted in Figure S2A-C and designed by Algorithm S3) wherever possible. Further 
development will target the application of Algorithm S4 to designing these homology sequence recombination 
methodologies. 
 Algorithm S4 utilizes dynamic programming to reduce search complexity. Algorithm S4 stores previous 
compatible/incompatible overhang sequence calculations in a look-up table (the Compatible() procedure), 
recursively determines the residual set of overhang sequences to choose from at each junction (see for 
example pseudo-code line 52), and dynamically avoids redundant search paths (the RedundantSearchPath() 
procedure). For many simple Golden Gate assembly designs, the complexity of Algorithm S4 may appear to be 
overkill. However, we have found that as the number of assembly pieces approaches (or narrowly exceeds) 
ten, and/or if the sequences spanning assembly junctions are highly homologous (e.g. repeated or highly 
similar RBS sites), the search process needs to be kept as efficient as possible to terminate in a reasonable 
amount of time. This is because the complexity of the exhaustive search for compatible Golden Gate overhang 
sequences is roughly O(MN), where M is the number of overhang sequences to choose from for each junction, 
and N is the number of junctions. Algorithm S4 is not embarrassingly parallelizable since the optimal search 
process is dependent on the characteristics of the best compatible overhang set found so far. Nevertheless, it 
would be possible to parallelize it (without inducing too much waste) by tasking each thread/process with a 
subset of the overhang possibilities for the first junction(s) and having each thread/process broadcast their best 
set parameters as they are found. As the price of direct DNA synthesis continues to fall, and replaces the need 
for embedding sequence resulting from non-neutral overhang position selection into the corresponding 
primers, there will be less of a premium placed on maximizing the neutrality of the overhang positions, and 
more of an emphasis on compatibility stringency. This change in emphasis will not require any change to 
Algorithm S4, but will rather just require a perturbation to the stringency of the Compatible() function and an 
extension of the putative overhang sequence regions beyond what is currently constrained by the maximum 
oligo length. 



 
Algorithm S5: Closely approximate the optimal distribution of PCR reactions in multi-well plates across 
thermocycler block annealing temperature zone gradient(s) 
 
Depending on the design of a given DNA assembly process, PCR may be required to generate (some of) the 
assembly pieces. While primer and flanking homology sequence design attempt to constrain melting 
temperature to a narrow acceptable range where possible (see Algorithm S2), extreme %GC template 
composition may skew the resulting temperatures to well below (AT-rich) or above (GC-rich) the targeted 
optimum. Most modern thermocyclers feature standardized multi-well format blocks, and some (such as the 
Applied Biosystems Veriti Thermal Cycler employed in this study) now feature temperature gradients with 
individually controllable annealing temperature zones. Algorithm S5 takes as input a set of PCR reactions with 
target annealing temperatures, taken here to be the minimum of the forward and reverse primer melting 
temperatures + 2 °C, and optimizes the annealing temperature zones of the thermocycler block(s) and the 
distribution of the PCR reactions (in multi-well plates) across the zones so as to minimize the objective 
function, namely the summed difference squared between the targeted annealing temperatures of the PCR 
reactions and the actual annealing temperatures of the thermocycler zones in which they are placed (as shown 
in Figure S5E). Algorithm S5 exploits a Monte-Carlo simulated annealing approach to converge upon the 
optimal distribution. Simulated annealing is a classical computational technique to find global minima in 
discrete search spaces with complicated energy landscapes. This approach is well suited to the optimization 
problem addressed by Algorithm S5 because the search space (the placement of each PCR reaction in its own 
well, and the annealing temperature of each zone) is discrete, and there is a complicated relationship between 
zone temperatures, PCR reaction placements, and the objective function to be minimized.  
 
1:  number_blocks = MinBlocksRequired(reaction_list) - 1 
2: repeat 
3:  number_blocks ← number_blocks + 1 
4:  block_list ← InitializeBlocks(number_blocks, reaction_list) 
5:  FillBlocks(block_list, reaction_list) 
6  current ← Objective(block_list, reaction_list) 
7:  best ← current 
8:  current_temperature ← initial 
9:  for all move ← 1, n  do 
10:   trial_list ← block_list 
11:   TrialMove(trial_list) 
12:   FillBlocks(trial_list, reaction_list) 
13:   trial ← Objective(trial_list, reaction_list) 
14:   if trial < current or Random() < Exp((current – trial)/current_temperature) then 
15:    block_list ← trial_list 
16:    current ← trial 
17:    if current ≤ best then 
18:     best ← current 
19:     best_block_list ← block_list 
20:    end if 
21:   end if 
22:   current_temperature ← current_temperature – (initial – final)/n 
23:  end for 
24: until MaxDeviance(best_block_list, reaction_list) < threshold 
 
where MinBlocksRequired() returns the minimum number of thermocycler blocks required to contain all of the 
PCR reactions; 
 
where InitializeBlocks() returns a set of the specified number of thermocycler blocks whose zone annealing 
temperatures have been initialized to span from the lowest optimal annealing temperature across the PCR 
reactions to the highest optimal annealing temperature across the PCR reactions (or highest temperature that 
can be achieved given temperature gradient limitations) with linear step annealing temperature increases 
between zones;  



 
where FillBlocks() fills the thermocycler blocks with the PCR reactions; repeats the following procedure for 
each PCR reaction sorted from lowest to highest optimal annealing temperature: given the zone annealing 
temperatures, identify the best zone with an empty well remaining to which to add the current PCR reaction, 
and deposit the PCR reaction in this zone; after depositing all of the PCR reactions into the thermocycler 
block(s), rearrange the PCR reactions in place (same thermocycler wells) such that the annealing 
temperatures of the PCR reactions are sorted monotonically from low to high with the increasing zone 
annealing temperature gradient; 
  
where Objective() returns the sum of the difference squared between the optimal annealing temperature of 
each PCR reaction and the actual annealing temperature of the zone it has been placed in; 
 
where TrialMove() randomly select one of the zones within the specified thermocycler blocks, and randomly 
perturbs the annealing temperature of the zone by either adding or subtracting a delta temperature; if this 
perturbation collaterally affects adjacent zones (due to temperature gradient limitations) adjust the 
temperatures of the affected zones accordingly;  
 
where Random() returns a number from the half-closed interval [0,1) with uniform probability; 
 
where MaxDeviance() returns the maximum temperature deviance between the optimal annealing temperature 
of a PCR reaction and the actual annealing temperature of the zone it has been placed in. 
 
Depending on the parameters selected and search scheme adopted, simulated annealing can act as a random 
search, prematurely converge on local minima, or converge on the desired global minimum. It is crucial to 
explore the search space sufficiently well so as to ensure confidence that the global minimum has been 
encountered, but an excessive number of trial moves is computationally wasteful. Some of the parameters 
(e.g., MAXDELTATEMPERATUREADJACENTZONES, NCOLUMNSMULTIWELLPLATE, NROWSMULTIWELLPLATE, 
WELLSPERTHERMOCYCLERZONE, ZONESPERTHERMOCYCLERBLOCK, and TRIALDELTATEMPERATURE) governing 
Algorithm S5 are determined by thermocycler specifications and multi-well plate format geometry. The 
MAXDELTATEMPERATUREREACTIONOPTIMUMZONEACCEPTABLE parameter is determined by the experimental 
preference of the user. Two parameters in particular (MAXMCSTEPSPERZONE and MCTEMPERATUREINITIAL) 
determine whether Algorithm S5 acts as a random search, or converges on local or global minima. Figure S6 
shows Algorithm S5 convergence as a function of MAXMCSTEPSPERZONE and MCTEMPERATUREINITIAL. The 
default parameters for j5 (MCTEMPERATUREINITIAL = 0.1 and MAXMCSTEPSPERZONE = 1000) are set 
conservatively so as remain putatively effective for more frustrated searches than that pursued in Figure S6. 

For simple DNA assembly designs that do not require too many PCR reactions, Algorithm S5 may 
seem excessive. In addition, anecdotal experience may suggest that precisely tuning the annealing 
temperature for a given PCR reaction might not yield significantly superior PCR results, since the optimal 
annealing temperature range may be fairly broad (spanning several °C) for any given PCR reaction. While 
these points are well taken, it should be pointed out that multiple small assembly tasks can be condensed into 
a sizable meta-assembly project (see Results) with many collective prerequisite PCR reactions, and 
furthermore, there is no compelling reason not to exploit available thermocycler gradient features if the design 
process is automated and effectively effortless. Sets of PCR reactions with non-uniformly distributed target 
annealing temperatures with extreme highs and lows will be the most likely to derive benefit from Algorithm S5.  

Algorithm S5 would need to be adjusted for a strictly linear (non-zone type) gradient thermocycler (such 
as a MJ Research Tetrad PTC-225 Thermo Cycler). This could be accomplished by modifying the subroutine 
that generates the initial distribution of zone temperatures, and changing the Monte Carlo move set such that 
either of the linear gradient temperature extremes may be perturbed, and internal intermediate zones are 
linearly adjusted accordingly. Further development will focus on an implementation variant of Algorithm S5 for 
strictly linear thermocycler gradient blocks. 
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