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Appendix  

Analytical Solution of Diffusive Evaporation for Sessile Drops 

 
We find that there are many errors and inconsistent (often confusing) results obtained 

for the evaporation of the sessile droplets and reported in the literature that have been 

obtained from the Lebedev solutions for electrostatic field around a lens-shaped conductor 

(Lebedev, 1965). Therefore, here we wish to re-establish the self-consistent correct analytical 

solution for the diffusive flux, which is the key to the analysis of this paper.  

 

 
Figure 1A. Schematic of a sessile droplet with the shape of spherical cap on a flat surface in 

the rotationally symmetric cylindrical ( ),r z and toroidal ( ),α β coordinate systems. 

 

We consider the sessile drop having a shape of spherical cap which is rotationally 

symmetric about the direction of gravity and can be described using the rotationally 

symmetric cylindrical coordinates ( ),r z , where the cylindrical (longitudinal) axis, z, is 

identical to the direction of gravity, and the origin and the polar axis, r, lie on the solid-fluid 

planar (reference) interface (Figure 1A). The diffusive evaporation of the sessile droplet can 

be tractably solved using the reduced toroidal coordinates ( ),α β , which are related with the 

cylindrical coordinates as follows: 
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where R  is the contact radius of the droplet with the solid surface. The solid-vapour and 

liquid-vapour interfaces are described by 2β π= and 3β π θ= − , where θ  is the contact 

angle between the liquid-vapour and solid-vapour interfaces as measured through the liquid 

phase. The physical domain of the vapour phase is limited by 0α∞ > ≥ and 3 2π θ β π− ≥ ≥ .  

The second Fick law describes the mass conservation for the vapour evaporation by 

diffusion. The time scale analysis indicates that the evaporation can be described by the quasi-

steady state with the transient term in the Fick law being neglected, yielding the Laplace 

equation,
2 0C∇ = , for the vapor concentration, C, which in the toroidal coordinate system 

reduces to 
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Far away from the droplet surface C is equal to the vapour concentration, C∞ , in the ambient 

environment. Substituting ( ) ( )2 cosh 2 cos  C A B Cα β α β ∞= − +  into Eq. (A3) yields the 

separable differential equations as 
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The minus sign before τ is chosen for the physical consistence of the evaporation considered.  

The particular solutions for ( )A β are the Legendre functions of the first kind, 

( )1/2 coshiPτ α− , and of the second kind, ( )1/2 coshiQτ α− , where 1i = − . However, to avoid a 

divergence on the z-axis, i.e., when 0α → , the ( )1/2 coshiQτ α−  solutions must be discarded 

because ( )1/2 1iQ τ − → ∞ . The particular solutions for ( )B β  can be described as 

( ) cosh sinhB M Nτ τ τβ τβ τβ= + . The boundary condition of zero net of the diffusive 

flux, J D C= − ∇
r

, on the solid-vapour interface requires / 0dB dβ = at 2β π= , which gives 

sinh 2 cosh 2 0M Nτ τπτ πτ+ = . Finally, the solution for the vapour concentration around the 

sessile drop can conveniently be described as 
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where Eτ is the integration constant and s
C  is the (saturation) vapour concentration at the 

droplet interface. The integration constant can be determined from the boundary 

condition, s
C C= , at the droplet surface, giving 
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Applying the Mehler-Fock integral transform 
2
 and solving Eq. (A6) for Eτ  give 
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The integral on the RHS of Eq. (A7) can be analytically integrated, giving 
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Inserting Eq. (A8) into Eq. (A5) yields the following prediction for the scaled concentration: 
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The net, J, of the diffusive flux at the droplet surface depends on the toroidal coordinate 

α and can be determined as 
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where iβ

r
 is the unit vector along the β-direction (Figure 1A). Inserting Eq. (A9) into Eq. 

(A10) gives 
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It is noted that the numerical factor of 2  in the front of the integral on the right-hand side of 

Eq. (A11) is missing in  some papers, e.g. 
3
. Eq. (A11) also indicates that the diffusive flux 

changes with α and is not constant along the droplet surface if the contact angle is not the 
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right angle. For / 2θ π= , Eq. (A11) can be further simplified to give  

( ) ( )0 , / 2 /sJ J D C C Rα θ π ∞= = = − , which shows that the diffusive flux is constant along 

the droplet surface. 
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