Remarkable Stereoselectivity in Intramolecular Borono-Mannich Reactions : Synthesis of Conduramines

Stéphanie Norsikian, ${ }^{\text {a } *}$ Jean-François Soulé, ${ }^{\text {a }}$ Alexandre Cannillo, ${ }^{\text {a }}$ Régis Guillot, ${ }^{\text {b,c }}$ Marie-Elise Tran Huu Dau, ${ }^{\text {a }}$ and Jean-Marie Beau ${ }^{\text {a,b,c }}$ *
${ }^{a}$ Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS Avenue de la Terrasse, F91198 Gif-sur-Yvette (France)
Tel: (+33) 1-6982-3023
${ }^{\text {b }}$ Université Paris Sud, Institut de Chimie Moléculaire et des Matériaux
F-91405 Orsay (France) and CNRS, F-91405 Orsay (France)
Fax: (+33) 1-6985-3715
jmbeau@icmo.u-psud.ff, stephanie.norsikian@icsn.cnrs-sif.fr

Supporting Information

I. General Experimental S1
II. Experimental and Spectral data S2
III. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR S16

I. General Experimental

General. Unless otherwise stated, all reactions were carried out under argon. Tetrahydrofuran was distilled under Argon on sodium-benzophenone. Dichloromethane was distilled under Argon on CaH_{2}. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel $60 \mathrm{~F}_{254}$ plates and visualized under UV (254 nm) and/or by staining with KMNO_{4} or Vanillin or Ninhydrin. Silica gel SDS 60 ACC $35-70 \mathrm{~mm}$ was used for column chromatography. NMR spectra were recorded with AM 300, AVANCE 300 and AVANCE 500 Brüker spectrometers. Chemical shifts are given in parts per million, referenced to the solvent peak of CDCl_{3}, defined at $77.2 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR) and $7.24 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$. Melting points (uncorrected) were determined with the aid of a Büchi B-540 apparatus. IR spectra were recorded on a Perkin-Elmer Spectrum BX instrument with an FT-IR system. Optical rotations were measured on a JASCO-810 polarimeter using a cell of 1 dm -length path.

II. Experimental and Spectral data

(3R,4R,5R)-3,4-(i-propylidenedioxy)-6-(triphenylmethoxy)hex-1-yne 2:
To a solution of $1(9.2 \mathrm{~g}, 21.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.8 \mathrm{~g}, 63.8$ mmol, 3 equiv.) in distilled $\mathrm{MeOH}(200 \mathrm{~mL})$ at $55^{\circ} \mathrm{C}$, was added with a seringe pump a solution of dimethyl (1-diazo-2oxopropyl)phosphonate ($10.2 \mathrm{~g}, 53.2 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{MeOH}(40 \mathrm{~mL}$) for 8 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, the solvent was evaporated. The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic layers were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 100/0 to 85/15) to afford desired compound $2(7.9 \mathrm{~g}, 87 \%)$: $\left[\alpha_{\mathbf{D}}{ }^{\mathbf{2 5}}+6.3\left(c 1, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\text {max }}: 3492,3285,3086\right.$, 3058, 3024, 2988, 2933, 2881, 1597, 1490, 1448, 1381, 1372, 1212, 1158, 1056, $854 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 7.54-7.19\left(\mathrm{~m}, 15 \mathrm{H}, H_{\mathrm{ar}}\right), 4.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,3} 2\right.$ and $J_{3,4} 6 \mathrm{~Hz}$, $\mathrm{H}-3), 4.23\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=J_{4,3} 6 \mathrm{~Hz}, \mathrm{H}-4\right), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.36\left(\mathrm{~d}, 2 \mathrm{H}, J_{5,6} 5 \mathrm{~Hz}, \mathrm{H}-6\right)$, $\left.2.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,3} 2 \mathrm{~Hz}, \mathrm{H}-1\right), 2.46(\mathrm{~d}, 1 \mathrm{H}, J 4 \mathrm{~Hz}, \mathrm{OH}), 1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right), 1.41(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 143.7\left(C_{\mathrm{ar}}\right), 128.7\left(C_{\mathrm{ar}}\right), 127.9\left(C_{\mathrm{ar}}\right), 127.2$ $\left(C_{\text {ar }}\right), 110.9\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 87.1\left(\mathrm{CPh}_{3}\right), 82.0(\mathrm{C}-4), 81.9(\mathrm{C}-2), 74.4(\mathrm{C}-1), 71.0(\mathrm{C}-5), 67.0(\mathrm{C}-3) \text {, }}\right.$ $64.4(\mathrm{C}-6), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;$ ESIMS: $m / z=451.2\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=451.1873 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$ requires 451.1885.

(3R,4S,5R)-5-(t-butyldimethylsilyloxy)-3,4-(i-propylidenedioxy)-6-(triphenylmethoxy)hex-1yne 2as:
Imidazole ($1.42 \mathrm{~g}, 21.00 \mathrm{mmol}, 3.00$ equiv), and $\mathrm{TBSCl}(1.60 \mathrm{~g}, 10.50 \mathrm{mmol}, 1.50$ equiv) were added to a solution of alcohol $2(2.95 \mathrm{~g}, 7.10 \mathrm{mmol}, 1.00$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the resulting mixture was stirred for 72 hours at room temperature. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 100:0 to 95:5) to afford desired compound 2as as a colorless oil (3.65 g, 95\%): $[\alpha]_{\mathrm{D}}{ }^{25}$ $+8.4\left(c 1, \mathrm{CHCl}_{3}\right) ; \nu_{\text {max }}: 3291,2356,1597,1490,1471,1448,1380,1371,1251,1211,1141$, 1071, 832, 775, $808 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 7.20-7.25\left(\mathrm{~m}, 15 \mathrm{H}, H_{\mathrm{ar}}\right.$), $4.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,3} 2\right.$ and $\left.J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-3\right), 4.39\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5} 3\right.$ and $\left.J_{4,3} 7 \mathrm{~Hz}, \mathrm{H}-4\right), 4.02-3.95(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5), 3.23-3.08$ (m, 2H, H-6), 2.33 (d, 1H, $J_{1,3} 2 \mathrm{~Hz}, \mathrm{H}-1$), 1.47 (s, 3H, C($\left.\mathrm{CH}_{3}\right)_{2}$), 1.37 (s, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 144.1\left(C_{\mathrm{ar}}\right), 129.0\left(C_{\mathrm{ar}}\right), 127.9\left(C_{\mathrm{ar}}\right), 121.2\left(C_{\mathrm{ar}}\right), 110.3\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$, $87.3\left(\mathrm{CPh}_{3}\right), 82.8(\mathrm{C}-4), 82.6(\mathrm{C}-2), 74.5(\mathrm{C}-1), 70.9(\mathrm{C}-5), 65.4(\mathrm{C}-3), 65.3(\mathrm{C}-6), 26.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.2\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right)$; ESIMS: $m / z=$ $565\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=565.2763 . \mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{NaSi}$ requires 565.2750; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$: C, 75.24 ; H, 7.80; O, 11.79; Si, 5.17. Found: C, 74.37; H, 7.94.
(2R,3S,4R)-2-(t-butyldimethylsilyloxy)-3,4-(i-propylidenedioxy)-hex-5-ynyl-1-ol 3a:
Compound 3as ($2.80 \mathrm{~g}, 5.16 \mathrm{mmol}, 1.00$ equiv), $\mathrm{FeCl}_{3}(0.28 \mathrm{~g}, 1.72 \mathrm{mmol}, 10 \% \mathrm{wt}) \mathrm{in}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ was stirred for 20 minutes at $0^{\circ} \mathrm{C}$. After addition of a saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 85:15) to afford desired compound $3 \mathbf{3 a}$ as a white solid ($1.31 \mathrm{~g}, 85 \%$): $\mathbf{m p} 42-43^{\circ} \mathrm{C} ;[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+16.5$ (c $1, \mathrm{CHCl}_{3}$); $\boldsymbol{v}_{\text {max }}$: 3458, 3308, 2359, 2113, 1471, 1462, 1382, 1372, 1252, 1210, 1141, $1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.49\left(\mathrm{dd}, J_{4,6} 2\right.$ and $\left.J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-4\right), 4.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3} 5\right.$ and $J_{3,4} 7$ $\mathrm{Hz}, \mathrm{H}-3), 3.75\left(\mathrm{q}, 1 \mathrm{H}, J_{1,2}=J_{2,3} 5 \mathrm{~Hz}, \mathrm{H}-2\right), 3.49\left(\mathrm{~d}, 2 \mathrm{H}, J_{1,2} 5 \mathrm{~Hz}, \mathrm{H}-1\right), 2.41\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,6} 2\right.$ $\mathrm{Hz}, \mathrm{H}-6), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.01(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), $0.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 110.6,82.2,74.3,72.6$, 66.9, 64.3, 26.8, 25.8, 25.7, 18.0, -4.4, -4.6; ESIMS: $m / z=323\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=323.1660 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NaSi}$ requires 323.1655; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$: C, 59.96; H, 9.39; O, 21.30; Si, 9.35. Found: C, 59.98; H, 9.39.

(3R,4R,5R)-5-(p-nitrobenzoate)-3,4-(i-propylidenedioxy)-6-(triphenylmethoxy)hex-1yne 2bs:

To a solution of the alcohol 2 ($56 \mathrm{mg}, 0.131 \mathrm{mmol}, 1.00$ equiv) in pyridine (1 mL) was added p-nitrobenzoyl chloride ($242 \mathrm{mg}, 1.3 \mathrm{mmol}, 10$ equiv) and the resulting mixture was stirred for 72 hours at room temperature. After removal of the solvent in vacuo, the residue was diluted with EtOAc (15 mL) and successively washed with a saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 mL) and brine (10 mL). The organic layer wads dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 100:0 to $90: 10$) to afford the desired compound $\mathbf{2 b s}$ as an amorphous solid ($58 \mathrm{mg}, 77 \%$): $[\alpha]_{\mathbf{D}}{ }^{25}+6.1\left(c 1, \mathrm{CHCl}_{3}\right) ; \boldsymbol{v}_{\text {max }}: 3290,2990,1728,1608,1528,1490,1448,1268,1215,1099$, 1055, $750 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 8.35\left(\mathrm{~d}, 2 \mathrm{H}, J 9 \mathrm{~Hz}, H_{\mathrm{ar}}\right), 8.27(\mathrm{~d}, 2 \mathrm{H}$, $\left.J 9 \mathrm{~Hz}, H_{\mathrm{ar}}\right), 7.49-7.41\left(\mathrm{~m}, 6 \mathrm{H}, H_{\mathrm{ar}}\right), 7.33-7.21\left(\mathrm{~m}, 9 \mathrm{H}, H_{\mathrm{ar}}\right), 5.55\left(\mathrm{q}, 1 \mathrm{H}, J_{5,6}=J_{5,4} 5 \mathrm{~Hz}, \mathrm{H}-5\right)$, $4.75\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,1} 2\right.$ and $\left.J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-3\right), 4.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5} 5\right.$ and $\left.J_{4,3} 7 \mathrm{~Hz}, \mathrm{H}-4\right), 3.52(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{6,5} 5 \mathrm{~Hz}, \mathrm{H}-6\right), 2.48\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,3} 2 \mathrm{~Hz}, \mathrm{H}-1\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 163.8(C O), 150.7\left(C q_{\mathrm{ar}}\right), 143.5\left(C q_{\mathrm{ar}}\right), 135.3\left(C q_{\mathrm{ar}}\right), 130.9$ $\left(C_{\text {ar }}\right), 128.6\left(C_{\text {ar }}\right), 127.9\left(C_{\text {ar }}\right), 127.8\left(C_{\mathrm{ar}}\right), 127.2\left(C_{\mathrm{ar}}\right), 123.6\left(C_{\mathrm{ar}}\right), 111.3\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 87.1$ $\left(\mathrm{CPh}_{3}\right), 81.0(\mathrm{C}-2), 80.2(\mathrm{C}-4), 75.0(\mathrm{C}-1), 73.7(\mathrm{C}-5), 67.4(\mathrm{C}-3), 62.5(\mathrm{C}-6), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ESIMS: $m / z=600.2\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=600.2001$. $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Na}$ requires 600.1998; Anal. Calcd for $\mathrm{C} 35 \mathrm{H} 31 \mathrm{NO}_{7}$: C, $72.78 ; \mathrm{H}, 5.41 ; \mathrm{N}, 2.42$; O, 19.39. Found: C, 72.70; H, 5.58; N, 2.18.

(2R,3S,4R)-2-(p-nitrobenzoate)-3,4-(i-propylidenedioxy)-hex-5-ynyl-1-ol 3b:

Compound 2as ($45 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.00$ equiv), $\mathrm{FeCl}_{3}(8 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was stirred for 8 h at RT. After addition of a saturated aqueous $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers
were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, $90: 10$ to $70: 30$) to afford desired compound 3a as a white solid ($21 \mathrm{mg}, 80 \%$): mp $121-122{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-5.7\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)$; $\boldsymbol{\nu}_{\text {max }}: 3588$, 3227, 2918, 2115, 1719, 1609, 1524, 1453, 1348, 1285, 1043, $712 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm}) 8.28\left(\mathrm{~d}, 2 \mathrm{H}, J 9 \mathrm{~Hz}, H_{\mathrm{ar}}\right), 8.22\left(\mathrm{~d}, 2 \mathrm{H}, J 9 \mathrm{~Hz}, H_{\mathrm{ar}}\right), 5.35-5.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2), 4.69\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,6} 2\right.$ and $\left.J_{4,3} 7 \mathrm{~Hz}, \mathrm{H}-4\right), 4.42\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=J_{3,2} 7 \mathrm{~Hz}, \mathrm{H}-3\right), 4.04(\mathrm{dd}$, $1 \mathrm{H}, J_{1,2} 4$ and $\left.J_{1,1}, 12 \mathrm{~Hz}, \mathrm{H}-1\right), 3.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{1^{\prime}, 2} 5\right.$ and $\left.J_{1^{\prime}, 1} 12 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 2.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{6,4} 2\right.$ $\mathrm{Hz}, \mathrm{H}-6), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta(\mathrm{ppm})$ $164.2(C O), 150.8\left(C q_{\text {ar }}\right), 134.9\left(C q_{\text {ar }}\right), 131.0\left(C_{\text {ar }}\right), 123.6\left(C_{\text {ar }}\right), 111.5\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 80.7(\mathrm{C}-5)$, 80.0 (C-3), 75.4 (C-2), 75.1 (C-6), $67.9(\mathrm{C}-4), 62.0(\mathrm{C}-1), 26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ESIMS: $m / z=334.1\left[(\mathrm{M}-\mathrm{H})^{-}\right]$, ESIHRMS: $m / z=334.0941 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{7}$ requires 334.0927; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{7}$: C, 57.31; H, 5.11; N, 4.18; O, 33.40. Found: C, 57.27; H, 5.09; N, 4.19; O, 33.24.

(2S,3S,4R)-2-(t-butyldimethylsilyloxy)-3,4-(i-propylidenedioxy)hex-5-ynyl-1,1dimethylacetal 4:
DMP ($2.33 \mathrm{~g}, 5.50 \mathrm{mmol}$, 1.30 equiv) was added to solution of alcohol $\mathbf{3 a}(1.26 \mathrm{~g}, 4.23 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 2 hours at $0^{\circ} \mathrm{C}$. The homogeneous solution was poured into a saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$. The layers were separated, and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude residue was dissolved in trimethyl orthoformate ($1.85 \mathrm{~mL}, 16.92 \mathrm{mmol}, 4.00$ equiv) and $\mathrm{H}_{2} \mathrm{SO}_{4}\left(11 \mu \mathrm{l}, 0.21 \mathrm{mmol}, 0.05\right.$ equiv) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour and $\mathrm{NaHCO}_{3}(1.42 \mathrm{~g}, 16.92 \mathrm{mmol}, 4.00$ equiv) was added. The mixture was stirred for 30 minutes at room temperature and the solution was filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 80:20) to afford desired compound $\mathbf{4}$ as a colorless oil ($1.49 \mathrm{~g}, 73 \%$) : $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+13.7\left(c \quad 1, \mathrm{CHCl}_{3}\right)$; $\boldsymbol{v}_{\text {max }}$:

3308, 2930, 2358, 1471, 1462, 1380, 1250, 1208, 1157, 1135, 1059, $1001 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.72$ (dd, $1 \mathrm{H}, J_{4,6} 2$ and $J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-4$), 4.32 (dd, $1 \mathrm{H}, J_{2,3} 2$ and $\left.J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-3\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2} 6 \mathrm{~Hz}, \mathrm{H}-1\right), 3.92$ (dd, $1 \mathrm{H}, J_{2,3} 2$ and $J_{1,2} 6 \mathrm{~Hz}, \mathrm{H}-2$), 3.44 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4,6} 2 \mathrm{~Hz}, \mathrm{H}-6\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 109.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 105.9(\mathrm{C}-1), 82.9(\mathrm{C}-5), 81.9(\mathrm{C}-3), 73.8(\mathrm{C}-6)$, $71.8(\mathrm{C}-2), 64.8(\mathrm{C}-3), 56.8\left(\mathrm{OCH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.6$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right) ;$ ESIMS: $m / z=367\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, 100%], ESIHRMS: $m / z=367.1920 . \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{NaSi}$ requires 367.1917; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}$: C, $59.27 \mathrm{H}, 9.36$; O, 23.22; Si, 8.15. Found: C, 59.37; H, 9.31.

(2S,3S,4R,Z)-2-(t-butyldimethylsilyloxy)-6-bromo-3,4-(i-propylidenedioxy)hex-5-enyl-1,1dimethylacetal 5a:
NBS ($140 \mathrm{mg}, 0.78 \mathrm{mmol}, 1.50$ equiv) and $\mathrm{AgNO}_{3}(35 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.40$ equiv) were added to a solution of alkyne $4(180 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.00$ equiv) in acetone (5 mL) and the resulting mixture was stirred for 2 hours at room temperature. The suspension was filtered through a pad of silica gel that was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The combined filtrates were concentrated in vacuo. To a solution of the crude residue in $\mathrm{MeOH}(5 \mathrm{~mL})$, potassium azodicarboxylate ($760 \mathrm{mg}, 3.9 \mathrm{mmol}, 7.5$ equiv) and pyridine ($0.55 \mathrm{~mL}, 6.8 \mathrm{mmol}, 13.00$ equiv) was added acetic acid ($0.25 \mathrm{~mL}, 5.7 \mathrm{mmol}, 11.0$ equiv) over 2 hours with a syringe pump. After stirring for 12 h , the mixture was poured into a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the aqueous layer was extracted with AcOEt ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 98:2 to 96:4) to afford desired compound 5a as a colorless oil ($153 \mathrm{mg}, 69 \%$): $[\alpha]_{\mathbf{D}}{ }^{25}-6.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; $\nu_{\text {max }}$: 2986, 2930, 2856, 1627, 1472, 1462, 1380, 1370, 1249, 1157, 1135, 1057, 999, 835, 776, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.42\left(\mathrm{~d}, 1 \mathrm{H}, J_{6,5} 7.5 \mathrm{~Hz}, \mathrm{H}-6\right), 6.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,4} 8.5\right.$ and $J_{5,6} 7.5 \mathrm{~Hz}, \mathrm{H}-$ 5), $5.04\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=J_{4,5} 8.5 \mathrm{~Hz}, \mathrm{H}-4\right), 4.08\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2} 7 \mathrm{~Hz}, \mathrm{H}-1\right), 4.03\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4} 8.5\right.$ and
$\left.J_{3,2} 2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3} 2\right.$ and $\left.J_{1,2} 7 \mathrm{~Hz}, \mathrm{H}-2\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), $0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 133.3(\mathrm{C}-5), 111.6(\mathrm{C}-6)$, $108.69\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)} 105.6(\mathrm{C}-1), 80.2(\mathrm{C}-3), 72.6(\mathrm{C}-4), 71.0(\mathrm{C}-2), 56.8\left(\mathrm{OCH}_{3}\right), 54.3\left(\mathrm{OCH}_{3}\right)\right.$, $27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),-4.3\left(\mathrm{SiCH}_{3}\right),-4.5}\right.$ $\left(\mathrm{SiCH}_{3}\right) ;$ ESIMS: $m / z=444.2\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right], 449.2\left[(\mathrm{M}+\mathrm{Na})^{+}, 70 \%\right], 450.1\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, 18\%], ESIHRMS: $m / z=447.1178 . \mathrm{C}_{17} \mathrm{H}_{33} \mathrm{BrO}_{5} \mathrm{NaSi}$ requires 447.1179; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{BrO}_{5} \mathrm{Si}: \mathrm{C}, 47.99 \mathrm{H}, 7.82$; Br, 18.78; O, 18.80; Si, 6.60. Found: C, 48.46; H, 7.82.

(2S,3S,4R,Z)-2-(t-butyldimethylsilyloxy)-6-iodo-3,4-(i-propylidenedioxy)hex-5-enyl-1,1dimethylacetal 5b:
Method A: Anhydrous indium trichloride ($600 \mathrm{mg}, 2.71 \mathrm{mmol}, 1.35$ equiv) was placed in a Schlenk tube and heated with a hair dryer in vacuo for 2 minutes. The indium salt was dissolved in THF (6 mL) at $25^{\circ} \mathrm{C}$ under an argon atmosphere. The solution turned to a white suspension upon cooling to $-78{ }^{\circ} \mathrm{C}$. Diisobutylaluminium hydride (1.0 M in hexane, 2.6 mL , $2.61 \mathrm{mmol}, 1.30$ equiv) was then added dropwise to the suspension at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min to prepare dichloroindium hydride. Alkyne 4 ($692 \mathrm{mg}, 2.01 \mathrm{mmol}, 1.00$ equiv) and triethylborane (1.0 M hexane solution, $0.4 \mathrm{~mL}, 0.40 \mathrm{mmol}, 0.20$ equiv) were added in sequence and the resulting mixture was stirred for 2.5 hours at $-78^{\circ} \mathrm{C}$. Iodine $(4.08 \mathrm{~g}, 16.08$ $\mathrm{mmol}, 8.00$ equiv) was added to the reaction mixture. After being stirred for 30 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was poured into a saturated sodium hydrogen carbonate solution. Sodium thiosulfate solution was added to consume the excess of iodine. The aqueous layer was extracted with AcOEt ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel
(heptane-ethyl acetate, 98:2) to afford desired compound $\mathbf{5}$ as a colorless oil ($847 \mathrm{mg}, 90 \%$ for (Z) and $47 \mathrm{mg}, 5 \%$ for (E)).

Method B: NIS ($1.02 \mathrm{~g}, 4.52 \mathrm{mmol}, 1.25$ equiv) and $\mathrm{AgNO}_{3}(67 \mathrm{mg}, 0.39 \mathrm{mmol}, 0.11$ equiv) were added to a solution of alkyne $4(1.25 \mathrm{~g}, 3.62 \mathrm{mmol}, 1.00$ equiv) in THF (36 mL) and the resulting mixture was stirred for 2 hours at room temperature. The suspension was filtered through a pad of silica gel that was carefully rinsed with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The combined filtrates were concentrated in vacuo. To the residue in methanol (40 mL) were added pyridine (2.2 $\mathrm{mL}, 27.43 \mathrm{mmol}, 7.6$ equiv) and potassium azodicarboxylate ($2.86 \mathrm{~g}, 14.71 \mathrm{mmol}, 4.1$ equiv). After addition of acetic acid ($1.1 \mathrm{~mL}, 24.24 \mathrm{mmol}, 6.7$ equiv) over 2 hours with a syringe pump, the mixture was poured into $\mathrm{AcOEt}(30 \mathrm{~mL})$ and a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 98:2) to afford desired compound $\mathbf{5}$ as a colorless oil ($1.61 \mathrm{~g}, 95 \%$): $[\alpha]_{\mathrm{D}}{ }^{25}-5.8$ (c 1, CHCl_{3}); $\boldsymbol{\nu}_{\text {max }}$: 2984, 2927, 2854, 1613, 1470, 1461, 1379, 1370, 1246, 1213, 1189, 1155, 1056, 999, 835, 813, $677 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 6.55\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6} 7.5 \mathrm{~Hz}, \mathrm{H}-6\right), 6.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5} 8.5\right.$ and $J_{5,6} 7.5 \mathrm{~Hz}, \mathrm{H}-$ 5), $4.83\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}\right.$ and $\left.J_{4,5} 8.5 \mathrm{~Hz}, \mathrm{H}-4\right), 4.00-4.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-3), 3.99$ (dd, $1 \mathrm{H}, J_{2,3} 2$ and $\left.J_{1,2} 7 \mathrm{~Hz}, \mathrm{H}-2\right), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 139.3(\mathrm{C}-5), 108.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 105.9(\mathrm{C}-1), 86.3(\mathrm{C}-6), 80.2(\mathrm{C}-3)$, $77.1(\mathrm{C}-4), 71.3(\mathrm{C}-2), 57.1\left(\mathrm{OCH}_{3}\right), 54.4\left(\mathrm{OCH}_{3}\right), 27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.2$
 ESIHRMS: $m / z=495.1028 . \mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{5} \mathrm{NaSi}$ requires 495.1040; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{IO}_{5} \mathrm{Si}$: C, 43.22 H, 7.04; I, 26.86; O, 16.93; Si, 5.94. Found: C, 43.49; H, 6.94.

(2S,3S,4R,Z)-2-(t-butyldimethylsilyloxy)-3,4-(i-propylidenedioxy)-6-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolane)hex-5-enyl-1,1-dimethylacetal 6:

A solution of iodovinyl 5 ($750 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.00$ equiv) and a catalytic amount of bipyridine ($2.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.01$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~mL}\right.$) was cooled to $-95^{\circ} \mathrm{C}$ under argon. $t-\mathrm{BuLi}(2.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, $3.17 \mathrm{mmol}, 2.00$ equiv) was added dropwise, and the solution was stirred for 2 hours at this temperature. Freshly distilled trimethylborate (3.3 mL , $28.57 \mathrm{mmol}, 18.00$ equiv) was then added at $-95^{\circ} \mathrm{C}$. The solution was allowed to warm to 0 ${ }^{\circ} \mathrm{C}$ and was stirred at this temperature for 3 hours. Pinacol ($3.56 \mathrm{~g}, 30.16 \mathrm{mmol}, 19.00$ equiv) and $\mathrm{Na}_{2} \mathrm{SO}_{4}(3.56 \mathrm{~g})$ were then added and the solution was stirred at room temperature for 12 hours. The resulting mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (heptane-ethyl acetate, 80:20) to afford desired compound $\mathbf{6}$ as a colorless oil ($590 \mathrm{mg}, 79 \%$): $[\alpha]_{\mathrm{D}}{ }^{25} 18.6$ (c 1, CHCl_{3}); $\boldsymbol{v}_{\text {max: }}$ 2980, 2929, 2855, 1637, 1426, 1378, 1370, 1336, 1249, 1211, 1142, 835, 756, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) $6.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5} 9\right.$ and $\left.J_{5,6} 13 \mathrm{~Hz}, \mathrm{H}-5\right), 5.55\left(\mathrm{~d}, 1 \mathrm{H}, J_{5,6} 13 \mathrm{~Hz}, \mathrm{H}-6\right), 5.10\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}\right.$ and $\left.J_{4.5} 9 \mathrm{~Hz}, \mathrm{H}-4\right), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.90-3.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-1), 3.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.82\left(\mathrm{~s}, 12 \mathrm{H},\left(\mathrm{B}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 0.079\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}\right.$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 150.8(\mathrm{C}-5), 108.5\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 105.8(\mathrm{C}-1), 83.6$ $\left(\mathrm{B}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 81.0(\mathrm{C}-2$ or $\mathrm{C}-3), 74.3(\mathrm{C}-4), 71.3(\mathrm{C}-2$ or $\mathrm{C}-3), 56.6\left(\mathrm{OCH}_{3}\right), 54.5\left(\mathrm{OCH}_{3}\right)$, $27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.8\left(\mathrm{~B}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right), 18.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, -$3.9\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right)$; ESIMS: $m / z=495\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=$ 495.2919. $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{O}_{7} \mathrm{BNaSi}$ requires 495.2925; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{BO}_{7} \mathrm{Si}$: $\mathrm{C}, 58.47 \mathrm{H}$, 9.60; B, 2.29; O, 23.70; Si, 5.94. Found: C, 58.42; H, 9.59.

(3R,4S,5S,Z)-5-(t-butyldimethylsilyloxy)-6,6-dimethoxy-3,4-(i-propylidenedioxy)hex-1enylboronic acid 7:
To a stirred solution of boronate ester $\mathbf{6}(345 \mathrm{mg}, 0.73 \mathrm{mmol}, 1.00$ equiv) in acetone (25 mL) was added an aqueous solution of $\mathrm{NH}_{4} \mathrm{OAc}(0.1 \mathrm{~N}, 15 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(469 \mathrm{mg}, 2.10 \mathrm{mmol}$, 3.00 equiv). The mixture was stirred at room temperature for 4 days. The acetone was removed in vacuo, the aqueous phase was diluted with aqueous $\mathrm{NaOH}(2 \mathrm{~N}, 10 \mathrm{~mL}$) and washed with a mixture of $\mathrm{Hept} / \mathrm{AcOEt}(9: 1,5 \mathrm{ml})$. After cautious acidification to $\mathrm{pH}=3$ with aqueous $\mathrm{HCI}(2 \mathrm{~N})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to afford crude product 7. $[\alpha]_{\mathbf{D}}{ }^{25}+12.3\left(c 1, \mathrm{CHCl}_{3}\right) ; \nu_{\text {max }}: 3399,2930,2856,1732,1635,1460,1419,1378$, 1251, 1211, 1159, 1057, 1003, 837, 814, $778 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $6.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3} 6\right.$ and $\left.J_{2,1} 14.5 \mathrm{~Hz}, \mathrm{H}-2\right), 5.89\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{B}(\mathrm{OH})_{2}\right), 5.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,3} 1.5 J_{1,2}\right.$ $14.5 \mathrm{~Hz}, \mathrm{H}-1), 4.81$ (ddd, $1 \mathrm{H}, J_{3,1} 1.5, J_{3,2} 6$ and $\left.J_{3,4} 8 \mathrm{~Hz}, \mathrm{H}-3\right), 4.16\left(\mathrm{~d}, 1 \mathrm{H}, J_{6,5} 5 \mathrm{~Hz}, \mathrm{H}-6\right)$, $4.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5} 2\right.$ and $\left.J_{4,3} 8 \mathrm{~Hz}, \mathrm{H}-4\right), 4.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,4} 2\right.$ and $\left.J_{5,6} 5 \mathrm{~Hz}, \mathrm{H}-5\right), 3.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $147.8(\mathrm{C}-2), 109.2\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 106.4(\mathrm{C}-6), 81.1(\mathrm{C}-4$ or $\mathrm{C}-5), 76.0(\mathrm{C}-3), 72.9$ (C-4 or C-5), $57.3\left(\mathrm{OCH}_{3}\right)$, $55.9\left(\mathrm{OCH}_{3}\right)$, $27.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.9$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-3.8\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right)$; ESIMS: $m / z=413\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right]$, ESIHRMS: $m / z=413.2144 . \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{BNaSi}$ requires 413.2143.

(1R,2S,3S,4S)-4-(diallylamino)cyclohex-5-ene-1,2,3-triol 9 :

A solution of boronic acid 7 ($120 \mathrm{mg}, 0.307 \mathrm{mmol}, 1.00$ equiv) in HCl (6 N in THF, 4 mL) was stirred at room temperature for 2 hours. After evaporation and coevaporation with toluene, the residue was dissolved in a mixture of $\mathrm{EtOH} /$ water (4:1, 6 mL) and diallylamine ($95 \mu \mathrm{~L}, 0.769,2.50$ equiv) was added. The solution was stirred at $80^{\circ} \mathrm{C}$ in a sealed flask for 8
days. After removal of volatiles, the residue was purified by flash chromatography on Act I neutral alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$-ammonia, 99:0:1 to $\left.84: 14: 2\right)$ to afford product 9 as yellow oil ($50 \mathrm{mg}, 72 \%$): $[\alpha]_{\mathbf{D}}{ }^{25}-34.2$ (c 1, water); ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($300 \mathrm{MHz}, \mathrm{MeOD}$): 5.99-5.82 (m, 2H, $\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-5\right.$ and H-6), $5.29-5.09\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.10-4.02(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 3.90\left(\mathrm{dd}, J_{3,2} 2.5\right.$ and $\left.J_{3,4} 7 \mathrm{~Hz}, \mathrm{H}-3\right), 3.85\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{2,1} 2.5, \mathrm{H}-2\right), 3.58(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{4,3} 7 \mathrm{~Hz}, \mathrm{H}-4\right), 3.39-3.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.21(\mathrm{dd}, 2 \mathrm{H}, J 7$ and $J 13 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$): $\delta(\mathrm{ppm}) 138.0\left(2 * \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 130.1$ and 130.0 (C-5 and C-6), $117.6\left(2 * \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), $75.0(\mathrm{C}-2), 70.2(\mathrm{C}-1), 68.4(\mathrm{C}-3), 60.7$ (C4), $54.8\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; ESIMS: $m / z=226.1\left[(\mathrm{M}+\mathrm{H})^{+}, 100 \%\right]$, ESIHRMS: $m / z=$ 226.1441. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}$ requires 226.1443.

(1R,2S,3R,4S)-4-aminocyclohex-5-ene-1,2,3-triol or Conduramine -(ent)-A-1 10:

A solution of 9 ($29 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) in dry degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a flask containing tetrakis(triphenylphosphino)palladium ($32 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.20$ equiv) and N, N '-dimethylbarbituric acid ($131 \mathrm{mg}, 0.84 \mathrm{mmol}, 6.00$ equiv) under an argon atmosphere. The reaction mixture was stirred for 12 hours at $45^{\circ} \mathrm{C}$. After removal of volatiles, the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0\right.$ to $\left.1: 1\right)$ to afford Conduramine ent-A1 ($13 \mathrm{mg}, 0.09 \mathrm{mmol}, 70 \%$) as a brown oil.
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}+19.0(c 0.1, \mathrm{MeOH}) . \boldsymbol{v}_{\text {max }}: 3291,2925,2836,1650,1587,1449,1406,1017 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 5.66-5.58$ (m, 2H, H-5 and H-6), 4.05-3.99 (dd, 1H, H-1), 3.73 (dd, $1 \mathrm{H}, J_{2,3} 2.5$ and $\left.J_{2,1} 4 \mathrm{~Hz}, \mathrm{H}-2\right), 3.54\left(\mathrm{dd}, J_{3,4} 7\right.$ and $\left.J_{3,2} 2.5 \mathrm{~Hz}, \mathrm{H}-3\right), 3.33\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,3} 7\right.$ $\mathrm{Hz}, \mathrm{H}-4) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 132.2$ (C-6), 128.9 (C-5), 74.5 (C-3), 74.4 (C-2), 71.0 $(\mathrm{C}-4), 52.2(\mathrm{C}-1)$. ESIMS: $m / z=146\left[(\mathrm{M}+\mathrm{H})^{+} 100 \%\right]$. ESIHRMS: $m / z=146.0818$. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}$ requires 146.0817.

Methyl (5Z)-6-bromo-5,6-dideoxy-2,3-O-(i-propylidene)- β-D-ribo-hex-5-enofuranoside 13Z and Methyl (5E)-6-bromo-5,6-dideoxy-2,3-O-(i-propylidene)- β-D-ribo-hex-5enofuranoside 13-E
A mixture of $\mathrm{PPh}_{3}\left(571 \mathrm{mg}, 2.18 \mathrm{mmol}, 0.30\right.$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(130 \mathrm{mg}, 0.58 \mathrm{mmol}, 0.08$ equiv) in dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was stirred at room temperature for 20 min to generate a yellow solution. A solution of $12\left(2.60 \mathrm{~g}, 7.26 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{Bu}_{3} \mathrm{SnH}$ ($3.90 \mathrm{~mL}, 14.5 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added. The mixture was stirred for 30 min at room temperature, diluted with heptane (200 mL), washed with water ($3 \times 200 \mathrm{~mL}$) and brine (200 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (heptane/AcOEt 98:2) to afford compound $\mathbf{1 3 - E}(1.31 \mathrm{~g}, 4.72 \mathrm{mmol}, 65 \%)$ as a colorless oil and compound 13-Z ($158 \mathrm{mg}, 0.58 \mathrm{mmol}, 8 \%$) as a colorless oil.
13-Z : $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-49.3$ (c 1.2, CHCl_{3}). $\boldsymbol{v}_{\text {max }}: 2936,1618,1373,1210,1086,867,723 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{5,6} 7.5 \mathrm{~Hz}, \mathrm{H}-6\right), 6.28\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{5,6}=\mathrm{J}_{4,5} 7.5 \mathrm{~Hz}, \mathrm{H}-5\right)$, 5.08 (d, 1H, J4,5 $7.5 \mathrm{~Hz}, \mathrm{H}-4$), 5.00 (s, 1H, H-1), 4.67 (d, $J_{2,3} 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ or H3), 4.63 (d, $J_{2,3} 6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$ or H 3), $3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.7(\mathrm{C}-5), 112.8\left(\mathrm{CH}_{3}\right)_{2}\right), 110.04(\mathrm{C}-6, \mathrm{C}-1)$, $85.5(\mathrm{C}-3$ or $\mathrm{C}-$ 2), $84.9(\mathrm{C} 4), 84.5(\mathrm{C}-2$ or $\mathrm{C}-3), 54.9\left(\mathrm{OCH}_{3}\right), 26.6\left(\mathrm{CCH}_{3}\right), 25.2\left(\mathrm{CCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrO}_{4}: \mathrm{C}, 43.03$; H, 5.42; O, 22.93. Found: C, 43.26; H, 5.61; O, 22.76.
13-E : $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-22.0\left(c 1.2, \mathrm{CHCl}_{3}\right) . \nu_{\text {max }}: 2936,1618,1373,1210,1086,867,723 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.39\left(\mathrm{~d}, J_{5,6} 14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.26\left(\mathrm{dd}, J_{5,6} 14 \mathrm{~Hz}, J_{4,5} 9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H-5), 4.98 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 4.62 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$ and H-3), $4.60\left(\mathrm{~d}, J_{4,5} 9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.35(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.1(\mathrm{C}-5)$, $112.8\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 109.6(\mathrm{C}-6, \mathrm{C}-1), 87.3(\mathrm{C}-4), 85.5(\mathrm{C}-2 \text { or } \mathrm{C}-3), 84.1(\mathrm{C}-3 \text { or } \mathrm{C}-2), 55.0 ~}^{\text {2 }}\right.$ $\left(\mathrm{OCH}_{3}\right), 26.6\left(\mathrm{CCH}_{3}\right), 25.2\left(\mathrm{CCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrO}_{4}$: C, 43.03; H, 5.42; O, 22.93. Found: C, 43.30; H, 5.62; O, 22.82.

Methyl (5Z)-5,6-dideoxy-6-(dihydroxyboranyl)-2,3-O-(i-propylidene)- β-D-ribo-hex-5enofuranoside 14-Z

A solution of bromovinyl $\mathbf{1 3 - Z}(1.40 \mathrm{~g}, 5.02 \mathrm{mmol}, 1.00$ equiv) and bipyridine ($5 \mathrm{mg}, 0.03$ mmol, 0.01 equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$ was cooled to $-95{ }^{\circ} \mathrm{C}$ under argon. A solution of $t-$ $\operatorname{BuLi}(7.2 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, $11.5 \mathrm{mmol}, 2.30$ equiv) was added dropwise, and the mixture was stirred for 2 hours at this temperature. Freshly distilled trimethylborate $(9.7 \mathrm{~mL}, 90.3$ mmol, 18.00 eq) was then added at $-95^{\circ} \mathrm{C}$. The solution was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 3 hours. Pinacol ($11.3 \mathrm{~g}, 95.3 \mathrm{mmol}, 19.00$ equiv) and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $(11.3 \mathrm{~g})$ were then added and the solution was stirred at room temperature for 12 hours. The resulting mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt/heptane ($2: 8,3 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with water ($6 \times 150 \mathrm{~mL}$), brine (150 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the boronate ester as a yellow oil (1.6 g).

To the crude mixture in acetone (162 mL) was added an aqueous solution of $\mathrm{NH}_{4} \mathrm{OAc}(0.1 \mathrm{~N}$, 93 mL) and $\mathrm{NaIO}_{4}(3.14 \mathrm{~g}, 14.7 \mathrm{mmol}, 3.00$ equiv). The mixture was stirred at room temperature for 4 days. The acetone was removed in vacuo, the aqueous phase was diluted with aqueous $\mathrm{NaOH}(2 \mathrm{~N}, 60 \mathrm{~mL})$ and washed with a mixture of AcOEt/heptane (2:8, 3×60 $\mathrm{mL})$. After cautious acidification to $\mathrm{pH}=3$ with aqueous $\mathrm{HCl}(2 \mathrm{~N})$, the aqueous phase was extracted with AcOEt ($2 \times 60 \mathrm{~mL}$). The combined organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford product $14(290 \mathrm{mg}, 1.19 \mathrm{mmol}, 70 \%)$ as a yellow oil. $[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}+26.0\left(c 0.8, \mathrm{CHCl}_{3}\right) . \boldsymbol{v}_{\text {max }}$: $3410,2939,1737,1627,1413,1373,1084,867$, $777 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.27\left(\mathrm{dd}, J_{5,4} 9\right.$ and $J_{5,6} 14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $5.92(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{B}(\mathrm{OH})_{2}\right), 5.46\left(\mathrm{~d}, J_{6.5} 14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.15\left(\mathrm{~d}, J_{4.5} 9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.92$ (s, 1H, H-1), $4.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 3.22\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 149.6(\mathrm{C}-5), 110.5(\mathrm{C}-1), 86.5(\mathrm{C}-2$ and $\mathrm{C}-3), 86.3(\mathrm{C}-4), 54.9\left(\mathrm{OCH}_{3}\right)$, $26.8\left(\mathrm{CCH}_{3}\right), 25.1\left(\mathrm{CCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{BO}_{6}: \mathrm{C}, 49.80 ; \mathrm{H}, 7.02$; B, 4.43; O, 39.33. Found: C, 49.49; H, 7.31.

Methyl (5E)-5,6-dideoxy-6-(dihydroxyboranyl)-2,3-O-(i-propylidene)- β-D-ribo-hex-5-

enofuranoside 14-E

A solution of bromovinyl 13-E ($430 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.00 \mathrm{eq}$) and bipyridine ($2 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 0.01 \mathrm{eq})$ in dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was cooled to $-95^{\circ} \mathrm{C}$ under argon. A solution of $t-\mathrm{BuLi}$ ($2.2 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, $3.54 \mathrm{mmol}, 2.30$ equiv) was added dropwise, and the mixture was stirred for 2 hours at this temperature. Freshly distilled trimethylborate ($3.1 \mathrm{~mL}, 27.7 \mathrm{mmol}$, $18.00 \mathrm{eq})$ was then added at $-95^{\circ} \mathrm{C}$. The solution was allowed to warm to $0^{\circ} \mathrm{C}$ and was stirred at this temperature for 3 hours. Pinacol ($3.46 \mathrm{~g}, 29.3 \mathrm{mmol}, 19.00$ equiv) and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (3.46 g) were then added and the solution was stirred at room temperature for 12 hours. The resulting mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt/heptane ($2: 8,3 \times 10 \mathrm{~mL}$) and the combined organic layers were washed with water (6 x 40 mL), brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. To the crude mixture in acetone (60 mL) was added an aqueous solution of $\mathrm{NH}_{4} \mathrm{OAc}(0.1 \mathrm{~N}$, 34 mL) and $\mathrm{NaIO}_{4}(0.98 \mathrm{~g}, 4.6 \mathrm{mmol}, 3.00$ equiv). The mixture was stirred at room temperature for 4 days. The acetone was removed in vacuo, the aqueous phase was diluted with aqueous $\mathrm{NaOH}(2 \mathrm{~N}, 20 \mathrm{~mL})$ and washed with a mixture of AcOEt/heptane (2:8, 3×20 $\mathrm{mL})$. After cautious acidification to $\mathrm{pH}=3$ with aqueous $\mathrm{HCl}(2 \mathrm{~N})$, the aqueous phase was extracted with AcOEt ($2 \times 20 \mathrm{~mL}$). The combined organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to afford $\mathbf{1 4 - E}(244 \mathrm{mg}, 0.1 \mathrm{mmol}, 65 \%)$ as a yellow oil. $[\alpha]_{\mathbf{D}}{ }^{25}-43.7\left(c 1.0, \mathrm{CHCl}_{3}\right) . v_{\text {max }}: 3410,2939,1737,1627,1413,1373,1084,867,777 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.85$ (dd, $0.6 \mathrm{H}, J_{5,6} 18$ and $J_{5,4} 6.5 \mathrm{~Hz}, \mathrm{H}-5$), 6.43 (dd, 0.4 H , $J_{5,6} 18$ and $\left.J_{5,4} 6.5 \mathrm{~Hz}, \mathrm{H}-5\right), 5.73\left(\mathrm{~d}, 0.6 \mathrm{H}, J_{6,5} 18 \mathrm{~Hz}, \mathrm{H}-6\right), 5.68\left(\mathrm{~s}, \mathrm{~B}(\mathrm{OH})_{2}\right), 5.57(\mathrm{~d}, 0.4 \mathrm{H}$, $\left.J_{6,5} 18 \mathrm{~Hz}, \mathrm{H}-6\right), 4.97$ (s, 0.6H, H-1), 4.94 (s, $0.4 \mathrm{H}, \mathrm{H}-1$), 4.70 (d, 1H, J4,5 $6.5 \mathrm{~Hz}, \mathrm{H}-4$), 4.664.56 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3$), $3.33\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.43\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{CCH}_{3}\right)$, $1.42\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.29\left(\mathrm{~s}, 1.8 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.28\left(\mathrm{~s}, 1.2 \mathrm{H}, \mathrm{CCH}_{3}\right) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 155.5(\mathrm{C}-5), 150.0(\mathrm{C}-5), 113.1\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 110.6(\mathrm{C}-1), 110.4(\mathrm{C}-1), 89.9(\mathrm{C}-2 \text { or }}\right.$ $\mathrm{C}-3), 89.3(\mathrm{C}-4), 86.3(\mathrm{C}-2$ or $\mathrm{C}-3), 85.3(\mathrm{C}-4), 55.2\left(\mathrm{OCH}_{3}\right), 26.8\left(\mathrm{CCH}_{3}\right), 25.2\left(\mathrm{CCH}_{3}\right)$. ESIMS: $m / z=243.1\left[(\mathrm{M}-\mathrm{H})^{-} 100 \%\right]$. ESIHRMS: $m / z=243.1034 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BO}_{6}$ requires 243.1040.

(1R,2R,3S,4R)-4-(diallylamino)cyclohex-5-ene-1,2,3-triol 15
A solution of boronic acid $\mathbf{1 4}\left(57 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~mL})$ and TFA $(0.32 \mathrm{~mL})$ was stirred at room temperature for 4 hours. After coevaporation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{x}$ 5 mL), the residue was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{HFIP}(4: 1,2 \mathrm{~mL})$ and diallylamine ($57 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 2.00$ equiv) was added. The solution was stirred at $50^{\circ} \mathrm{C}$ in a sealed flask for 65 h . After removal of volatiles, the residue was purified by flash chromatography on Act I neutral alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 0: 1\right.$ to $\left.80: 15: 5\right)$ to afford product $15(31 \mathrm{mg}$, $0.14 \mathrm{mmol}, 60 \%$) as a brown oil.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-153$ (c 0.3, MeOH). $\boldsymbol{v}_{\text {max }}: 3355,2912,1641,1417,1026,916,823,677 \mathrm{~cm}^{-1} \cdot{ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz , MeOD) $\delta 5.88-5.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.65\left(\mathrm{dt}, 1 \mathrm{H}, J_{6,5} 10.5\right.$ and $J_{6,1}$ $\left.=J_{6,4} 2 \mathrm{~Hz}, \mathrm{H}-6\right), 5.52\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6} 10.5\right.$ and $\left.J_{5,4}=J_{5,1}=J_{5,3} 2 \mathrm{~Hz}, \mathrm{H}-5\right), 5.21-4.98(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.16-4.13 (m, 1H, H-1), 3.99 (dt, $1 \mathrm{H}, J_{2,3} 2$ and $J_{2,1} 4 \mathrm{~Hz}, \mathrm{H}-2$), 3.64 (dd, 1H, $J_{3,4} 9$ and $\left.J_{3,2} 2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.57\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,3} 9\right.$ and $\left.J_{4,5}=J_{4,6}=J_{4,1} 2 \mathrm{~Hz}, \mathrm{H}-4\right), 3.29-3.19(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.04 (dd, $2 \mathrm{H}, J 7$ and $J 13 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\mathrm{MeOD}) \delta 138.5\left(2 * \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 131.8(\mathrm{C}-5), 128.2(\mathrm{C}-6), 117.5\left(2 * \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 74.4 (C-2), $71.4(\mathrm{C}-3), 69.7(\mathrm{C}-1), 60.7(\mathrm{C}-4), 55.3\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$; ESIMS: $m / z=226\left[(\mathrm{M}+\mathrm{H})^{+}\right.$ 100\%]. ESIHRMS: $m / z=226.1434 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}$ requires 226.1443.

(1R,2R,3S,4R)-4-aminocyclohex-5-ene-1,2,3-triol (Conduramine C-4) 16
A solution of $\mathbf{1 5}$ ($35 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.00$ equiv) in dry degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a flask containing tetrakis(triphenylphosphino)palladium ($36 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.20$ equiv.) and N, N '-dimethylbarbituric acid ($145 \mathrm{mg}, 0.93 \mathrm{mmol}, 6.00$ equiv) under an argon atmosphere. The reaction mixture was stirred for 12 hours at $45^{\circ} \mathrm{C}$. After removal of volatiles, the residue
was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 0\right.$ to $\left.1: 1\right)$ to afford Conduramine C4 ($18 \mathrm{mg}, 0.12 \mathrm{mmol}, 80 \%$) as a white solid.
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 5}}-170(c 0.3, \mathrm{MeOH}) . \nu_{\text {max }}: 3338,3279,1613,1305,1048,1019,846,689 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.65\left(\mathrm{dt}, 1 \mathrm{H}, J_{6,5} 10.5\right.$ and $\left.J_{6,1}=J_{6,4} 2 \mathrm{~Hz}, \mathrm{H}-6\right), 5.59\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}\right.$ 10.5 and $\left.J_{5,4}=J_{5,1}=J_{5,3} 2 \mathrm{~Hz}, \mathrm{H}-5\right), 4.42-4.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.56(\mathrm{dd}, 1 \mathrm{H}$, $J_{3,4} 9$ and $J_{3,2} 2 \mathrm{~Hz}, \mathrm{H}-3$), 3.47 (dq, $J_{4,3} 9$ and $\left.J_{4,5}=J_{4,6}=J_{4,1} 2 \mathrm{~Hz}, \mathrm{H}-4\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 129.6$ (C-6), 128.1 (C-5), 74.6 (C-3), 72.3 (C-2), 68.2 (C-1), 49.7 (C-4). ESIMS: m / z $=146\left[(\mathrm{M}+\mathrm{H})^{+} 100 \%\right]$. ESIHRMS: $m / z=146.0812 . \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}$ requires 146.0817.

III. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR

