Mechanism of the Rhodium(III)-Catalyzed Arylation of Imines via C-H Bond Functionalization: Inhibition by Substrate

Michael E. Tauchert, ${ }^{\dagger}$ Christopher D. Incarvito, Arnold L. Rheingold, Robert
G. Bergman** ${ }^{*}$ and Jonathan A. Ellman*, ${ }^{*}$

Supporting Information

I. Syntheses

S-1
II. Stoichiometric conversions with complexes $\mathbf{4}$ and $\mathbf{5}$
S-7
III. Kinetic studies S-9
IV. X-ray structures S-18
V. References S-23
VI. Spectral Data S-23

I. Syntheses

General Information. 2-phenylpyridine (Sigma-Aldrich) was distilled under nitrogen and dried over activated molecular sieves ($3 \AA$) prior to use. All other reagents were obtained from commercial suppliers and used without further purification. $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2},{ }^{1}$ 7, ${ }^{2}$ iso-propyl N-[-1-phenylmethylidene]carbamate $3 \mathbf{d},{ }^{3} N$-tert-butyl-4-(trifluoromethyl)benzylidenecarbamate $3 c^{4}$ and N-benzylidene-4-methylbenzenesulfonamide $3 a^{5}$ were synthesized according to published procedures. Dichloromethane and tetrahydrofuran (THF) were passed through a column of activated alumina under nitrogen. 1,2Dichloroethane, n-pentane, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and CDCl_{3} were dried over activated molecular sieves ($3 \AA$). All reactions involving AgSbF_{6} (Strem) were carried out using syringe, cannula and/or inert atmosphere box techniques $\left(\mathrm{N}_{2}\right)$. All glassware was dried overnight
at $120{ }^{\circ} \mathrm{C}$ or flame-dried under vacuum immediately prior to use. Chromatography was performed on Merck 60 230-240 mesh silica gel. NMR chemical shifts are reported in ppm relative to CHCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$, and 77.23 ppm for ${ }^{13} \mathrm{C} \mathrm{NMR}$) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.32 ppm for ${ }^{1} \mathrm{H}$, and 53.84 ppm for ${ }^{13} \mathrm{C}$ NMR). IR spectra were recorded on a Nicolet 6700 FT-IR equipped with an attenuated total reflectance accessory (ATR), and only partial data are listed. Melting points were determined on a Mel-Temp apparatus and are reported uncorrected. Mass spectra (HRMS) were obtained by a 9.4T Bruker Qe FT-ICR MS at the Keck Center of Yale University.

Preparation of 1d. To a vial in a glovebox was combined $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(12.3 \mathrm{mg}$, $0.020 \mathrm{mmol}, 0.1$ equiv), $\mathrm{AgSbF}_{6}(27.3 \mathrm{mg}, 0.079 \mathrm{mmol}, 0.4$ equiv), $2(71.3 \mathrm{mg}, 0.459$ mmol, 2.3 equiv), $3 \mathbf{a}$ ($38.5 \mathrm{mg}, 0.201 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$). The reaction mixture was transferred to a 5 mL Schlenk tube equipped with a magnetic stir bar, removed from the glovebox, and heated at $75^{\circ} \mathrm{C}$ for 14 h with stirring. The reaction mixture was then cooled to room temperature, concentrated in vacuo, and purified by chromatography (5:1 hex:EtOAc) to yield a white solid ($56.1 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.56(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=6.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.96(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{bs}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 159.81,155.50,148.10,142.02,141.02,140.41,136.43$, $130.90,129.94,128.62,127.59$ (3C), 126.10, 126.02 (2C), 124.22, 121.75, 67.85, 57.45, 21.90. M.p. $=135{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{neat})=1699$ (vs), 1584 (w), 1495 (vw), 1466 (m), 1442 (m),

1427 (m), 1395 (s), 1382 (s), 1339 (w), 1314 (s), 1286 (m), 1176 (w), 1150 (w), 1111 (s), 1025 (s), 753 (vs), 732 (vs), 698 (vs). HRMS: $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: 317.17540 , found $317.17453(-2.5 \mathrm{ppm})$.

Preparation of 4a. A 20 mL glass vial equipped with a magnetic stir bar was charged with 7 ($96.8 \mathrm{mg}, 0.226 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgSbF}_{6}(96.8 \mathrm{mg}, 0.282 \mathrm{mmol}, 1.3$ equiv). To the vial was added a solution of $\mathbf{1 a}\left(72.8 \mathrm{mg}, 0.281 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) with stirring, and the resulting red slurry was stirred vigorously for 22 h . An orange solution over a grey precipitate was formed, which was separated by centrifugation and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic extracts were concentrated in vacuo and the resulting red resin was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and hexane $(5 \mathrm{~mL})$, affording a red powder ($147 \mathrm{mg}, 0.165 \mathrm{mmol}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $8.76(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43$ (m, 2H), $7.37(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 15 \mathrm{H})$. Two hydrogens not visible. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 161.89, 151.54, 143.66, 140.88, 140.79, 139.88, $139.63,139.10,132.25,130.32,130.31,129.04,128.66,128.43,128.18,127.67,125.71$, 125.38, $95.60(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 61.14,21.18,8.84$. M.p. $=203{ }^{\circ} \mathrm{C} . \operatorname{IR}($ neat $)=1599(\mathrm{w})$, 1478 (w), 1445 (w), 1252 (s), 1108 (m), 1052 (w), 1012 (m), 909 (m), 845 (s), 813 (s), $734(\mathrm{~m}), 654(\mathrm{vs}), 593(\mathrm{w})$. HRMS: $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{RhSSb}$: 887.05677, found 887.05693 (+0.2 ppm).

Preparation of 4c. A 20 mL glass vial equipped with a magnetic stir bar was charged with 7 ($99.0 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgSbF}_{6}(95.6 \mathrm{mg}, 0.278 \mathrm{mmol}, 1.2$ equiv). To the vial was added a solution of $3 \mathbf{c}\left(77.3 \mathrm{mg}, 0.282 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7.5 mL) with stirring, and the resulting red slurry was stirred vigorously for 2 h . The now orange mixture was filtered by syringe ($0.45 \mu \mathrm{~m}$, nylon) and concentrated in vacuo. The resulting red resin was washed with $\mathrm{Et}_{2} \mathrm{O}\left(\begin{array}{llll}2 & \mathrm{x} & 5 \mathrm{~mL}\end{array}\right)$ and crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane affording 4c as red crystals suitable for X-ray diffraction ($168 \mathrm{mg}, 0.186$ $\mathrm{mmol}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.76(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{td}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $15 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 165.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 162.79$, $152.64,146.39,141.96,141.01,139.62,133.12,130.25,129.83(\mathrm{q}, J=32.2 \mathrm{~Hz}), 129.57$, $128.85,128.63,128.47,125.64,125.37,124.91(\mathrm{q}, J=270.8 \mathrm{~Hz}), 94.52(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, 83.49, 61.42, 28.46, 9.26. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{TFA}\right) \delta-63.57 . \mathrm{M} . \mathrm{p} .=187$ ${ }^{\circ} \mathrm{C} . \operatorname{IR}($ neat $)=1506(\mathrm{vw}), 1474(\mathrm{w}), 1439(\mathrm{~s}), 1368(\mathrm{w}), 1325(\mathrm{~s}), 1161$ (m), 1134 (s), 1106 (m), 1065 (m), 1019 (m), 862 (w), 822 (m), 768 (s), 712 (w), 654 (vs). HRMS: m/z: $\left[\mathrm{M}-\mathrm{SbF}_{6}\right]^{+}$calculated for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Rh}: 665.18567$, found $665.18460(-1.6 \mathrm{ppm})$.

Preparation of 4d. A 20 mL glass vial equipped with a magnetic stir bar was charged with a solution of $7(40.4 \mathrm{mg}, 0.0944 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathbf{3 d}(23.0 \mathrm{mg}, 0.120 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}) . \mathrm{AgSbF}_{6}(33.8 \mathrm{mg}, 0.0984 \mathrm{mmol}, 1$ equiv) was added as a suspension in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL), while the orange solution was stirred vigorously. A fluffy white precipitate formed quickly and the solution turned almost red. The mixture was
stirred for 10 minutes at room temperature and then filtered by syringe ($0.45 \mu \mathrm{~m}$, nylon). The filter was then flushed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 0.5 \mathrm{~mL})$. The now red homogenous solution was overlaid with n-pentane and cooled to $-20^{\circ} \mathrm{C}$ for 3 d . Orange crystal plates formed, which were filtered, washed with n-pentane ($2 \times 1 \mathrm{~mL}$) and dried in vacuo, yielding 51 $\mathrm{mg}(0.062 \mathrm{mmol}, 66 \%)$ of crystals of $\mathbf{4 d}$ suitable for X-ray diffraction analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.71(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ $(\mathrm{s}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{sept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 15 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 164.58$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 164.56,163.11,152.29,142.87,141.73,140.92,139.54,132.92,130.12$, $129.38,129.18,128.70,128.19,128.12-128.05(\mathrm{~m}), 127.95,125.29,94.53(\mathrm{~d}, J=8.8$ $\mathrm{Hz}), 71.18,61.36,22.24,21.89,9.31$. M.p. $=183{ }^{\circ} \mathrm{C} . \operatorname{IR}($ neat $)=1599(\mathrm{w}), 1564(\mathrm{~m})$, 1471 (m), 1443 (s), 1374 (w), 1325 (w), 1138 (m), 1102 (m), 1075 (w), 1022 (m), 768 (s), 735 (s), $702(\mathrm{~m})$. HRMS: $m / z:\left[\mathrm{M}-\mathrm{SbF}_{6}\right]^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Rh}: 583.18263$, found $583.18260(-0.1 \mathrm{ppm})$.

Preparation of 5. A 20 mL glass vial equipped with a magnetic stir bar was charged with 7 ($99.0 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.0$ equiv), $\mathrm{AgSbF}_{6}(82.8 \mathrm{mg}, 0.241 \mathrm{mmol}, 1.0$ equiv), and 2 ($78.0 \mathrm{mg}, 0.503 \mathrm{mmol}, 2.2$ equiv). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the resulting red slurry was stirred vigorously for 20 minutes. An orange solution over a white precipitate was formed, which was filtered off by syringe $(0.45 \mu \mathrm{~m}$, nylon). All volatiles were removed in vacuo yielding a sticky yellowish resin, which was stirred over night in hexane (5 mL). An orange powder emerged, which was washed with hexane and
pentane, and then dried in vacuo ($180 \mathrm{mg}, 0.230 \mathrm{mmol}, 99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.72(\mathrm{bs}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{dd}, J=$ 7.7, 1.2 Hz, 1H), $7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.39(\mathrm{bs}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.27$ (bs, 1H), 7.25 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02$ $(\mathrm{m}, 1 \mathrm{H}), 7.02-6.80(\mathrm{bs}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, J=7.2,5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 15 \mathrm{H})$. One hydrogen not observed due to signal broadening. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 176.93, 176.67, 164.85, 155.82 (broad signal), 151.54, 145.01, 141.08, 138.99, 137.85, 135.93, 131.87, 129.99, 129.70, 129.02 (broad signal), 127.87 (broad signal), 124.87, $124.25,123.84,119.65,98.22(\mathrm{~d}, J=6.2 \mathrm{~Hz})$, 9.29. One carbon not observed due to signal broadening. M.p. $=182{ }^{\circ} \mathrm{C}$. IR (neat): $1601(\mathrm{~m}), 1567(\mathrm{w}), 1378(\mathrm{vw}), 1163(\mathrm{~m})$, $787(\mathrm{~m}), 756$ (s), 737 (s), $652(\mathrm{vs})$. HRMS: $m / z:\left[\mathrm{M}-\mathrm{SbF}_{6}\right]^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Rh}$: 547.16150, found $547.16173(+0.4 \mathrm{ppm})$.

Preparation of 6. Within a glovebox, $2(233 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.4$ equiv $)$ and AgSbF_{6} ($363 \mathrm{mg}, 1.06 \mathrm{mmol}, 1.0$ equiv) were dissolved in THF (5 mL) in a 50 mL three-necked round bottom flask equipped with a magnetic stir bar. The flask was sealed with a rubber septa and a gas flow adapter. Outside the glovebox, $t \mathrm{BuCl}(0.25 \mathrm{~mL}, 2.3 \mathrm{mmol}, 2.2$ equiv) was added via syringe. The colorless solution was stirred for 1 h at room temperature. During this time a white precipitate formed. The solution was filtered off, employing filter cannula technique, and concentrated to dryness in vacuo. The resulting colorless solid was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1.5 \mathrm{~mL})$ and dried in vacuo yielding 6 as a white powder ($108 \mathrm{mg}, 0.276 \mathrm{mmol}, 26 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 8.78(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 8.86(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.62(\mathrm{td}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-7.94(\mathrm{~m}, 3 \mathrm{H})$, 7.67 - $7.59(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{THF}$) $\delta 153.79,147.64,143.83,133.07$, $132.80,130.67,129.12,126.70,126.54$. M.p. $=129-134{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{neat})=3297(\mathrm{w})$, 1634 (m), 1611 (s), 1581 (w), 1535 (m), 1496 (m), 1441 (w), 1276 (m), 1170 (m), 790 (w), 748 (s).

In situ observation of $\mathbf{8 d}$. A solution of $\mathbf{3 d}\left(5.1 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.1\right.$ equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.7 \mathrm{~mL})$ was added to a mixture of $7(10.4 \mathrm{mg}, 0.0243 \mathrm{mmol}, 1.0$ equiv $)$ and AgSbF_{6} ($9.3 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.1$ equiv). The resulting red suspension was stirred vigorously for 10 min in a 20 mL glass vial and then transferred to an oven dried J-Young tube. An ${ }^{1} \mathrm{H}$ NMR was taken within 30 min at room temperature and displayed a $\mathbf{4 d}: 8 \mathbf{d}$ ratio of 1:2.7. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, only resonances of $\mathbf{8 d}$ are reported): $8.77(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{t}, 6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{sept}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 15 \mathrm{H}), 0.71(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.68$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H})$.

II. Stoichiometric conversions with complexes 4 and $5\left({ }^{1} \mathrm{H}\right.$
 NMR experiments)

General procedure for reaction of 2-phenylpyridine with complexes 4a, \mathbf{c}, and \mathbf{d}. Within a glovebox a 5 mL glass vial was charged with complex 4 ($10 \mu \mathrm{~mol}$, 1 equiv), 2phenylpyridine ($4.7 \mathrm{mg}, 30 \mu \mathrm{~mol}, 3$ equiv), and hexamethylbenzene ($2.5 \mathrm{mg}, 15 \mu \mathrm{~mol}$,
1.5 equiv). $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added and the red solution was transferred to an ovendried J-Young tube, and the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR.

Reaction of imine 3c with complex 5.

Within a glove box a 5 mL glass vial was charged with complex 5 and hexamethylbenzene as an internal standard. A solution in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ of imine $\mathbf{3}$ and 2-phenylpyridine 2 was added and the red solution then transferred to an oven-dried JYoung NMR tube. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The proportions of each compound are indicated in Table S1.

Table S1. Reaction of $\mathbf{3}$ and 2 with complex 5.

entry	run	t	imine	2 [equiv]	$\mathbf{5}[\%]$	$\mathbf{4}[\%]$	$\mathbf{8}[\%]$	$\mathbf{1}[\%]$
1	$\mathrm{~A}^{a j}$	10 min	3d	-	56	6	38	0
2	$\mathrm{~A}^{a)}$	20 h	3d	-	51	48	1	50
3	$\mathrm{~B}^{b)}$	15 h	3d	1.0	100	0	0	60
4	$\mathrm{C}^{c)}$	10 min	3c	-	96	4	0	0
5	C^{c}	20 h	3c	-	45	55	0	22
6	$\mathrm{D}^{d)}$	15 h	3c	2.0	83	17	0	30

${ }^{\text {a }} 0.02 \mathrm{mmol}$ (1 equiv) of $5,0.04 \mathrm{mmol}$ (2.2 equiv) of $\mathbf{3 d}, 0.03 \mathrm{mmol}$ (1.5 equiv) of $\mathrm{C}_{6} \mathrm{Me}_{6} \cdot{ }^{\text {b }}$) 0.014 mmol (1 equiv) of $5,0.02 \mathrm{mmol}$ (1 equiv) of $3 \mathbf{d}, 0.02 \mathrm{mmol}$ (1 equiv) of $2,0.03 \mathrm{mmol}\left(2.4\right.$ equiv) of $\mathrm{C}_{6} \mathrm{Me}_{6}{ }^{c}$. 0.013 mmol (1 equiv) of $5,0.013 \mathrm{mmol}$ (1 equiv) 3 c. ${ }^{d)} 0.014 \mathrm{mmol}$ (1 equiv) of $5,0.02 \mathrm{mmol}$ (1 equiv) of $3 \mathbf{d}, 0.02 \mathrm{mmol}$ (1 equiv) of $2,0.03 \mathrm{mmol}$ (2.4 equiv) of $\mathrm{C}_{6} \mathrm{Me}_{6}$.

Arylation of 3a with 2 employing 4a as a catalyst

Within a glove box a 5 mL glass vial was charged with complex $\mathbf{4 a}(8.9 \mathrm{mg}, 0.010 \mathrm{mmol}$, 0.2 equiv), imine $3 \mathbf{a}(14.3 \mathrm{mg}, 0.0551 \mathrm{mmol}, 1.2$ equiv), and heterocycle $2(7.5 \mathrm{mg}$, 0.048 mmol , 1 equiv). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.70 \mathrm{~mL})$ was added, and the resulting red solution was transferred to an oven dried NMR tube equipped with a capillary containing $\mathrm{C}_{6} \mathrm{D}_{6}$. The tube was closed with a Cajon adapter and flame sealed under active vacuum outside the box. A ${ }^{1} \mathrm{H}$ NMR was taken and the tube placed into a preheated oil bath $\left(75^{\circ} \mathrm{C}\right)$. The conversion was monitored by ${ }^{1} \mathrm{H}$ NMR as outlined in Table S2.

Table S2. Arylation of 3a with $\mathbf{2}$ employing 4a as a catalyst.

entry	$t[\mathrm{~h}]$	1a [\%]	3a [\%]	4a : 5
1	0	19	81	$1.8: 1.0$
2	1	22	78	$0.1: 1.0$
3	2	25	75	$0.2: 1.0$
4	3	28	72	$0.2: 1.0$
5	4	35	65	$0.4: 1.0$
6	6	42	58	$0.5: 1.0$

III. Kinetic studies

All glass equipment was oven-dried $\left(120{ }^{\circ} \mathrm{C}\right)$ over night prior to use. NMR-experiments were performed on a 400 MHz Bruker NMR spectrometer at 298 K . The samples were heated by submerging them completely in a heated water bath $\left(75.0{ }^{\circ} \mathrm{C}\right.$, Endocal circulating bath RTE-9, Neslab). NMR data was processed with MestReNova (6.2.0): solvent suppression (DCE, 3.04 ppm), metabonomics and BL optimization (phasing), Whitacker smoother (baseline correction).

A typical kinetic experiment with ${ }^{1} \mathrm{H}$ NMR monitoring was performed as follows. Within a glovebox a 5 mL glass vial was charged with the appropriate amount of additive (if applicable) and a stock solution (0.30 mL) containing 2-phenylpyridine (0.30 mmol), imine $3 \mathbf{d}(0.050 \mathrm{mmol})$ and hexamethylbenzene $\left(\mathrm{C}_{6} \mathrm{Me}_{6}, 0.050 \mathrm{mmol}\right)$ in DCE. The vial was gently shaken to insure thorough mixing. Next, a freshly prepared solution of the catalyst 5 in DCE $(0.20 \mathrm{~mL}, 5.6 \mu \mathrm{~mol})$ was added, and the vial again carefully shaken. The reaction mixture was then transferred to an NMR tube equipped with a capillary containing DMSO- d_{6} with a glass pipette. To secure quantitative transfer of the reagents to the NMR tube, the glass vial was flushed twice with DCE ($2 \times 0.10 \mathrm{~mL}$). The NMR-
tube was closed with a Cajon-adapter and flame-sealed outside the glovebox under active vacuum resulting in a total tube length of $17 \mathrm{~cm} . \quad \mathrm{A}{ }^{1} \mathrm{H}$ NMR was taken within 20 minutes. After the indicated time of heating the NMR tube was submerged into an ice bath for approximately 10 seconds. Complete cooling was demonstrated by solidification of DMSO in the capillary.

III-1 Reaction monitoring with $5,\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2} / \mathrm{AgSbF}_{6}$, and additives

Table S3. Stock solutions employed.

	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{M}[\mathrm{mol} / \mathrm{L}]$	Stock Solution
2-phenylpyridine 2	775.8	4.999	1.000	$\mathrm{~A}^{a)}$
Imine 3d	159.2	0.8321	0.1664	$\mathrm{~A}^{a}$
$\mathrm{C}_{6} \mathrm{Me}_{6}$	135.2	0.1833	0.1666	$\mathrm{~A}^{a)}$
$\mathbf{5}$	21.8	0.028	0.0278	$\mathrm{~B}^{b)}$
$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	8.6 mg	0.014	0.0093	$\mathrm{C}^{()}$

a) Solution in DCE, total volume $5.00 \mathrm{~mL} .{ }^{\text {b }}$ Solution in DCE, total volume 1.00 mL . ${ }^{c}$ Solution in DCE, total volume 1.50 mL .

Table S4. Reaction setup "additives" ${ }^{\text {a }}$

Run \#	A [mL]	$\mathrm{B}[\mathrm{mL}]$		$\mathrm{C}[\mathrm{mL}]$	$\mathbf{6}[\mathrm{mg}]$
$\mathrm{AgSbF}_{6}[\mathrm{mg}]$					
1	0.30	$0.20^{b)}$	-	-	-
2	0.30	$0.20^{b)}$	-	1.0^{c}	-
3	0.30	$0.20^{b)}$	-	$2.0^{d)}$	-
4	0.30	$0.20^{b)}$	-	$4.0^{e)}$	-
5	0.30	$0.20^{b)}$	-	$7.7^{f)}$	-
6	0.30	$0.20^{b)}$	-	-	2.2^{g}
7	0.30	-	0.20^{h}	-	$4.0^{i)}$

${ }^{\text {a }} 0.300 \mathrm{mmol}$ of $2,0.050 \mathrm{mmol}$ of $\mathbf{3 d}, 0.050 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{Me}_{6}$, DCE, total volume of 0.70 mL . ${ }^{\text {b) }} 5.6 \mu \mathrm{~mol}$, 0.11 equiv. ${ }^{\text {c) }} 2.6 \mu \mathrm{~mol}, 0.05$ equiv. ${ }^{d)} 5.1 \mu \mathrm{~mol}, 0.10$ equiv. ${ }^{\text {e) }} 10.2 \mu \mathrm{~mol}, 0.20$ equiv. ${ }^{\text {f }} 19.6 \mu \mathrm{~mol}, 0.39$ equiv. ${ }^{g}{ }^{g} 6.4 \mu \mathrm{~mol}, 0.13$ equiv. ${ }^{h)} 2.8 \mu \mathrm{~mol}, 0.056$ equiv. ${ }^{i)} 12 \mu \mathrm{~mol}, 0.23$ equiv.

Figure S1. Monitoring run \#1. Squares: 1d formation (black line $k=0.0040 \mathrm{~min}^{-1}$), diamonds: 3d consumption (black line $k=0.0047 \mathrm{~min}^{-1}$).

Figure S2. Logarithmic plot of $\mathbf{1 d}$ formation in run 1 (no additive).

Figure S3. Logarithmic plot of 1d formation in run 2 (additive: 0.05 equiv of 6).

Figure S4. Logarithmic plot of $\mathbf{1 d}$ formation in run 3 (additive: 0.10 equiv of $\mathbf{6}$).

Figure S5. Logarithmic plot of $\mathbf{1 d}$ formation in run 4 (additive: 0.20 equiv of $\mathbf{6}$).

Figure S6. Logarithmic plot of $\mathbf{1 d}$ formation in run 5 (additive: 0.39 equiv of 6).

Figure S7. Logarithmic plot of 1d formation in run 6 (additive: 0.13 equiv of AgSbF_{6}).

Figure S8. Logarithmic plot of 1d formation in run 7 (0.056 equiv of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ and 0.23 equiv of AgSbF_{6} as catalyst).

III-2 Order in catalyst (5)

Table S5. Stock solutions employed.

	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{M}[\mathrm{mol} / \mathrm{L}]$	Stock Solution
2-phenylpyridine 2	775.5	4.997	0.9940	$\mathrm{~A}^{a)}$
Imine 3d	159.3	0.8326	0.1665	$\mathrm{~A}^{a}$
$\mathrm{C}_{6} \mathrm{Me}_{6}$	134.9	0.1813	0.1663	$\mathrm{~A}^{a)}$
$\mathbf{5}$	19.6	0.025	0.025	$\mathrm{~B}^{b)}$

${ }^{\text {a) }}$ Solution in DCE, total volume of $5.00 \mathrm{~mL} .{ }^{\text {b) }}$ Solution in DCE, total volume of 1.00 mL .

Table S6. Reaction setup "catalyst order"a)

Run \#	A [mL]	B [mL]	DCE [mL]	$\mathbf{5}$ [equiv]	$k\left[\mathrm{~min}^{-1}\right]$
8	0.30	0.30	0.10	0.15	0.0063
9	0.30	0.15	0.25	0.075	0.0026
10	0.30	0.20	0.20	0.10	0.0037
11	0.30	$0^{b)}$	0.40	0.20	0.0089

${ }^{\text {a) }} 0.300 \mathrm{mmol}$ of $2,0.050 \mathrm{mmol}$ of $\mathbf{3 d}, 0.050 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{Me}_{6}, \mathrm{DCE}$, total volume of 0.70 $\mathrm{mL} .{ }^{\text {b }} 8.1 \mathrm{mg}(0.010 \mathrm{mmol})$ neat.

Order in Catalyst

Figure S9. Rate constants k (runs 8-11) versus catalyst (5) concentration.

Figure S10. . Logarithmic plot of $\mathbf{1 d}$ formation in runs 9-11.

III-3 Order in 2-phenylpyridine (2)

Table S7. Stock solutions employed.

	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{M}[\mathrm{mol} / \mathrm{L}]$	Stock Solution
2-phenylpyridine $\mathbf{2}$	775.5	4.997	0.9940	$\mathrm{~A}^{a)}$
Imine 3d	159.3	0.8326	0.1665	$\mathrm{~A}^{a}$
$\mathrm{C}_{6} \mathrm{Me}_{6}$	134.9	0.1813	0.1663	$\mathrm{~A}^{a)}$
$\mathbf{5}$	19.6	0.025	0.025	$\mathrm{~B}^{b)}$
2-phenylpyridine 2	103.6	0.668	0.668	$\mathrm{C}^{b)}$
Imine 3d	32.1	0.168	0.168	$\mathrm{C}^{b)}$
$\mathrm{C}_{6} \mathrm{Me}_{6}$	27.0	0.166	0.166	$\mathrm{C}^{b]}$

${ }^{a}$ Solution in DCE, total volume of 5.00 mL . ${ }^{\text {b) }}$ Solution in DCE, total volume of 1.00 mL .

Table S8. Reaction setup "order in 2-phenylpyridine" a)

Run \#	A [mL]	C [mL]	$\mathbf{2}[\mathrm{mg}]$	$\mathbf{2}$ [equiv] ${ }^{\text {b }}$	$k\left[\mathrm{~min}^{-1}\right]$
12	-	0.30	-	3.98	0.0056
13	-	0.30	7.6	4.94	0.0043
14	0.30	-	8.1	7.05	0.0030
15	0.30	-	15.9	8.06	0.0024

${ }^{\text {a) }} 0.050 \mathrm{mmol}$ of $\mathbf{3 d}, 0.050 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{Me}_{6}, 0.20 \mathrm{~mL}$ of stock solution B ($5.0 \mu \mathrm{~mol}$ of 5), 0.20 mL of DCE. ${ }^{b)}$ with regard to $3 \mathbf{d}$.

Figure S11. Logarithmic plot of 1d formation in runs 10, 12-15.

Figure S12. Rate constants k (runs 10, 12-15) versus 2-phenylpyridine concentration.

IV. X-ray structures

Figure S13. Thermal ellipsoid plot of 4 a depicted at the 50% probability level. Hydrogen atoms and SbF_{6} anion are omitted for clarity.

Table S9. Crystal data and structure refinement for 4a.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color/habit
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C35 H36 F6 N2 O2 Rh S Sb
887.38

100(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c
$\mathrm{a}=18.4587(8) \AA \quad=90^{\circ}$.
$\mathrm{b}=10.7989(5) \AA \quad=103.395(2)^{\circ}$.
$\mathrm{c}=17.5940(9) \AA \quad=90^{\circ}$.
3411.7(3) \AA^{3}

4
$1.728 \mathrm{Mg} / \mathrm{m}^{3}$
$1.405 \mathrm{~mm}^{-1}$
1768
$0.06 \times 0.03 \times 0.02 \mathrm{~mm}^{3}$
yellow plate
2.20 to 25.42°.
$-21<=\mathrm{h}<=22,-11<=\mathrm{k}<=12,-21<=1<=21$
22273
$6210[\mathrm{R}(\mathrm{int})=0.0601]$
99.3 \%

Semi-empirical from equivalents
0.9725 and 0.9205

Full-matrix least-squares on F^{2}
6210 / 0 / 439
1.013
$\mathrm{R} 1=0.0374, \mathrm{wR} 2=0.0608$
$\mathrm{R} 1=0.0643, \mathrm{wR} 2=0.0686$
0.707 and -0.630 e. \AA^{-3}

Figure S14. Thermal ellipsoid plot of 4c depicted at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S10. Crystal data and structure refinement for 4c.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C34 H37 F9 N2 O2 Rh Sb
901.32

93 K
$1.54187 \AA$
Monoclinic
P2(1)/c
$a=20.9479(15) \AA \quad \alpha=90^{\circ}$
$b=10.8946(3) \AA \quad \beta=110.357(8)^{\circ}$
$\mathrm{c}=17.4188(4) \AA \quad \gamma=90^{\circ}$
3727.0(3) \AA^{3}

4
$1.606 \mathrm{~g} / \mathrm{cm}^{3}$
$10.000 \mathrm{~mm}^{-1}$
1792
$0.20 \times 0.20 \times 0.08 \mathrm{~mm}^{3}$
2.20 to 25.45°
$-25<=\mathrm{h}<=25,-8<=\mathrm{k}<=13,-20<=\mathrm{l}<=19$
22948
$6705[\mathrm{R}(\mathrm{int})=0.1290]$
Multi-scan
0.449 and 0.131

Full-matrix least-squares on F^{2}
6705 / 0 / 440
1.035
$\mathrm{R} 1=0.0922, \mathrm{wR} 2=0.2446$
$\mathrm{R} 1=0.1409, \mathrm{wR} 2=0.2456$
1.82 and -1.29 e \AA^{-3}

Figure S15. Thermal ellipsoid plot of 4d depicted at the 50\% probability level. Hydrogen atoms, SbF_{6}-anion and one molecule of crystal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are omitted for clarity.

Table S11. Crystal data and structure refinement for 4d.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]

C33 H38 Cl2 F6 N2 O2 Rh Sb
904.21

123(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c
$\mathrm{a}=18.8446(9) \AA \quad \alpha=90^{\circ}$
$b=9.9469(4) \AA \quad \beta=100.0660(10)^{\circ}$
$\mathrm{c}=19.9152(9) \AA \quad \gamma=90^{\circ}$
$3675.5(3) \AA^{3}$
4
$1.634 \mathrm{~g} / \mathrm{cm}^{3}$
$1.391 \mathrm{~mm}^{-1}$
1800
$0.37 \times 0.30 \times 0.08 \mathrm{~mm}^{3}$
2.20 to 25.45°
$-22<=\mathrm{h}<=22,-7<=\mathrm{k}<=11,-23<=1<=24$
33709
$6747[\mathrm{R}(\mathrm{int})=0.0328]$
100.0 \%

Multi-scan
0.8969 and 0.6271

Full-matrix least-squares on F^{2}
6747 / 0 / 431
1.059
$\mathrm{R} 1=0.0225, \mathrm{wR} 2=0.0636$

R indices (all data)
$\mathrm{R} 1=0.0289, \mathrm{wR} 2=0.0681$
Largest diff. peak and hole

$$
0.775 \text { and }-0.671 \mathrm{e} \AA^{-3}
$$

Figure S16. Thermal ellipsoid plot of 5 depicted at the 50% probability level. Hydrogen atoms and SbF_{6} anion are omitted for clarity.

Table S12. Crystal data and structure refinement for 5.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}

C32 H32 F6 N2 Rh Sb
783.26

100(2)
$0.71073 \AA$
orthorhombic
P2(1)2(1)2(1)
$\begin{array}{ll}\mathrm{a}=13.046(3) \AA & \alpha=90^{\circ} \\ \mathrm{b}=13.991(3) \AA & \beta=90^{\circ} \\ \mathrm{c}=16.446(3) \AA & \gamma=90^{\circ}\end{array}$
$3002.0(10) \AA^{3}$
4
$1.733 \mathrm{~g} / \mathrm{cm}^{3}$
$1.512 \mathrm{~mm}^{-1}$
1552
$0.3 \times 0.3 \times 0.1 \mathrm{~mm}^{3}$
1.91 to 30.55°
$-18<=\mathrm{h}<=18,-19<=\mathrm{k}<=19,-20<=1<=23$
153584
$9171[\mathrm{R}(\mathrm{int})=0.0300]$
Empirical
0.7461 and 0.6632

Full-matrix least-squares on F^{2}
9171 / 0/384
1.080

Final R indices [I>2sigma(I)] R indices (all data)
Largest diff. peak and hole
$\mathrm{R} 1=0.0198, \mathrm{wR} 2=0.0453$
$\mathrm{R} 1=0.0215, \mathrm{vR} 2=0.0468$
0.857 and -0.381 e \AA^{-3}

V. References

(1) Kang, J. W.; Moseley, K.; Maitlis, P. M. J. Am. Chem. Soc. 1969, 91, 5970.
(2) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414.
(3) Trost, B. M.; Jonasson, C. Angew. Chem., Int. Ed. 2003, 42, 2063.
(4) Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011, 133, 1248.
(5) Wu, X. F.; Vovard-Le Bray, C.; Bechki, L.; Darcel, C. Tetrahedron 2009, 65, 7380.

VI. Spectral Data

Figure S17. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{1 d}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectra of $\mathbf{1 d}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S19. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectra of $\mathbf{4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S21. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{4 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz) spectra of $\mathbf{4 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S23. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (376 MHz) spectra of $\mathbf{4 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S24. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{4 d}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectra of $\mathbf{4 d}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S26. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectra of $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature.

Figure S28. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of 6 in $\mathrm{DMSO}-d_{6}$ at room temperature.

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz) spectra of 6 in THF- d_{8} at room temperature.

Figure S30. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{4 d}$ and $\mathbf{8 d}(1: 2.7)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at RT .

