Supporting Information

Design and Scale-Up of a Practical Enantioselective Route to 5-Phenylbicyclo[2.2.2]oct-5-en-2-one

Stefan Abele*, Roman Inauen, Jacques-Alexis Funel, and Thomas Weller

Process Research Chemistry, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123

Allschwil, Switzerland

Corresponding author. E-Mail: stefan.abele@actelion.com. Telephone: +41 61 565 67 59

Content:

Parameters for the GC-MS, LC-MS method 1 and 2, and chiral HPLC method (pages 2-3) Experimental data for the reactions as depicted in Scheme 4 (pages 4-5) Experimental data for the synthesis of racemic alcohols **25a** and **25b** (page 6) Cyclization: Tables 1-2 with additional conditions screened (pages 7-8) Elimination: Tables 3-5 with additional conditions screened (pages 9-10) NMR data (¹H and ¹³C) for **12**, rac. **24**, **25**, **21**, **9a**, **22a**, **1** (pages 11-23) GC-MS data for **12**, **24**, rac. **24a**, **25**, **21** (pages 24-28) LC-MS data for **9a**, **22a**, **1** (pages 29-34) Chiral HPLC data for **9a**, mixture of rac. **9a**, rac. **9b**, and rac. **9c**, **1**, mixture of **1** and ent-**1** (pages 35-38) DSC data for **22a**, **1**, and solvents (pages 39-43) X-ray data for rac. **24a**, rac. **9a**, rac. **9b**, rac. **9c**, and **1** (pages 44-53)

General:

Unless otherwise stated the ¹H, ¹³C NMR, GC-MS, LC-MS, and chiral HPLC data are presented for the crude intermediates of the runs described in the experimental part on kilogram scale.

Parameters for the GC-MS, LC-MS and chiral HPLC method

GC-MS:

Thermo Trace GC Ultra, The	rmo DSQ II MS detector, Thermo TriPlus Autosampler
Injection volume:	1 μL
Column:	Zebron ZB-5-MS, 15 m x 0.25 mm ID, 0.25 mm film
Column flow:	2 ml/min
Carrier gas:	Helium
Split ratio:	20
SSL inlet temp.:	200 °C
Temp. gradient:	60-300 $^{\circ}\mathrm{C}$ from 0 to 4.0 min, 300 $^{\circ}\mathrm{C}$ isotherm from 4.0 to 5.0 min
Ionization:	Chemical ionization with CH4 as reagent gas

LC-MS method 1:

Agilent G1956B (MS, Ionisation: ESI+, APCI), Agilent G1312B Bin Pump, Agilent G1315C DAD, Agilent G1316B (thermostated column compartment), Agilent G1367C (auto sampler) Injection volume: 2 µL Column: Kinetex C18, 2.6 µm, 2.1 x 50 mm Column flow: 1 ml/min Eluent: Eluent A: Water, 0.08% TFA (trifluoroacetic acid) Eluent B: Acetonitrile, 0.012% TFA Gradient: 2.0 min 95% B 2.8 min 95% B 3.0 min 5% B Pressure: 380 bar Temperature: 40 °C Detection wavelength: 210 nm

LC-MS method 2:

Injection volume:	2 µL			
Column:	Eclipse Plus C18, 1.8 µm, 2	2.1 x 50 mm		
Column flow:	1 ml/min			
Eluent:	Eluent A: Water, 0.08% TFA (trifluoroacetic acid)			
	Eluent B: Acetonitrile, 0.01	2% TFA		
Gradient:	2.0 min	95% B		
	2.8 min	95% B		
	3.0 min	5% B		
Pressure:	480 bar			
Temperature:	50 °C			
Detection wavelength:	210 nm			

Chiral HPLC method:

Dionex HPG-3400SD Bin pump, Dionex DAD-3000

Injection volume:	2 µL
Column:	ChiralPak AS-H, 4.6 x 250 mm, 5 μm
Column flow:	0.8 ml/min
Eluent:	Heptane (60%) / 2-propanol (40%)
Concentration:	4 mg / mL heptane / 2-propanol 1 : 1
Detection:	210 nm
Temperature:	25 °C

Experimental data for the reactions as depicted in Scheme 4

2-Phenyl-2-(1,4-dioxaspiro[4.5]decan-7-yl)acetonitrile (rac. 11, 1:1 mixture of stereoisomers). Ethylene glycol (26 mL) and pTsOHH₂O (0.5 g), were added to a soln. of 2-(3-oxocyclohexyl)-2-phenylacetonitrile **20** (10 g, 1:1 mixture of diastereoisomers) in toluene (40 mL). The mixture was heated to reflux for 1.5 h with azeotropic removal of water. After cooling to 20-25 °C, a 1M aqu. NaOH-soln. (0.15 mL) and water were added (40 mL). After phase separation the org. layer was washed with water (40 mL) and concentrated to dryness at 45 °C under reduced pressure to yield rac. **11** as an orange oil containing residual toluene. This crude material was used in the next step without further purification. Yield: 11.9 g (99 %). LC-MS method 2: 67% a/a (toluene substracted), R_t 1.50 min, $[M+1]^+ = 258$; GC-MS: 98% a/a, R_t 3.52 min, $[M+1]^+ = 258$; ¹H NMR (MeOD): δ 7.32-7.45 (m, 5H), 7.10-7.26 (m, 1H), 3.84-4.01 (m, 4H), 2.03-2.18 (m, 1H), 1.62-1.85 (m, 4H), 1.30-1.56 (m, 3H), 1.07-1.21 (m, 1 H).

2-Phenyl-2-(1,4-dioxaspiro[4.5]decan-7-yl)acetaldehyde (rac. 21, 1.1 mixture of stereoisomers). A soln. of nitrile rac. **11** (82 g, 1:1 mixture of diastereoisomers) in THF (82 mL) was added drop-wise at 20-25 °C to a 1M soln. of DIBALH in heptane (542 mL) (*exothermic reaction*). After stirring at 20-25 °C for 1 h, TBME (575 mL) was added at 5 °C, followed by the slow addition of a mixture of water (23 mL) in THF (115 mL) (*exothermic reaction*). A soln. of citric acid monohydrate (134 g) in water (246 mL) was added drop-wise (*exothermic reaction*) and the mixture was stirred for 1 h. The layers were separated and the aqu. phase was extracted with TBME (575 mL). The combined org. extracts were concentrated to dryness at 45 °C under reduced pressure to afford rac. **21** as a yellow oil which was used in the next step without further purification. Yield: 49 g (59 %). LC-MS method 2: 84% a/a, R_t 1.24 min, 1.29, [M-18]⁺ = 242; ¹H NMR (CD₃OD): δ 9.67 (s, 0.5H), 9.66 (s, 0.5H), 7.44-7.16 (m, 5H), 3.37-4.07 (m, 4 H), 2.41-2.65 (m, 1H), 0.77-1.92 (m, 9H).

(1R*,4R*,5S*,6S*)-6-Hydroxy-5-phenylbicyclo[2.2.2]octan-2-one (rac. 9). A 5M aqu. phosphoric acid (930 mL) was added at 20-25 °C to a soln. aldehyde rac. 21 (186 g, 1:1 mixture of diastereomers) in THF (930 mL). The mixture was heated to 80 °C for 5 h. Solvent was removed under reduced pressure at 45 °C. iPrOAc (1300 mL) and water (1300 mL) were added. The layers were separated and the org. layer was washed with water (930 mL). The combined org. extracts were concentrated at 45 °C under reduced pressure to afford rac. 9 as an orange solid which was used in the next step without further purification. Yield: 155 g (crude yield), 101%. LC-MS method 2: 83% a/a, R_t 0.96 min. ¹H NMR (CDCl₃): corresponds to 9. The crude product can be subjected to the crystallization procedure as depicted below to obtain pure rac. 9a as colorless crystalline solid with diastereomeric purity > 99.5%.

(1R*,2S*,3S*,4R*)-6-Oxo-3-phenylbicyclo[2.2.2]octan-2-yl methanesulfonate (rac. 22). Et₃N (221 mL) was added to a soln. of rac. 9 (171 g) in DCM (1200 mL). MsCl (11.6 mL) was added at 10-20 °C. After 1 h, the mixture was concentrated to dryness. The residue was taken up in iPrOAc (1 L) and water (1 L). The layers were separated and the aqu. phase was extracted with iPrOAc (500 mL). The combined org. extracts were concentrated under reduced pressure to yield rac. 22 as a brown oil which was used in the next step without further purification. Yield: 208 g (89 %). LC-MS method 2: 70% a/a, R_t 1.1 min. ¹H NMR (CDCl₃): corresponds to 22.

(1R*,4R*)-5-phenylbicyclo[2.2.2]oct-5-en-2-one (rac. 1). A soln. of rac. 22 (190 g) in DMF (380 mL) was added at r.t. to a suspension of LiBr (56 g) and Li₂CO₃ (48 g) in DMF (570 mL). The resulting mixture was heated to 150 °C for 1 h. Water (1300 mL) and iPrOAc (1300 mL) were added at r.t. and the layers were separated. The organic layer was washed with brine (1300 mL), water (1300 mL) and concentrated to dryness at 50 °C under reduced pressure to yield rac. 1as brown oil. Yield: 117 g (91%). 108 g of this crude product was purified by short-path distillation at 120 °C and 0.001 mbar to yield 47 g (37%) of rac. 1 as yellow oil. LC-MS method 2: 97% a/a, R_t 1.26 min. ¹H NMR (CD₃OD): corresponds to 1.

(R^*) -2-phenyl-2- $((R^*)$ -1,4-dioxaspiro[4.5]decan-7-yl)ethanol (25a) and (R^*) -2-phenyl-2- $((S^*)$ -1,4-dioxaspiro[4.5]decan-7-yl)ethanol (25b).

Analytical reference samples of rac. **25a** and rac. **25b** were obtained from a racemic run by chromatography on silica gel with heptane/EtOAc (8:2) as eluent. The more polar isomer 1 (TLC) was labelled rac. **25a**. The relative configuration is only tentatively assigned based on correlation of R_f values (TLC) and R_t of GC-MS with rac. **24a**/**24b**.

rac. **25b**

Rac. **25a**, colourless oil; TLC: $R_f 0.23$ (toluene/EtOAc 7:3); GC-MS: 98% a/a, $R_t 3.44$ min, $[M-18+1]^+ = 245$; LC-MS method 1: 98% a/a, $[M-61]^+ = 201$; ¹H NMR (CDCl₃): δ 7.16-7.44 (m, 5H), 3.77-4.05 (m, 6H), 2.58-2.73 (m, 1H), 1.88-2.11 (m, 2H), 1.16-1.85 (m, 7H), 0.63-1.03 (m, 1H); ¹³C NMR (CDCl₃): δ 141.1, 128.8, 128.6, 126.8, 109.3, 64.7, 64.4, 64.2, 54.3, 40.1, 37.6, 34.7, 29.6, 23.0.

Rac. **25b**, colourless oil; TLC: $R_f 0.32$ (toluene/EtOAc 7:3); GC-MS: 99% a/a, $R_t 3.41$ min, $[M-18+1]^+ = 245$; LC-MS method 1: 100% a/a, $R_t 1.36$ min, $[M-61]^+ = 201$; ¹H NMR (CDCl₃): δ 7.14-7.41 (m, 5H), 3.72-4.04 (m, 6H), 2.59-2.77 (m, 1H), 0.91-2.12 (m, 10H); ¹³C NMR (CDCl₃): δ 140.9, 128.8, 128.7, 126.8, 109.2, 64.8, 64.2, 64.1, 54.3, 39.3, 37.4, 34.7, 30.0, 23.1.

Cyclization:

Presentation of additional conditions tried for the cyclization of 21 to 9a.

IPC sample preparation:

Withdraw a sample from the reaction mixture, dilute with EtOAc and extracted with aqu. sat. NaHCO₃-soln. (pH 9-10), evaporate the org. phase at r.t. under reduced pressure and weigh in sample for dilution with heptane/isopropanol (1:1, 4 mg/mL) for injection in chiral HPLC.

entry	solvent	acid	temp.	time	rac. 9a ^(a)	rac. 9b ^(a)	rac. 9c ^(a)
1	2 vol. EtOAc	1 eq. 32% HCl	20 °C	2 h	76%	16%	8%
2	2 vol. EtOAc	1 eq. 32% HCl	50 °C	2 h	88%	12%	0%
3	2 vol. EtOAc	1 eq. 1N HCl	20 °C	2 h	46%	27%	27%
4	5 vol. acetone	1.1 eq. 32% HCl	50 °C	7 h	60%	20%	20%
5	2 vol. toluene	1 eq. 32% HCl	20 °C	16 h	61%	34%	5%
6	2 vol. iPrOH	1 eq. 32% HCl	20 °C	16 h	76%	15%	9%
7	2 vol. THF	1 eq. 32% HCl	20 °C	16 h	81%	14%	5%
8	2 vol. TBME	1 eq. 32% HCl	20 °C	16 h	67%	20%	13%
9 ^(b)	2 vol. EtOAc	0.3 eq. 32% HCl	50 °C	18 h	100%	0%	0%
10 ^(c)	2 vol. EtOAc	0.3 eq. 32% HCl	50 °C	18 h	30%	67%	2%
11 ^(d)	2 vol. EtOAc	0.3 eq. 32% HCl	50 °C	18 h	59%	41%	0%

Table 1. Optimization of cyclization conditions (with rac. 21)

(a) 0.5 g scale, ratio of each isomer normalized to the sum of rac. **9a**, rac. **9b**, and rac. **9c** in the reaction mixture, by % a/a (chiral HPLC). (b) Started with pure rac. **9a**. (c) Started with pure rac. **9b**. (d) Started with pure rac. **9c**; d.r. > 99:1.

entry	solvent	temp.	time	9a ^(a)	9b ^(a)	9c ^(a)
1	2 vol. EtOAc	50 °C	2 h	85%	15%	0%
2	5 vol. EtOAc	50 °C	2 h	68%	25%	7%
3	1 vol. EtOAc	50 °C	20 min	78%	13%	9%
4	1 vol. EtOAc	50 °C	100 min	86%	14%	0%
5	1 vol. EtOAc	70 °C	20 min	80%	15%	5%

Table 2. Optimization of cyclization conditions (with enantiopure 21)

(a) 5-45 g scale, 32% HCl (0.3 eq.), ratio of each isomer normalized to the sum of **9a**, **9b**, and **9c** in the reaction mixture, by % a/a (chiral HPLC). (b) Started with pure **##a**.

Elimination:

Presentation of additional conditions tried for the elimination of 22a to 1.

IPC sample preparation:

Withdraw a sample (ca. 5 µL), evaporate to dryness and dissolve residue in 1 mL acetonitril/water (1:1).

entry	base	solvent	temp. ^(c)	IPC % a/a	comments
1	2 eq. DBU	THF	66 °C	0%	No reaction
2	2 eq. DBU	DMF	150 °C	85-90%	Slow conversion at 100 °C
3	2 eq. DBU	Toluene	140 °C	93%	1 h, product separated as oil
4	2 eq. DBU	Diglyme	150 °C	68%	
5	2 eq. DBU	Butyronitrile	120 °C	79%	
6	10 eq. DBU	-	20 °C	40%	40 h, 72% conversion
7	10 eq. DBU	-	100 °C	76%	35 min, aldol by-products
8	10 eq. DBN	-	100 °C	63%	25 min, ring-opened DBN
9	2 eq. MTBD	DMF	150 °C	45%	Many by-products
10	2 eq. TMPDA	DMF	150 °C	78%	
11	2 eq. DABCO	Acetonitrile	85 °C	8%	Slow, many by-products

Table 3. Eliminations in presence of amidine bases with $22a^{(a)(b)}$

(a) 0.1-5 g scale, 5-15 vol. solvent or none, reaction time 2 h, full conversion unless otherwise stated, IPC a/a of desired product **1** (LC-method 1). (b) DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; DBN: 1,5-diazabicyclo[4.3.0]non-5-ene; MTBD: 7-methyl-1,5,7-triazabicyclo[4,4,0]dec-5-ene; TMPDA: N,N,N',N'-tetramethylpropane-1,3-diamine; DABCO: 1,4-diazabicyclo[2.2.2]octane. (c) External temp.

entry	base	solvent	temp. ^(b)	time	IPC % a/a
1	2 eq. Li_2CO_3	NMP or DMF	120 °C	180 min	22-26%
2	2 eq. Li_2CO_3	o-Xylene	100 °C	90 min	8%
3	1.5 eq. Li ₂ CO ₃	DBU	100 °C	25 min	97%
4	1.5 eq. Li ₂ CO ₃	DBU	100 °C	35 min	69%
5	1.5 eq. Li ₂ CO ₃	NMP or DMF	150 °C	30 min	74%
	1 eq. LiBr				
7	1.5 eq. K ₂ CO ₃	DMSO	150 °C	120 min	60%
8	0.3 eq. NaI	Toluene	140 °C	120 min	16%
9	2 eq. NaOMe or NaOtBu	Diglyme	120 °C	60 min	53%
10	3 eq. KOtBu	THF	20 °C	20 min	40%
11	0.6 wt. SiO ₂	DMSO	150 °C	60 min	89%
12	Montmorillonite K-10	Toluene	110 °C	60 min	trace

Table 4. Eliminations in presence of alternative bases with $22a^{(a)}$

(a) 0.1-5 g scale, 5-10 vol. solvent, full conversion, IPC a/a of desired product 1 (LC-method 1). (b) External temp.

entry	solvent	temp. ^(c)	time	IPC % a/a
1	Toluene	110 °C	3 h	13%
2	o-Xylene	150 °C	1 h	10%
3	Chlorobenzene	150 °C	1 h	40%
4	DMPU	150 °C	2 h	87%
5	DMF	150 °C	1 h	79%
6	NMP	150 °C	2 h	92%
7	DMSO	150 °C	2 h	79%
8	Sulfolane	150 °C	1 h	99%
9	No solvent (melt)	150 °C	1 h	26%

Table 5. Eliminations of 22a to 1 in the absence of base^{(a)(b)}

(a) 0.2 g scale, 5-10 vol. solvent, full conversion, IPC a/a of desired product 1 (LC-method 1). (b) DMPU: 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. (c) External temp.

NMR data

¹H NMR (CDCl₃) of crude **12**

(*R**)-Methyl 2-phenyl-2-((*R**)-1,4-dioxaspiro[4.5]decan-7-yl)-acetate (rac. 24a)

¹H NMR (CDCl₃) of rac. 24a

(*R**)-Methyl 2-phenyl-2-((*R**)-1,4-dioxaspiro[4.5]decan-7-yl)-acetate (rac. 24a)

¹³C NMR (CDCl₃) of rac. 24a

¹H NMR (CDCl₃) of crude **25**

2-Phenyl-2-((R)-1,4-dioxaspiro[4.5]decan-7-yl)-acetaldehyde (21)

¹H NMR (CDCl₃) of crude **21** (28.9 g scale with isolation of **21**)

(1R,4R,5S,6S)-6-hydroxy-5-phenylbicyclo[2.2.2]octan-2-one (9a)

¹H NMR (CDCl₃) of **9a**

¹H NMR (D₆ DMSO) of **9a**

 $^{13}\mathrm{C}$ NMR (D₆ DMSO) of **9a**

¹H NMR (CDCl₃) of **22a** (25 g scale with isolation of **22a**)

 ^{13}C NMR (CDCl₃) of **22a** (25 g scale with isolation of **22a**)

 1 H NMR (CDCl₃) of crude **22a**, telescoped into the elimination.

(1R,4R)-5-phenylbicyclo[2.2.2]oct-5-en-2-one (1)

¹H NMR (CDCl₃) of **1**

¹³C NMR (CDCl₃) of $\mathbf{1}$

GC-MS data

Methyl 2-((*R*)-1,4-dioxaspiro[4.5]decan-7-yl)-acetate (12)

GC-MS trace of crude **12**

Methyl 2-phenyl-2-((*R*)-1,4-dioxaspiro[4.5]decan-7-yl)-acetate (24, mixture of diastereoisomers)

GC-MS of crude 24

(R*)-Methyl 2-phenyl-2-((R*)-1,4-dioxaspiro[4.5]decan-7-yl)-acetate (rac. 24a)

GC-MS of 24a

2-Phenyl-2-((R)-1,4-dioxaspiro[4.5]decan-7-yl)-ethanol (25, mixture of diastereoisomers)

GC-MS of crude 25

2-Phenyl-2-((R)-1,4-dioxaspiro[4.5]decan-7-yl)-acetaldehyde (21)

GC trace of crude 21

LC-MS data

(1R,4R,5S,6S)-6-hydroxy-5-phenylbicyclo[2.2.2]octan-2-one (9a)

Sample Name: ELN21-1593_crystl#1 ====================================	
DAD1 A, Sig=210,8 Ref=off	
Peak RetTime Height Area # [min] [mAu] [mAu*s] 	Area [%] 100.000
DAD1 B, Sig=220,8 Ref=off Peak RetTime Height Area # [min] [mAu] [mAu*s]	Area [%]
	100.000
DAD1 C, Sig=250,8 Ref=off	
Peak RetTime Height Area # [min] [mAu] [mAu*s] 	Area [%] 100.000

LC-MS (LC-MS method 1) of 9a

(1R,2S,3S,4R)-6-oxo-3-phenylbicyclo[2.2.2]octan-2-yl methanesulfonate (22a)

```
Injection Date : Mon, 15. Mar. 2010
                                                        Seq Line
                                                                                 0
                                                                     :
                                                                         P1-D-04
Sample Name : ELN021-1643 cr1#1 mesy
                                                       Location :
                                                        Inj. No. :
Acq Operator
                                                                                 0
                 : inauen
                                                        Inj. Vol. :
                                                                              2 µl
Acq. Method : D:\METHODS\PRMETHOD1.M
Analysis Method : D:\METHODS\PRMETHOD1.M
PRMethod1, 3 min
Kinetex C18, 2.6 micron, 2.1 x 50 mm, Flow 1 ml, T = 40°C
Eluent A: Water, 0.08 % TFA
Eluent B: Acetonitrile, 0.012% TFA
Gradient:
2.0 min 95% B
2.8 min 95% B
3.0 min 5% B
      DAD1 A, Sig=210,4 Ref=off (ELN021-1643_CR1#1_MESY1-150310-00524.D)
 mAU E
                                            416
 1500-
                                               1.518
 1000 -
                                                        837
  500 -
    0
                                                                           2.5
                   0.5
                                               1.5
                                                                                       min
      DAD1 B, Sig=220,8 Ref=off (ELN021-1643_CR1#1_MESY1-150310-00524.D)
 mAU-
                                            1.416
  750 -
                                              1.518
  500 -
                                                        838
  250 -
    0 -
                   0.5
                                               1.5
                                                                           2.5
                                                                                       min
      DAD1 C, Sig=250,8 Ref=off (ELN021-1643_CR1#1_MESY1-150310-00524.D)
 mAU 3
                                            1.416
   50 -
   0-
```

Sample Name: ELN021-1643_crl#1_mesy						
DAD1 A,	Sig=210,4	Ref=off				
Peak	RetTime	Height	Area	Area		
#	[min] -	[mAu] ·	[mAu*s] -	[%] 		
1	1.416	2240.750	2508.0871	80.9251		
1 2	1.518	735.384	39 4471	17.835		
1 31	1.03/1	55.5691	30.44/	1.2411		
DAD1 B,	Sig=220,8	Ref=off				
Peak	RetTime	Height	Area	Area		
Peak #	RetTime [min]	Height [mAu]	Area [mAu*s]	Area [%]		
Peak # -	RetTime [min] -	Height [mAu] ·	Area [mAu*s] -	Area [%] 		
Peak # - 1	RetTime [min] - 1.416	Height [mAu] - 1086.155	Area [mAu*s] - 1004.695	Area [%] 87.377		
Peak # - 1 2	RetTime [min] 1.416 1.518	Height [mAu] 	Area [mAu*s] 	Area [%] 87.377 11.250		
Peak # - 1 2 3	RetTime [min] - 1.416 1.518 1.838	Height [mAu] 1086.155 167.914 21.139	Area [mAu*s] - 1004.695 129.353 15.788	Area [%] 87.377 11.250 1.373		
Peak # - 1 2 3	RetTime [min] 1.416 1.518 1.838	Height [mAu] 1086.155 167.914 21.139	Area [mAu*s] 1004.695 129.353 15.788	Area [%] 87.377 11.250 1.373		
Peak # - 1 2 3 DAD1 C,	RetTime [min] 	Height [mAu] 1086.155 167.914 21.139 Ref=off	Area [mAu*s] - 1004.695 129.353 15.788	Area [%] 87.377 11.250 1.373		
Peak # - 1 2 3 DAD1 C,	RetTime [min] 	Height [mAu] 1086.155 167.914 21.139 Ref=off	Area [mAu*s] - 1004.695 129.353 15.788	Area [%] 87.377 11.250 1.373		
Peak # - 1 2 3 DAD1 C, Peak	RetTime [min] 	Height [mAu] 1086.155 167.914 21.139 Ref=off Height	Area [mAu*s] 1004.695 129.353 15.788 Area	Area [%] 87.377 11.250 1.373 Area		
Peak # - 1 2 3 DAD1 C, Peak #	RetTime [min] 	Height [mAu] 1086.155 167.914 21.139 Ref=off Height [mAu]	Area [mAu*s] 1004.695 129.353 15.788 Area [mAu*s]	Area [%] 87.377 11.250 1.373 Area [%]		
Peak # - 1 2 3 DAD1 C, Peak # -	RetTime [min] 	Height [mAu] 1086.155 167.914 21.139 Ref=off Height [mAu]	Area [mAu*s] 1004.695 129.353 15.788 Area [mAu*s]	Area [%] 87.377 11.250 1.373 Area [%]		

LC-MS (LC-MS method 1) of crude **22a**, toluene (R_t 1.518 min)

(1R,4R)-5-phenylbicyclo[2.2.2]oct-5-en-2-one (1)

```
Injection Date : Mon, 22. Mar. 2010
                                                     Seq Line :
                                                                             0
Sample Name : ELN021-1634_crystl#1
                                                     Location :
                                                                    P2-A-01
               : inauen
Acq Operator
                                                     Inj. No. :
                                                                             0
                                                     Inj. Vol. :
                                                                          2 µl
Acq. Method : D:\METHODS\PRMETHOD1.M
Analysis Method : D:\METHODS\PRMETHOD1.M
PRMethodl, 3 min
Kinetex C18, 2.6 micron, 2.1 x 50 mm, Flow 1 ml, T = 40°C
Eluent A: Water, 0.08 % TFA
Eluent B: Acetonitrile, 0.012% TFA
Gradient:
2.0 min 95% B
2.8 min 95% B
3.0 min 5% B
      DAD1 A, Sig=210,4 Ref=off (ELN021-1634_CRYST1#11-220310-00607.D)
 mAU 🕇
                                              200
 2000-
 1000-
    0-
                                             1.5
                  0.5
                                                                       2.5
      DAD1 B, Sig=220,8 Ref=off (ELN021-1634_CRYST1#11-220310-00607.D)
 mAU F
                                              566
 2000-
 1000-
    0
      DAD1 C, Sig=250,8 Ref=off (ELN021-1634_CRYST1#11-220310-00607.D)
 mAU _
                                              566
 2000-
 1000
    0-
                  0.5
                                             1.5
                                                                       2'5
```

```
Sample Name: LLNU21-1034_Crystl#1
-----
  DAD1 A, Sig=210,4 Ref=off
  |Peak | RetTime | Height | Area | Area |
  | # | [min] | [mAu] | [mAu*s] | [%] |
  |-----|------|------|------|
  | 1| 1.566| 3045.278| 2727.494| 100.000|
  DAD1 B, Sig=220,8 Ref=off
  |Peak | RetTime | Height | Area | Area |
| ‡ | [min] | [mAu] | [mAu*s] | [%] |
        -----|-----|-----|
    ----
  1-
  | 1| 1.566| 2804.972| 2207.815| 100.000|
  DAD1 C, Sig=250,8 Ref=off
  |Peak | RetTime | Height | Area | Area |
  | 1| 1.566| 3421.230| 2930.600| 100.000|
```

LC-MS (LC-MS method 1) of 1

(1R,4R,5S,6S)-6-hydroxy-5-phenylbicyclo[2.2.2]octan-2-one (9a)

54044					
5481dce/-ee63-11	de-bf8b-0022	2191d883c			
ELN021-1593.1 cm	vst 1#1			Date	: 21.12.09
4					
CHIRALLC02					
ELN021-1593					
Data\CHIRALLC02	/vogelsr\ger	nessene Pr	oben\T-Chanr	nel	
5		Comment:	5.0mg/ml Her	otane:2-Prop	anol 1:1
default					
60.0 %	Heptane				
40.0 %	2-Propano	ol			
0.800 ml/min					
ChiralPak AS-H 4.	6 x 250 mm,	5um			
ASH0CE-NA013					
25.0 °C					
210					
	ELN021-159	(3.1 cryst 1#1			UV VIS 1
				v	VE:210 nm
					min
25 38	50	63	75 88	100	120
Ret.Time K'	Rel.Area	Area	Resolution	Asymmetry	Plates
UV_VIS_1UV_VIS	_1UV_VIS_1	UV_VIS_1	UV_VIS_1	UV_VIS_1	UV_VIS
min	%	mAU*min			
14.6 2.03	100.0	463.665	n.a.	1.2	5306.0
	100.0	463.7			
	ELN021-1593.1 cry 4 CHIRALLC02 ELN021-1593 Data\CHIRALLC02 5 default 60.0 % 40.0 % 0.800 ml/min ChiralPak AS-H 4. ASH0CE-NA013 25.0 °C 210 210 25 38 Ret.Time K' UV_VIS_1UV_VIS min 14.6 2.03	ELN021-1593.1 cryst 1#1 4 CHIRALLC02 ELN021-1593 Data\CHIRALLC02\vogelsr\ger 5 default 60.0 % Heptane 40.0 % 2-Propand 0.800 ml/min ChiralPak AS-H 4.6 x 250 mm, ASH0CE-NA013 25.0 °C 210 ELN021-159 ELN021-159 Ret.Time K' Rel.Area UV_VIS_1UV_VIS_1UV_VIS_1 min % 14.6 2.03 100.0 100.0	ELN021-1593.1 cryst 1#1 4 CHIRALLC02 ELN021-1593 Data\CHIRALLC02\vogelsr\gemessene Pr 5 Comment: default 60.0 % Heptane 40.0 % 2-Propanol 0.800 ml/min ChiralPak AS-H 4.6 x 250 mm, 5um ASH0CE-NA013 25.0 °C 210 ELN021-1593.1 cryst 1#1 ELN021-1593.1 cryst 1#1 25 38 50 63 Ret.Time K' Rel.Area Area UV_VIS_1UV_VIS_1UV_VIS_1 UV_VIS_1 min % mAU*min 14.6 2.03 100.0 463.665 100.0 463.7	ELN021-1593.1 cryst 1#1 4 CHIRALLC02 ELN021-1593 Data\CHIRALLC02\vogelsr\gemessene Proben\T-Chanr 5 Comment: 5.0mg/ml Hep default 60.0 % Heptane 40.0 % 2-Propanol 0.800 ml/min ChiralPak AS-H 4.6 x 250 mm, 5um ASH0CE-NA013 25.0 °C 210 ELN021-1593.1 cryst 1#1 ELN021-1593.1 cryst 1#1 ELN021-1593.1 cryst 1#1	ELN021-1593.1 cryst 1#1 4 CHIRALLC02 ELN021-1593 Data/CHIRALLC02/vogelsr\gemessene Proben\T-Channel 5 Comment: 5.0mg/ml Heptane:2-Prop default 60.0 % Heptane 40.0 % 2-Propanol 0.800 ml/min ChiralPak AS-H 4.6 x 250 mm, 5um ASH0CE-NA013 25.0 °C 210 ELN021-1503.1 cryst 1#1 V K Ret.Time K' Rel.Area Area Resolution Asymmetry UV_VIS_1 UV_VIS_1 UV_VIS_1 UV_VIS_1 UV_VIS_1 min % mAU*min 14.6 2.03 100.0 463.665 n.a. 1.2 100.0 463.76

Chiral HPLC data of **9a**

Sample ID:	d93a0a8a-c46b-11de-bf8b-0022191d883c						
Sample Name:	ELN021-1503.4+	Date: 29.10.09					
Sample Number:	9						
Time Base:	CHIRALLC02						
Sequence Name:	ELN021-						
Sequence Dir:	Data\CHIRALLC02\vogelsr\gemessene Proben\T-Channel						
Inject Volume [ul]:	5	Comment: 15.0	mg/ml Heptan:2-Propanol 1:1				
Quantif. Method:	default						
Eluent A:	60.0 %	Heptane					
Eluent B:	40.0 %	2-Propanol					
Flow:	0.800 ml/m	in					
Column:	ChiralPak AS-H 4.6 x 250 mm, 5um						
Serial number:	ASH0CE-NA013	-					
Temperature:	25.0 °C						
Detection [nm]:	210						

Chiral HPLC data of a mixture of rac. **9a** (R_t 11.1, 12.7 min), rac. **9b** (R_t 9.8, 13.9 min), **and** rac. **9c** (R_t 25.3, 69.3 min).

(1R,4R)-5-phenylbicyclo[2.2.2]oct-5-en-2-one (1)

Chiral HPLC data of 1

Chiral HPLC data of a mixture of 1 and ent. 1 (obtained via chiral separation of rac. 1)

DSC data

Conditions: DSC822^e/400 instrument and HSS7 sensor from Mettler-Toledo. The sample is weighed in a high pressure gold plated crucible (ref M20, inner volume 20 μ L, sample occupies ca. 25% of total volume, Swiss Safety Institute, Basel) which is closed with a flow of 15 mL/min of N₂ during the experiment. The scan goes from 20 °C to 400 °C at a rate of 4 °C/min. The STARe software enables the interpretation of the obtained curve (no baseline correction).

Figure 1. DSC traces of:
(a) 22a
(b) 22a 2,4,6-collidine
(c) 22a in NMP
(d) rac. 22a in DMSO
(e) NMP
(f) DMSO
(g) Compound 1 ((*R*,*R*)-phenylketone)

Neat **22a** displayed a left limit for exothermic event at 124 °C with – 549 KJ/Kg. The exothermic event in 2,4,6-collidine starting at 150 °C with peak at 177 °C (- 158 KJ/Kg) might represent the desired reaction; the energy mirroring the dilution factor for this measurement, *i.e.* ca. 4 fold decrease in Δ H by a dilution with 4 vol. In NMP, two kinetic events overlap, starting at 100 °C (- 169 KJ/Kg) whereas the DSC trace of the DMSO soln. indicates overlap of decomposition of the solvent, with a left limit of 176 °C and Δ H = -739 KJ/Kg.

(b) **22a** in 2,4,6-collidine

(c) 22a in NMP

(d) rac. 22a in DMSO

(e) NMP

(f) DMSO

(g) Compound **1** ((*R*,*R*)-phenylketone)

X-ray data

Figure 2. X-ray structure of rac. **24a** (major racemic *like*-isomer)

Crystal structure information of **24a**:

ELN021-1438.4

ACT-378546 in P-1 09-05-20 Formula C17 H22 O4					
Crystal Class a b c Volume 70	Triclinic 5.6959(3) 10.9414(7) 13.2893(8) 68.62(8)	Space Group P -1 alpha beta gamma Z	70.760(3) 86.370(3) 79.409(3) 2		
Radiation type Dx Mu Size Colour ? Cell from Standard Interval Diffractometer typ Absorption type Reflections measur Rint Hmin, Hmax Kmin, Kmax Lmin, Lmax	Mo K\a 1.25 0.088 0.00x 0.00x 0.00 0 Reflections 0 0 Reflections 0 0 Reflections 0 0 Reflections 0 0 0 0 0 0 0 0 0 0 0 0 0	Wavelength 0. Mr Temperature (K) Shape ? Theta range Standard Count Scan type 2THET Transmission range Independent reflect Theta max	710730 290.36 293 0 to 0 0 TA/OMEG 1.00 1.00 tions 6569 34.76		
Refinement on F R-factor Delta Rho min Reflections used Number of paramete	0.051 -0.64 5564 ers 190	Weighted R-factor Max shift/su Delta Rho max sigma(I) limit Goodness of fit	0.055 0.0009 0.54 3.00 1.070		

Figure 3. X-ray structure of rac. 9a (major isomer)

Crystal structure information of rac. 9a:

Crystal structure information: eln021_1503.4 in P2(1)/n 09-10-12 Formula C14 H16 O2 Crystal Class Monoclinic 21/n 1 Space Group P 1 alpha 90 6.4126(5)а 6.4794(5) b beta 92.235(4)gamma 26.6854(18)90 C 1107.93(14) volume 4 7 Radiation type Wavelength 0.710730 Mo K\a DX 1.30 Mr 216.28 Mu 0.085 Temperature (K) 293 Size 0.00x 0.00x 0.00 2 Colour Shape 2 cell from 0 Reflections Theta range 0 to 0 Standard Interval Standard Count 0 0 Diffractometer type UNKNOWN Scan type 2THETA/OMEG Transmission range 1.00 1.00 Absorption type none 19296 Reflections measured Independent reflections 3698 Rint 0.0005 31.51 Theta max Hmin, Hmax Kmin, Kmax 9 -9 9 -9 Lmin, Lmax -39 39 Refinement on F R-factor 0.040 Weighted R-factor 0.044 Max shift/su 0.0004 Delta Rho max sigma(I) limit Delta Rho min -0.21 0.40 Reflections used 2741 3.00 Number of parameters 145 Goodness of fit 1.117

Figure 4. X-ray structure of rac. 9b

Crystal structure information rac. **9b**:

```
Crystal structure information:
eln021_1503_9
                 ACT-453815
                               in P2(1) 09-09-24
Formula C14 H16 O2
Crystal Class
                   Monoclinic
                                                        1
                                                              21
                                      Space Group P
                                                                   1
a
                   6.2170(4)
                                      alpha
                                                             90
b
                   8.8214(5)
                                                             101.591(3)
                                      beta
С
                   10.2464(6)
                                      gamma
                                                             90
volume
                                                             2
                 550.48(6)
                                      ź
                                                         0.710730
Radiation type
                   мо к\а
                                      Wavelength
                                                              216.28
DX
                     1.30
                                      Mr
Mu
                     0.086
                                      Temperature (K)
                                                               293
Size
                   0.00x 0.00x 0.00
Colour
           ?
                                      Shape
                                                 ?
                                      Theta range
Cell from
                    0 Reflections
                                                              0 to
                                                                      0
Standard Interval
                           0
                                      Standard Count
                                                                 0
Diffractometer type UNKNOWN
                                                     2THETA/OMEG
                                      Scan type
Absorption type
                                      Transmission range
                                                           1.00 1.00
                     none
Reflections measured
                          10045
                                      Independent reflections
                                                                  1784
                                                                 30.53
Rint
                         0.0003
                                      Theta max
Hmin, Hmax
                                   8
                           -8
Kmin, Kmax
Lmin, Lmax
                                 12
                          -12
                          -14
                                 14
Refinement on F
                          0.031
                                      Weighted R-factor
R-factor
                                                                 0.037
                                      Max shift/su
                                                                0.0003
                                      Delta Rho max
sigma(I) limit
Goodness of fit
Delta Rho min
                          -0.16
                                                                  0.29
Reflections used
                                                                   3.00
                           1599
Number of parameters
                            145
                                                                 1.101
```

Figure 5. X-ray structure of rac. 9c

Crystal structure information rac. 9c:

Crystal structure information:					
eln021_1503_11 ACT-453814	in P	P2(1)/n 09-09-24			
Formula C14 H16 O2 Crystal Class Monoclinic a 8.6687(6) b 6.3812(5) c 20.5439(15) Volume 1119.28(14) Radiation type Mo K\a Dx 1.28 Mu 0.084 Size 0.00x 0.00x Colour ? Cell from 0 Reflection Standard Interval 0 Diffractometer type UNKNOWN Absorption type none Reflections measured 63732 Rint 0.0005 Hmin, Hmax -12 Kmin, Kmax -9 Lmin, Lmax -29	0.00 ns 12 9 29	Space Group P 1 alpha beta gamma Z Wavelength 0.71 Mr Temperature (K) Shape ? Theta range Standard Count Scan type 2THETA, Transmission range Independent reflectio Theta max	21/n 1 90 99.963(4) 90 4 10730 216.28 293 0 to 0 0 /OMEG 1.00 1.00 ons 3412 30.50		
Refinement on F R-factor 0.040		Weighted R-factor	0.045		
Delta Rho min -0.20 Reflections used 3173 Number of parameters 145		Delta Rho max sigma(I) limit Goodness of fit	0.39 3.00 1.098		

Figure 6. X-ray structure of **1**

Crystal structure information of **1**:

eln021_1627_3_123k_0m ACT-291739 in P2(1)2(1)2(1) 10-04-16					
Formula CI4 HI4 OI Crystal Class Orth a 8.49 b 10.2 c 12.1 Volume 1055.3	norhombic 901(3) 2635(4) 116(5) 38(7)		Space Group P alpha beta gamma Z	21 21 90 90 90 4	21
Radiation type Mo Mo Dx 1. Mu 0.0	(\a 25)77		Wavelength Mr Temperature (K)	0.71073 19 2	0 8.26 93
Size 0.00 Colour cl Cell from 0 F)x 0.00x (Reflection	0.00 ns	Shape ? Theta range	0	to O
Standard Interval Diffractometer type UN Absorption type no Reflections measured Rint Hmin, Hmax Kmin, Kmax Lmin, Lmax	0 NKNOWN 11265 0.0003 -13 -15 -18	11 11 14	Standard Count Scan type 2T Transmission ran Independent refl Theta max	HETA/OME ge 1.0 ections	0 G 0 1.00 2292 33.13
Refinement on F R-factor Delta Rho min Reflections used Number of parameters	0.038 -0.31 1799 136		Weighted R-facto Max shift/su Delta Rho max sigma(I) limit Goodness of fit	r	0.040 0.0003 0.27 3.00 1.129