Iron-Catalyzed Intramolecular Allylic C-H Amination

Shauna M. Paradine and M. Christina White*

Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801

General Information

The following commercially obtained reagents for the $\mathrm{C}-\mathrm{H}$ amination were used as received: iron(III) phthalocyanine chloride ($[\mathrm{FePc}] \mathrm{Cl}$, Sigma-Aldrich), 5,10,15,20-Tetraphenyl-21H,23Hporphine iron(III) chloride ($\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$, Strem), silver hexafluoroantimonate (AgSbF_{6}, Strem), (diacetoxyiodo)benzene ($\mathrm{PhI}(\mathrm{OAc})_{2}$, Sigma-Aldrich), bis(tert-butylcarbonyloxy)iodobenzene $\left(\mathrm{PhI}(\mathrm{OPiv})_{2}\right.$, Sigma-Aldrich), and rhodium(II) acetate dimer $\left(\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right.$, Sigma-Aldrich). All starting materials for the sulfamate ester formation were either commercially available or synthesized according to literature procedures (see end of Supporting Information for synthetic sequences and references). All reactions were run in flame- or oven-dried glassware under an atmosphere of N_{2} or Ar gas with dry solvents unless otherwise stated. All products were filtered through a glass wool plug prior to obtaining a final weight. Solid reagents were stored in a dessicator or glovebox, and anhydrous solvents were purified by passage through a bed of activated alumina immediately prior to use (Glass Countour, Laguna Beach, California). Deuterochloroform was stored over $3 \AA$ molecular sieves in a secondary container with drierite. $\mathrm{Fe}(R, R$ - PDP$)\left(\mathrm{SbF}_{6}\right)_{2}$ and $\mathrm{Fe}(R, R$-salen $) \mathrm{Cl}$ were prepared according to methods described in the literature ${ }^{1,2}$ and stored at $4^{\circ} \mathrm{C}$. Chlorosulfonyl isocyanate $\left(\mathrm{ClSO}_{2} \mathrm{NCO}\right.$, Sigma-Aldrich or TCI America) was transferred to a Schlenk-type flask and stored at $4^{\circ} \mathrm{C}$ under an inert atmosphere. ${ }^{3}$ Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates $(0.25 \mathrm{~mm})$ and visualized with UV and ethanolic anisaldehyde or potassium permanganate stains. Flash chromatography was performed as described by Still ${ }^{4}$ using American International ZEOprep 60 ECO silica gel (230-400 mesh). Achiral gas chromatographic (GC) analysis was performed on an Agilent 6890N Series instrument equipped with FID detectors using a HP-5 (5%-Phenyl)-methylpolysiloxane column ($30 \mathrm{~m}, 0.32 \mathrm{~mm}, 0.25 \mathrm{~mm}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Varian Inova-500 (500 MHz) or Varian Unity-500 $(500 \mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm})$. Data reported as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{sxt}=$ sextet, spt $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, app $=$ apparent; coupling constant(s) in Hz ; integration. Proton-decoupled ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Varian Unity-500 (125 $\mathrm{MHz})$ spectrometer and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm). Diastereoselectivity and product selectivity ratios for the intramolecular allylic CH amination reaction were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product mixture when possible. IR spectra were recorded as thin films on NaCl plates on a Mattson Galaxy Series FTIR 5000 and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured using a 1 mL cell with a 50 mm path length on a Jasco P-1020 polarimeter. Optical rotations were obtained with a sodium lamp and are reported as follows: $[\alpha]_{\lambda} \mathrm{T}^{\circ} \mathrm{C}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent $)$. Highresolution mass spectra were obtained at the University of Illinois Mass Spectrometry Laboratory. Electrospray ionization (ESI) spectra were performed on a Waters Q-Tof Ultima spectrometer, and electron ionization (EI) and field desorption (FD) spectra were performed on a Micromass 70-VSE spectrometer.

Preparation of Sulfamate Ester Starting Materials

General procedure for preparation of sulfamate ester substrates ${ }^{5}$ Method A:

Preparation of $\mathrm{ClSO}_{2} \mathrm{NH}_{2}$ solution (2 M in MeCN): A 25 mL round-bottom flask equipped with stir bar and rubber septum was charged with $\mathrm{ClSO}_{2} \mathrm{NCO}(653 \mu \mathrm{~L}, 7.50 \mathrm{mmol}, 1.5$ equiv). The flask was cooled to $0^{\circ} \mathrm{C}$, and then neat formic acid ($283 \mu \mathrm{~L}, 7.50 \mathrm{mmol}, 1.5$ equiv) was added dropwise. After vigorously stirring for 5 min at $0^{\circ} \mathrm{C}, \mathrm{MeCN}(3.8 \mathrm{~mL}, 2 \mathrm{M})$ was added, and the reaction stirred vigorously at $0^{\circ} \mathrm{C}(1 \mathrm{~h})$ then room temp $\left(\sim 20^{\circ} \mathrm{C}\right)$ overnight.
Sulfamate ester formation: A 50 mL round-bottom flask equipped with stir bar and rubber septum was charged with $95 \% \mathrm{NaH}(139 \mathrm{mg}, 5.50 \mathrm{mmol}, 1.1$ equiv) and 5 mL DMF and cooled to $0^{\circ} \mathrm{C}$. The alcohol starting material ($5.00 \mathrm{mmol}, 1.0$ equiv) in 4 mL DMF was slowly added. The reaction was stirred at room temp. for 1 h , after which it was cooled again to $0^{\circ} \mathrm{C}$. The freshly prepared 2 M MeCN solution of $\mathrm{ClSO}_{2} \mathrm{NH}_{2}$ (vide supra) was then added dropwise via syringe, and the reaction stirred at room temp. for 2-4 h. Upon complete consumption of starting material as monitored by TLC, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ until the mixture turned clear $(\sim 8 \mathrm{~mL})$. The reaction mixture was partitioned between $15 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and $60 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and separated. The aqueous layer was then extracted with $2 \times 30 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure. Following purification of the crude product via flash column chromatography, the pure product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short silica plug, then twice dissolved in benzene and concentrated under reduced pressure to remove trace $\mathrm{H}_{2} \mathrm{O}$, then stored in a dessicator until use.

Method B:

A 50 mL round-bottom flask equipped with stir bar and rubber septum was charged with $\mathrm{ClSO}_{2} \mathrm{NCO}\left(653 \mu \mathrm{~L}, 7.50 \mathrm{mmol}, 1.5\right.$ equiv). The flask was cooled to $0^{\circ} \mathrm{C}$, and then neat formic acid ($283 \mu \mathrm{~L}, 7.50 \mathrm{mmol}, 1.5$ equiv) was added dropwise. After vigorously stirring for 5 min at $0^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL}, 2 \mathrm{M})$ was added, and the reaction stirred vigorously at $0^{\circ} \mathrm{C}(1 \mathrm{~h})$ then room temp. overnight. After cooling the reaction flask back to $0^{\circ} \mathrm{C}$, the alcohol starting material (5.00 mmol, 1.0 equiv) with $\mathrm{Et}_{3} \mathrm{~N}$ ($1.05 \mathrm{~mL}, 7.50 \mathrm{mmol}$, 1.5 equiv) in $7 \mathrm{~mL}_{2} \mathrm{Cl}_{2}$ was slowly added via syringe. After complete addition, the reaction warmed back to room temp. and stirred for 4-6 h. If conversion is low after 3-4 h, additional $\mathrm{Et}_{3} \mathrm{~N}$ (1-2 equiv) can be added. Upon complete consumption of starting material as monitored by TLC, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ until the mixture turned clear ($\sim 8 \mathrm{~mL}$). The reaction mixture was partitioned between 15 mL $\mathrm{H}_{2} \mathrm{O}$ and $30 \mathrm{mLCH} \mathrm{Cl}_{2}$ and separated. The aqueous layer was then extracted with $2 \times 30 \mathrm{~mL}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure. Following purification of the crude product via flash column chromatography, the pure product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short silica plug, then twice dissolved in benzene and concentrated under reduced pressure to remove trace $\mathrm{H}_{2} \mathrm{O}$, then stored in a dessicator until use.

(\pm)-(E)-1-phenylnon-7-en-4-yl sulfamate (Table 1).

Prepared according to method A. $1.092 \mathrm{~g}(5.00 \mathrm{mmol})$ of $(\pm)-(E)$ -1-phenylnon-7-en-4-ol S1 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO_{2}) using 3:1 hexanes:EtOAc as eluent gave 1.264 g (4.25
mmol) of pure product as a colorless oil ($>20: 1 \mathrm{E}: Z, 85 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.30-7.26 (m, 2H), 7.21-7.17 (m, 3H), $5.44(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dt, $J=15.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61$ (br. s, 3 H), 2.65-2.64 (m, 2H), 2.07-2.05 (m, 2H), 1.80-1.70 (m, 6H), $1.64(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.9,129.8,128.6$ (2 peaks), 126.2, 126.1, 84.7, 35.6, $33.9,33.5,28.1,26.5,18.0$; IR (film, cm^{-1}) 3381, 3284, 3026, 2933, 2856, 1554, 1496, 1452, 1358, 1180, 914; HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 320.1296$, found 320.1299 .

(\pm)-(E)-6-phenylhex-5-en-2-yl sulfamate (Table 2).

Prepared according to method A. $881 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-6-$ phenylhex-5-en-2-ol ${ }^{6}$ were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO} \mathbf{O}_{2}$) using 2:1 hexanes:EtOAc as eluent gave $919 \mathrm{mg}(3.60 \mathrm{mmol})$ of pure product as a white solid ($>20: 1$ $E: Z, 72 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.80-1.73 (m, 1H), 4.64 (br. s, 2H), 2.37-2.33 (m, 2H), 1.97-1.90 (m, 1H), 1.82-1.76 (m, 1H), $1.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5,131.1,129.1,128.7$, 127.3, 126.2, 81.1, 36.2, 28.7, 20.8; IR (film, cm^{-1}) 3383, 3292, 3026, 2980, 2937, 1554, 1446, 1361, 1182, 922; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 278.0827$, found 278.0837.
(\pm)-6-methylhept-5-en-2-yl sulfamate (Table 2).
Prepared according to method A. $641 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-6-$ methylhept-5-
 en-2-ol were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using 4:1 hexanes:EtOAc as eluent gave 800 mg (3.86 mmol) of pure product as a colorless oil (77% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.80$ (br. s, 2H), $4.70(\mathrm{app} \mathrm{sxt}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.77$ (ddt, $J=14.0,9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.9,123.0,81.5,36.6$, 25.8, 23.8, 20.7, 17.9; IR (film, cm^{-1}) 3379, 3288, 2972, 2929, 2858, 1562, 1450, 1358, 1182, 1126 924; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 230.0827$, found 230.0828.
(土)-2-methylhept-6-en-3-yl sulfamate (Table 2).

Prepared according to method A. $641 \mathrm{mg}(5.00 \mathrm{mmol})$ of (\pm)-2-methylhept-6-en-3-ol S2 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 3:1 hexanes:EtOAc as eluent gave 674 mg (3.25 mmol) of pure product as a colorless oil (65% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (ddt, $\left.J=16.5,10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07(\mathrm{dd}, J=17.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (br. s, 2H), 4.47 (dt, $J=7.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.24-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.6,115.6,89.4,31.1,29.6,29.5,17.7$ (2 peaks); IR (film, cm^{-1}) 3381, 3288, 2968, 2879, 1641, 1556, 1468, 1363, 1182, 918; HRMS (ESI) m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 230.0827$, found 230.0826.

(-)-3ß-cholest-5-enyl sulfamate (Table 2).

Prepared according to method A. $1.934 \mathrm{~g}(5.00 \mathrm{mmol})$ of $3 \beta-$ hydroxycholesterol were used. Due to its insolubility in DMF, cholesterol was dissolved in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ instead prior to addition to NaH solution; the general procedure was otherwise exactly followed. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \quad \mathrm{SiO}_{2}$) using 9:1 hexanes:EtOAc as eluent followed by recrystallization from ether (in place of the normal silica plug filtration) gave 1.514 $\mathrm{g}(3.25 \mathrm{mmol})$ of pure product as a white solid (65% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42$ (app. d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.64 (br. s, 1H), 4.45 (dddd, $J=11.5,11.5,11.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}) 1.90(\mathrm{dt}, J=13.5,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 7 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{dd}, J=6.5,2.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,123.8,83.5,56.8,56.3,50.2,42.5,39.9,39.7,38.9$, $37.1,36.6,36.3,35.9,32.1,32.0,28.7,28.4,28.2,24.4,24.0,23.0,22.7,21.2,19.4,18.9,12.0$; IR (film, cm^{-1}) $3373,3273,2951,2883,1545,1468,1350,1196,1163,980,958,928 ;[\alpha]^{25}{ }_{\mathrm{D}}=-$ $36.7^{\circ}\left(c=1.2, \mathrm{CHCl}_{3}\right)$; HRMS (CI) m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 488.3174, found 488.3184.
(土)-1-phenyl-4-methylpentan-3-yl sulfamate (Table 2).

Prepared according to method A. $891 \mathrm{mg}(5.00 \mathrm{mmol})$ of (\pm)-1-phenyl-5-methylpentan-3-ol S3 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $3: 1$ hexanes:EtOAc as eluent gave $901 \mathrm{mg}(3.50 \mathrm{mmol})$ of pure product as a colorless oil $(70 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.19$ $(\mathrm{m}, 3 \mathrm{H}), 4.73$ (br. s, 2 H), $4.50(\mathrm{dt}, J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H})$, 2.74-2.68 (m, 1H), 2.20-2.13 (m, 1H), 2.07-1.94 (m, 2H), $1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,128.7,128.5,126.2,89.4,32.0,31.7,31.2$, 17.9, 17.5; IR (film, cm^{-1}) 3388, 3284, 3087, 3064, 3028, 2966, 2937, 2877, 1603, 1554, 1496, 1454, 1360, 1182, 922; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 280.0983$, found 280.0985 .

(-)-(4R, $6 R$)-6,10-dimethylundecan-4-yl sulfamate (Table 2).

Prepared according to method A. $777 \mathrm{mg}(3.92 \mathrm{mmol})$ of a $97: 3$ anti:syn mixture of (-)-(4R, 6R)-6,10-dimethylundecan-4-ol S4 were used, along with NaH ($109 \mathrm{mg}, 4.31 \mathrm{mmol}, 1.1$ equiv), DMF $(4+3 \mathrm{~mL}), \mathrm{ClSO}_{2} \mathrm{NCO}(511 \mu \mathrm{~L}, 5.88 \mathrm{mmol}, 1.5$ equiv), formic acid ($222 \mu \mathrm{~L}, 5.88 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{MeCN}(3 \mathrm{~mL})$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 9:1 hexanes:EtOAc as eluent gave 771 mg $(2.76 \mathrm{mmol})$ of pure product as a colorless oil $\left(70 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.73-$ $4.68(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.38-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}$,

3H), $0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 84.1,41.8,39.4,37.6,37.1,29.2$, 28.1, 24.7, 22.8, 22.7, 19.7, 18.3, 14.1; IR (film, cm^{-1}) 3369, 3284, 2956, 2929, 2873, 1556, 1466, 1360, 1184, 920; $[\alpha]_{\mathrm{D}}^{27}=-11.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 302.1766$, found 302.1768 .
(-)-(4R, 6S)-6,10-dimethylundecan-4-yl sulfamate (Table 2).

Prepared according to method A. $770 \mathrm{mg}(3.88 \mathrm{mmol})$ of a $5: 95$ anti:syn mixture of (-)-(4R, 6S)-6,10-dimethylundecan-4-ol S4 were used, along with $\mathrm{NaH}(108 \mathrm{mg}, 4.27 \mathrm{mmol}, 1.1$ equiv), DMF $(4+3 \mathrm{~mL}), \mathrm{ClSO}_{2} \mathrm{NCO}(507 \mu \mathrm{~L}, 5.82 \mathrm{mmol}, 1.5$ equiv), formic $\operatorname{acid}(220 \mu \mathrm{~L}, 5.82 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{MeCN}(3 \mathrm{~mL})$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 9:1 hexanes:EtOAc as eluent gave 642 mg $(2.30 \mathrm{mmol})$ of pure product as a colorless oil (60% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.72-$ $4.67(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.18-$ $1.07(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 84.3,41.7,39.3,37.3,36.4,29.5,28.1,24.6,22.8,22.8,22.7,19.9$, 18.1, 14.1; IR (film, cm^{-1}) 3371, 3290, 2956, 2929, 2873, 1466, 1363, 1184, 922; $[\alpha]^{27}{ }_{\mathrm{D}}=-7.4^{\circ}$ ($c=1.0, \mathrm{CHCl}_{3}$); HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 302.1766$, found 302.1772.
$(\pm)-(E)$-dec-8-en-5-yl sulfamate (Table 3, entries 1-2).

Prepared according to method A. $781 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)$-dec8 -en- 5 -ol $\mathbf{S 5}$ were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using $4: 1$ hexanes: EtOAc as eluent gave $941 \mathrm{mg}(4.00 \mathrm{mmol})$ of pure product as a colorless oil ($>20: 1 \mathrm{E}: \mathrm{Z}, 80 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ (dt, $J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (br. s, 2H), 4.62 (p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.71$ (m, $4 \mathrm{H}), 1.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 130.0,126.1,85.2,34.0,33.8,28.1,27.0,22.7,18.0,14.1$; IR (film, cm^{-1}) 3363,3292 , 2958, 2862, 1556, 1452, 1365, 1182, 916; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 258.1140$, found 258.1138.
(\pm)-(E)-2-methylnon-7-en-4-yl sulfamate (Table 3, entries 3-4).

Prepared according to method A. $781 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-2-$ methylnon-7-en-4-ol S6 were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using $4: 1$ hexanes:EtOAc as eluent gave $1.153 \mathrm{~g}(4.90 \mathrm{mmol})$ of pure product as a colorless oil ($>20: 1 \mathrm{E}: \mathrm{Z}, 98 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48$ (dq, $J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (dt, $J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 (br. s, 2H), 4.67 (p, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 1 \mathrm{H})$, $0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.9,126.1,83.8,43.3,34.4,27.9$, 24.5, 22.9, 22.5, 18.0; IR (film, cm^{-1}) 3391, 3290, 2958, 2871, 1562, 1450, 1360, 1182, 924; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 258.1140$, found 258.1131.

(\pm)-(E)-1-methoxyoct-6-en-3-yl sulfamate (Table 3, entries 5-6).

Prepared according to method A. $791 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-1-$ methoxyoct-6-en-3-ol S7 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ as a colorless oil $\left(>20 \cdot 1 \mathrm{E} \cdot 7,69 \%\right.$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{Aq}, J=15.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.41 (dt, $J=15.5,6.0 \mathrm{~Hz}$), 4.96 (br. s, 2H), 4.74 (p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dt, $J=10.0$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=10.0,5.5 \mathrm{H}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{q}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.8$, $126.2,82.1,68.6,58.6,34.9,34.1,28.0,18.0$; IR (film, cm^{-1}) $3357,3280,2924,2854,1452$, 1367, 1178, 1107, 910; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 260.0932$, found 260.0928 .
(\pm)-(E)-1-phenyloct-6-en-3-yl sulfamate (Table 3, entries 7-8).

Prepared according to method A. $1.022 \mathrm{~g}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-1-$ phenyloct-6-en-3-ol $\mathbf{S 8}$ were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $3: 1$ hexanes:EtOAc as eluent gave $1.261 \mathrm{~g}(4.45 \mathrm{mmol})$ of pure product as a colorless oil ($>20: 1$ E:Z, 89% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{dq}, J=15.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dt, $J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (br. s, 2 H), 4.65 (p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.69$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 141.2,129.8,128.7,128.5,126.3$ (2 peaks), 84.3, 35.7, 34.0, 31.2, 28.0, 18.0; IR (film, cm^{-1}) 3377, 3292, 3028, 2939, 2856, 1554, 1496, 1454, 1358, 1182, 920; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 306.1140$, found 306.1147.
(\pm)-(E)-methyl 6-(sulfamoyloxy)hept-2-enoate (Table 3, entry 9).
 Prepared according to method B. $790 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)$-methyl 6-hydroxyhept-2-enoate $\mathbf{S 9}$ were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using $1: 1$ hexanes:EtOAc as eluent gave $795 \mathrm{mg}(3.35 \mathrm{mmol})$ of pure product as a colorless oil (67% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 6.95$ (dt, $J=$ $15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (dt, $J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (br. s, 2 H), $4.73-4.66$ (m, 1H), 3.72 (s, $3 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,148.0,121.8,80.2,51.7,34.8$, 27.9, 20.8; IR (film, cm^{-1}) $3356,3248,3118,2985,2954,2850,1711,1658,1566,1441,1360,1294,1221,1178,1130$, 1045, 985, 930, 796; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 238.0749$, found 238.0738 .
(土)-(E)-6-(sulfamoyloxy)hept-2-en-1-yl acetate (Table 3, entry 10).

Prepared according to method B. $861 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-6-$ hydroxyhept-2-en-1-yl acetate $\mathbf{S 1 0}$ were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 2:1 hexanes:EtOAc as eluent gave $667 \mathrm{mg}(2.65 \mathrm{mmol})$ of pure product as a colorless oil (53% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.75 (dt, $J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddt}, J=15.5,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (br. s, 2H), 4.67 (app sxt, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{app} \mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.84$ (app dq, $J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}) 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 171.3,134.7,125.1,80.5,65.2,35.6,27.9,21.2,20.7$; IR (film, cm^{-1}) 3354,3271 , 3118, 2981, 2943, 1720, 1566, 1448, 1365, 1259, 1180, 1028, 922; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 274.0725$, found 274.0730.
(土)-(2E,9E)-methyl 6-(sulfamoyloxy)undeca-2,9-dienoate (Table 3, entry 11).

Prepared according to method B. $1.061 \mathrm{~g}(5.00 \mathrm{mmol})$ of (\pm) -(2E,9E)-methyl 6-hydroxyundeca-2,9-dienoate $\mathbf{S 1 1}$ were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2 $)$ using $3: 1$ hexanes:EtOAc as eluent gave $1.004 \mathrm{~g}(3.45 \mathrm{mmol})$ of pure product as a colorless oil (69% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 6.95(\mathrm{dt}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dt}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (br. s, 2H), $4.61(\operatorname{app~p}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{appq}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{app} \mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{app} \mathrm{dq}, J=14.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,148.0,129.6,126.4,121.8,83.5,51.7,34.0,32.4,28.0,27.6,18.0$; IR (film, cm^{-1}) 3367, 3271, 3113, 3022, 2953, 2856, 1705, 1657, 1564, 1439, 1362, 1290, 1182, 1041, 970, 918, 752; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 292.1219$, found 292.1218.

(\pm)-(E)-3-(sulfamoyloxy)oct-6-en-1-yl acetate (Table 3, entry 12).
 Prepared according to method B. $931 \mathrm{mg}(5.00 \mathrm{mmol})$ of $(\pm)-(E)$-3-hydroxyoct-6-en-1-yl acetate $\mathbf{S 1 2}$ were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO_{2}) using 3:1 hexanes:EtOAc as eluent gave $703 \mathrm{mg}(2.65 \mathrm{mmol})$ of pure product as a colorless oil (53% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{dq}, J=15.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.39 (ddt, $J=15.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (br. s, 2H), 4.71-4.66 (m, 1H), 4.34-4.29 $(\mathrm{m}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,129.5,126.4,81.2$, $60.3,34.4,33.1,27.9,21.1,18.1$; IR (film, cm^{-1}) 3346, 3269, 3116, 3024, 2962, 2937, 2856, 1724, 1564, 1450, 1369, 1257, 1182, 1045, 968, 928, 739; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 288.0882$, found 288.0885.
(土)-(E)-ethyl 3-(sulfamoyloxy)oct-6-enoate (Table 3, entry 13).

Prepared according to method B. $931 \mathrm{mg}(5.00 \mathrm{mmol})$ of (\pm) - (E)-ethyl 3-hydroxyoct-6-enoate S13 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes: EtOAc as eluent gave $796 \mathrm{mg}(3.00 \mathrm{mmol})$ of pure product as a colorless oil (60% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48$ (dq, J $=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{ddt}, J=15.5,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 4.98-4.93(\mathrm{~m}, 1 \mathrm{H})$, $4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=17.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=17.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (app q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\operatorname{app} \mathrm{dq}, J=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=6.0$, $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,129.3,126.5,79.7$, $61.4,39.2,34.7,27.9,18.0,14.2$; IR (film, cm^{-1}) 3367, 3280, 3114, 2981, 2939, 2858, 1724, $1562,1448,1369,1321,1188,1028,968,930,777$; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 266.1062$, found 266.1062.
$(\pm)-(E)$-1-(2,6,6-trimethylcyclohex-1-en-1-yl)oct-6-en-3-yl sulfamate (Table 3, entry 14).

Prepared according to method A. $1.252 \mathrm{~g}(5.00 \mathrm{mmol})$ of $(\pm)-(E)-1-$ (2,6,6-trimethylcyclohex-1-en-1-yl)oct-6-en-3-ol $\mathbf{S 1 4}$ were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 4:1 hexanes:EtOAc as eluent gave $1.400 \mathrm{~g}(4.25 \mathrm{mmol})$ of pure product as a colorless oil (85% yield $)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48(\mathrm{dq}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dt, $J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (br. s, 2H), 4.60 (app p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.07$ (m, 3H), 2.05$1.99(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$, 1.59-1.54 (m, 2H), 1.42-1.40(m, 2H), $0.98(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2,129.9$, $127.9,126.2,85.6,39.9,35.1,34.5,33.8,32.9,28.7$ (2 peaks), 28.3, 23.8, 19.9, 19.6, 18.1; IR (film, cm^{-1}) $3375,3286,2929,2866,1556,1473,1452,1358,1184,966,922$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 352.1922$, found 352.1926.
(土)-3-deuterio-3-phenylpropan-1-yl sulfamate [18].
Prepared according to method A. $686 \mathrm{mg}(5.00 \mathrm{mmol})$ of 3-deuterio-3-

phenylpropan-1-ol were used (contained $\sim 20 \%$ of an unreactive impurity). ${ }^{7}$ Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes:EtOAc as eluent gave 693 mg $(3.20 \mathrm{mmol})$ of pure product as a white solid (64% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.81(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 4.22(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=7.0$,
$6.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,128.7,128.6,126.4,70.7,31.3$ (1:1:1 triplet), 30.3; IR (film, cm^{-1}) 3379, 3292, 3028, 2960, 2927, 1554, 1496, 1452, 1365, 1180, 931; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{DNO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 239.0577$, found 239.0577.
(\pm)-3-phenylpropan-1-yl sulfamate.

Prepared according to method A. $686 \mathrm{mg}(5.00 \mathrm{mmol})$ of 3-phenylpropan-1-ol were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes:EtOAc as eluent gave $907 \mathrm{mg}(4.20 \mathrm{mmol})$ of pure product as a white solid $(84 \%$
yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 4.22(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dt}, J=7.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,128.7,128.6,126.4,70.7,31.7,30.4$; IR (film, cm^{-1}) 3381, 3276, 3028, 2960, 2939, 2864, 1554, 1496, 1454, 1365, 1180, 939; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 238.0514$, found 238.0516.
(\pm)-(Z)-hept-5-en-2-yl sulfamate [20].

Prepared according to method A. $571 \mathrm{mg}(5.0 \mathrm{mmol})$ of (\pm)-(Z)-hept-6-en-3-ol S15 were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $3: 1$ hexanes:EtOAc as eluent gave $715 \mathrm{mg}(3.70$ mmol) of pure product as a colorless oil (74% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.49(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dt}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (br. s, 2 H), 4.71 (app. sxt, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J$ $=6.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 130.0,125.3,81.4$, 36.3, 22.7, 20.7, 13.0; IR (film, cm^{-1}) 3381, 3278, 3014, 2981, 2939, 2866, 1562, 1448, 1358, 1176, 1124, 1039, 930; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 216.0670, found 216.0675 .
$(\pm)-(E)$-hept-5-en-2-yl sulfamate.
O_{2} Prepared according to method A. $571 \mathrm{mg}(5.0 \mathrm{mmol})$ of (\pm)-(E)-hept-6-en-3-
 ol S16 were used. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using 3:1 hexanes: EtOAc as eluent gave 733 mg (4.00 mmol) of pure product as a colorless oil (80% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (br. s, 2 H), 4.70 (app. sxt, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.12-2.05 (m, 2H), 1.85-1.77 (m, 1H), 1.68-1.60 (m, 1H), 1.65 (dd, $J=6.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 129.7$, 126.3 , 81.3, 36.4, 28.3, 20.7, 18.1; IR (film, cm^{-1}) 3377, 3286, 2981, 2939, 2920, 2856, 1562, 1450, 1358, 1182, 1124, 926; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 216.0670, found 216.0674.

Optimization of Fe-catalyzed Intramolecular C-H Amination

Table 1. Development of the Fe-catalyzed Intramolecular Allylic C-H Amination.

		Fe cat. (1 $\mathrm{AgSbF}_{6}(10$ $\mathrm{Phl}(\mathrm{OAC})_{2}$ 0.5 M sol		$\underset{n=3}{\mathrm{Ph}}$	
entry	catalyst	AgX	solvent	\% yield ${ }^{\text {a }}$	ins./azir. ${ }^{\text {b }}$
1	$\mathrm{Fe}(R, R$-PDP $)$	-	$\mathrm{CH}_{3} \mathrm{CN}^{\text {c }}$	10 (58) ${ }^{\text {d }}$	>20:1
2	$\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}$	-	$\mathrm{CH}_{3} \mathrm{CN}^{\text {c }}$	$21(41)^{\text {d }}$	>20:1
3	$\mathrm{Fe}(R, R$-salen $) \mathrm{Cl}$	-	$\mathrm{CH}_{3} \mathrm{CN}^{\text {c }}$	0 (87)	-
4	[FePc]Cl	-	$\mathrm{CH}_{3} \mathrm{CN}$	34 (22)	15:1
5	[FePc]Cl	AgSbF_{6}	$\mathrm{CH}_{3} \mathrm{CN}$	39 (14)	16:1
6	[FePc]Cl	AgSbF_{6}	4:1 PhMe: $\mathrm{CH}_{3} \mathrm{CN}$	52 (7)	>20:1
7	[FePc]CI ${ }^{\text {e }}$	AgSbF_{6}	4:1 PhMe: $\mathrm{CH}_{3} \mathrm{CN}$	68 (<5)	>20:1
8	$[\mathrm{FePc}] \mathrm{Cl}^{e}$	-	4:1 PhMe: $\mathrm{CH}_{3} \mathrm{CN}$	58 (7)	>20:1
9	[FePc]Cl ${ }^{\text {e,f }}$	AgSbF_{6}	4:1 PhMe: $\mathrm{CH}_{3} \mathrm{CN}$	68 (<5)	>20:1

${ }^{a}$ Isolated (yield is sum of syn + anti; dr $\sim 3-4: 1$ syn:anti); \% rsm in parentheses.
${ }^{b}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of crude reaction mixture. ${ }^{c}$ concentration $=0.1 \mathrm{M}$.
${ }^{d} \mathrm{dr}=1: 1 .{ }^{e} \mathrm{Phl}(\mathrm{OPiv})_{2}$ was used as oxidant. ${ }^{f}[\mathrm{FePc}] \mathrm{Cl}$ and AgSbF_{6} were added together in $3 \times 3.3 \mathrm{~mol} \%$ portions at 2 h intervals.
(\pm)-4-((1E)-1-propenyl)-6-(3-phenylpropyl)tetrahydro-1,2,3-oxathiazine-2,2-dioxide [1]. In general, the syn and anti oxathiazinanes can be isolated pure via flash column chromatography directly from the crude reaction mixture. The minor (anti) diastereomer co-elutes with starting material under hexanes/EtOAc eluent conditions, but can be easily separated in cases of incomplete conversion when $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes is instead used as the eluent system. See general procedure for single catalyst addition for specific experimental details (vide infra). All products were obtained with an olefin geometry of $>20: 1 E / Z$.

The relative stereochemistry of the oxathiazinanes was confirmed via nOe NMR experiments ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) in which the C 4 and C 6 protons for each diastereomer were irradiated (irradiated protons are highlighted in red). Syn oxathiazinanes have a characteristic weak nOe between the C4 and C6 pseudo-axial hydrogens. Conversely, the C4 and C6 hydrogens in the anti oxathiazinane fall on opposite sides of the ring and therefore experience no observable nOe. Instead, for anti allylic C-H amination products a weak nOe can be observed between the C3 vinylic hydrogen of the pseudo-axial propenyl group and the pseudo-axial C6 hydrogen. All products described in this paper are assumed to have the same relative stereochemistry as $\mathbf{1}$ by analogy. The experimental data are consistent with previously reported studies in the literature. ${ }^{8}$
syn

anti

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.76$ (dq, $J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=15.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-$ $4.73(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.78$ (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.63(\mathrm{~m}, 8 \mathrm{H}), 1.51$ (app. q, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 141.5,129.5,128.6,128.5,128.2,126.2,83.9,56.1,35.8,35.4,34.8,26.3,17.9$; IR (film, cm^{-1}) $3265,3028,2924,2856,1416,1360,1188,872$; HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 296.1320$, found 296.1325.

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H})$, 5.80 (ddd, $J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}$, 1 H), 4.88-4.83 (m, 1H), 4.38 (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17 (app. p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6,129.2,128.6,128.5$, $128.4,126.1,82.7,55.0,35.4,34.1,33.9,26.7,17.9$; IR (film, cm^{-1}) $3280,3028,2937,2860$, 1496, 1452, 1419, 1367, 1184, 966, 874; HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 318.1140$, found 318.1142 .
(\pm)-trans-4-(3-phenylpropyl)-8-methyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.
In general, the aziridine is formed in only trace quantities under the standard Fe-catalyzed $\mathrm{C}-\mathrm{H}$ amination conditions. The trace aziridine is more polar than the insertion products and is easily separated from the desired oxathiazinane products via flash column chromatography on silica. Most of the aziridine side products from substrates described in this paper share a characteristic peak near $\delta=3.0 \mathrm{ppm}(1 \mathrm{H})$, which was used to determine ins./azir. ratios in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{1} \mathrm{H}$-NMR spectra showing the $2.5-5.5 \mathrm{ppm}$ region for crude reaction mixtures of each olefincontaining substrate in this paper are presented in a separate supporting information document.

Prepared as a standard using Rh-catalyzed $\mathrm{C}-\mathrm{H}$ amination
 conditions (vide infra). Purified via flash column chromatography on silica using $4: 1 \rightarrow 2: 1$ hexanes/EtOAc as the eluent system. Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.99($ app. p, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 4 \mathrm{H})$, $1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6,128.5$ (2 peaks), 126.1, 83.7, 47.2, 38.6, 35.3, 34.0, 32.3, 27.2, 24.7, 17.1; IR (film, cm^{-1}) 3060, 3026, 2929, 2862, 1496, 1454, 1373, 1261, 1180, 999, 901; HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 296.1320$, found 296.1314.

General procedure for single catalyst addition (entries 1-8)

Into a 10 mL round-bottom flask was added $\mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv, entries $5-7$), catalyst ($0.040 \mathrm{mmol}, 0.10$ equiv), and a stir bar in a glovebox. The flask was then sealed with a rubber septum, covered in aluminum foil (when AgSbF_{6} was used), and taken out of the box. $(\pm)-(E)$-1-phenylnon-7-en-4-yl sulfamate ($119 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv) dissolved in solvent was added via syringe, followed by $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(0.800 \mathrm{mmol}, 2.0$ equiv) in a single portion. After addition of oxidant, the dark turquoise solution gradually turned dark brown. The reaction stirred for 6 h at room temp $\left(\sim 20^{\circ} \mathrm{C}\right)$, and then concentrated under reduced pressure. The remaining dark brown residue was suspended in $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a pad of Celite. Upon removal of solvent under reduced pressure, flash column chromatography on silica allowed separate isolation of each component as colorless oils. When reaction gave $<5 \%$ recovered starting material (rsm), the column conditions were as follows: (35 mm fritted glass column, 150 $\mathrm{mm} \mathrm{SiO}_{2}$), 5:1 hexanes/EtOAc. For incomplete conversion of starting material, column conditions were as follows: 35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}, 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hex (600 mL) $\rightarrow 9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $(350 \mathrm{~mL}) \rightarrow 100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Entry 1. Single addition protocol was followed, except product was isolated as a diastereomeric mixture with starting material under the hexanes/EtOAc column conditions. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate ($119 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Fe}(R, R-\mathrm{PDP})\left(\mathrm{SbF}_{6}\right)_{2}(33.6 \mathrm{mg}$, $0.040 \mathrm{mmol}, 0.10$ equiv $), \mathrm{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(4.0 \mathrm{~mL}$, 0.1 M) were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was ~1:1 (syn:anti).
Run 1: (13 mg of $1.1: 1$ syn:anti mixture, $0.044 \mathrm{mmol}, 11 \%$), ($68 \mathrm{mg} \mathrm{rsm}, 0.228 \mathrm{mmol}, 57 \%$). Run 2: (9 mg of $1.2: 1$ syn:anti mixture, $0.032 \mathrm{mmol}, 8 \%$), ($70 \mathrm{mg} \mathrm{rsm}, 0.236 \mathrm{mmol}, 59 \%$). Average: $\mathbf{1 0 \%}$ yield, $\mathbf{5 8 \%}$ rsm.

Entry 2. Single addition protocol was followed, except product was isolated as a diastereomeric mixture with starting material under the hexanes/EtOAc column conditions. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate ($119 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}(28.2 \mathrm{mg}, 0.040$ $\mathrm{mmol}, 0.10$ equiv $), \mathrm{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(4.0 \mathrm{~mL}, 0.1 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was $\sim 1: 1$ (syn:anti).
Run 1: (24 mg of 1:1 syn:anti mixture, $0.081 \mathrm{mmol}, 20 \%$), ($53 \mathrm{mg} \mathrm{rsm}, 0.178 \mathrm{mmol}, 45 \%$). Run 2: (26 mg of 1.1:1 syn:anti mixture, $0.088 \mathrm{mmol}, 22 \%$), ($44 \mathrm{mg} \mathrm{rsm}, 0.148 \mathrm{mmol}, 37 \%$). Average: 21\% yield, 41\% rsm.

Entry 3. Single addition protocol was followed; starting material was reisolated via flash column (35 mm fritted glass column, 110 mm SiO 2) using $4: 1$ hexanes/EtOAc. (\pm)- (E)-9-phenylnon-2-en-6-yl sulfamate ($119 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Fe}(\mathrm{R}, \mathrm{R}$-salen) Cl ($22.8 \mathrm{mg}, 0.040 \mathrm{mmol}$, 0.10 equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv $)$ and $\mathrm{MeCN}(4.0 \mathrm{~mL}, 0.1 \mathrm{M})$ were used. ${ }^{1} \mathrm{H}$-NMR analysis of the crude product indicated formation of neither the desired insertion product nor aziridine. Due to the presence of an unidentified impurity after column
chromatography, recovery of starting material was determined via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis using PhNO_{2} as an internal standard (delay $=60 \mathrm{~s}$).
Run 1: ($0 \mathrm{mg}, 0 \mathrm{mmol}, 0 \%$ yield), (107 mg rsm, $0.360 \mathrm{mmol}, 90 \%$). Run 2: ($0 \mathrm{mg}, 0 \mathrm{mmol}, 0 \%$ yield), (99 mg rsm, $0.333 \mathrm{mmol}, 83 \%$). Average: $\mathbf{0 \%} \%$ yield, $\mathbf{8 7 \%} \mathbf{~ r s m}$.

Entry 4. Single addition protocol was followed. $(\pm)-(E)-9$-phenylnon-2-en-6-yl sulfamate (119 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv $), \mathrm{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}$, $0.800 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was 18:1 and d.r. was 2.3:1 (syn:anti).
Run 1: (31.8 mg syn +10.9 mg anti ($2.9: 1$ d.r.), $0.145 \mathrm{mmol}, 36 \%$), ($26.3 \mathrm{mg} \mathrm{rsm}, 0.088 \mathrm{mmol}$, 22%). Run 2: (29.8 mg syn +11.1 mg anti ($2.7: 1$ d.r.), $0.138 \mathrm{mmol}, 35 \%$), (24.4 mg rsm, 0.082 $\mathrm{mmol}, 21 \%$). Run 3: ($26.8 \mathrm{mg} \operatorname{syn}+10.0 \mathrm{mg}$ anti ($2.7: 1$ d.r.), $0.125 \mathrm{mmol}, 31 \%$), (26.1 mg rsm , $0.088 \mathrm{mmol}, 22 \%$). Average: $\mathbf{3 4 \%}$ yield, $\mathbf{2 2 \%} \mathbf{~ r s m}$.

Entry 5. Single addition protocol was followed. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate (119 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}\left(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{AgSbF}_{6}(13.7 \mathrm{mg}$, $0.040 \mathrm{mmol}, 0.10$ equiv $), \operatorname{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{MeCN}(800 \mu \mathrm{~L}$, $0.5 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $16: 1$ and d.r. was 2.3:1 (syn:anti).

Run 1: ($36.6 \mathrm{mg} \operatorname{syn}+10.0 \mathrm{mg}$ anti ($3.7: 1$ d.r.), $0.158 \mathrm{mmol}, 39 \%$), ($18.6 \mathrm{mg} \mathrm{rsm}, 0.063 \mathrm{mmol}$, 16%). Run 2: ($38.8 \mathrm{mg} \operatorname{syn}+9.6 \mathrm{mg}$ anti ($4: 1$ d.r.), $0.164 \mathrm{mmol}, 41 \%$), ($12.7 \mathrm{mg} \mathrm{rsm}, 0.043$ $\mathrm{mmol}, 11 \%$). Run 3: (35.0 mg syn +9.3 mg anti ($3.7: 1 \mathrm{~d} . \mathrm{r}$.), $0.150 \mathrm{mmol}, 38 \%$), (19.6 mg rsm , $0.066 \mathrm{mmol}, 16 \%)$. Average: 39\% yield, 14\% rsm.

Entry 6. Single addition protocol was followed. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate (119 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}\left(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{AgSbF}_{6}(13.7 \mathrm{mg}$, $0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}(257 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}$ ($800 \mu \mathrm{~L}, 0.5 \mathrm{M}$) were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was 3.1:1 (syn:anti).

Run 1: (48 mg syn +10.4 mg anti ($4.6: 1$ d.r.), $0.198 \mathrm{mmol}, 49 \%$), ($12 \mathrm{mg} \mathrm{rsm}, 0.040 \mathrm{mmol}$, 10%). Run 2: (53.4 mg syn +9.6 mg anti (5.5:1 d.r.), $0.213 \mathrm{mmol}, 53 \%$), ($8 \mathrm{mg} \mathrm{rsm}, 0.027$ $\mathrm{mmol}, 7 \%$). Run 3: (53.6 mg syn +9.8 mg anti ($5.4: 1$ d.r.), $0.215 \mathrm{mmol}, 54 \%$), (4.1 mg rsm , $0.014 \mathrm{mmol}, \mathbf{3 \%}$). Average: 52\% yield, 7\% rsm.

Entry 7. Single addition protocol was followed. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate (119 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}\left(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{AgSbF}_{6}(13.7 \mathrm{mg}$, $0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}$ $(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was $4.0: 1$ (syn:anti). The crude material was purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 6:1 hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent (the AcOH additive prevents streaking of PivOH and allows it to be more easily separated from the desired products).

Run 1: (62.4 mg syn +14.8 mg anti (4.2:1 d.r.), $0.262 \mathrm{mmol}, 65 \%$), $<5 \% \mathrm{rsm}$. Run 2: (67.4 mg syn +13.2 mg anti ($5: 1$ d.r.), $0.273 \mathrm{mmol}, 68 \%$), $<5 \% \mathrm{rsm}$. Run 3: (69.4 mg syn +13.7 mg anti (5:1 d.r.), $0.282 \mathrm{mmol}, 70 \%$), $<5 \% \mathrm{rsm}$. Average: $\mathbf{6 8 \%}$ yield, $<\mathbf{5 \%} \mathbf{~ r s m}$.

Entry 8. Single addition protocol was followed. (\pm)-(E)-9-phenylnon-2-en-6-yl sulfamate (119 $\mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}\left(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}$, $0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was $3: 1$ (syn:anti). The crude material was purified via flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using 6:1 hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent.
Run 1: (47.7 mg syn +19.7 mg anti (2.4:1 d.r.), $0.228 \mathrm{mmol}, 57 \%$), ($8.7 \mathrm{mg} \mathrm{rsm}, 0.028 \mathrm{mmol}$, 7%). Run 2: (50.0 mg syn +16.1 mg anti ($3.1: 1$ d.r.), $0.224 \mathrm{mmol}, 56 \%$), ($7.5 \mathrm{mg} \mathrm{rsm}, 0.025$ $\mathrm{mmol}, 6 \%$). Average: $\mathbf{5 7 \%}$ yield, $\mathbf{7 \%} \mathbf{~ r s m}$.

Entry 9. $\mathrm{AgSbF}_{6}(3 \mathrm{x} 4.5 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv) and $[\mathrm{FePc}] \mathrm{Cl}(3 \mathrm{x} 8 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv) were weighed out into three separate $1 / 2$-dram borosilicate vials in a glovebox, sealed, covered in aluminum foil, taken out of the box and temporarily stored in a dessicator. A 10 mL round-bottom flask covered in aluminum foil and equipped with a stir bar and rubber septum was charged with $(\pm)-(E)-9$-phenylnon-2-en-6-yl sulfamate ($119 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv) dissolved in 4:1 PhMe: $\mathrm{MeCN}(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$, and then $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv). The contents of one vial were quickly added to the reaction flask under a stream of N_{2}, and then the rubber septum was replaced. After stirring for 2 h at rt , a second portion was added in the same manner; this was then repeated once more in 2 h intervals for a total of three catalyst additions. The reaction stirred for 2 h more at room temp after addition of the final portion for a total reaction time of 6 h , then the reaction was concentrated under reduced pressure. Work-up and purification were performed in a manner identical to that described in the single catalyst addition protocol (vide supra). By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was 3.5:1 (syn:anti). The crude material was purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 6:1 hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent.
Run 1: (66.2 mg syn +14.9 mg anti ($4.4: 1$ d.r.), $0.275 \mathrm{mmol}, 69 \%$), $<5 \% \mathrm{rsm}$. Run 2: (62.8 mg syn +15.0 mg anti ($4.2: 1$ d.r.), $0.263 \mathrm{mmol}, 66 \%$), $<5 \% \mathrm{rsm}$. Run 3: (66.5 mg syn +15.0 mg anti (4.4:1 d.r.), $0.276 \mathrm{mmol}, 69 \%$), $<5 \% \mathrm{rsm}$. Average: $\mathbf{6 8 \%}$ yield, $<\mathbf{5 \%} \mathbf{~ r s m}$.

Olefin and Substrate Scope for Fe-catalyzed Intramolecular C-H Amination

Table 2. Scope of Fe-catalyzed C-H Amination.

styrenyl

(\pm)-2
70% yield (0\% rsm) ${ }^{\text {a }}$
d.r. $=3.5: 1$ syn:ant ${ }^{\text {b }}$
$E: Z>20: 1$
ins./azir. $>20: 1^{\text {b }}$

trisubstituted

$(\pm)-3^{c}$
53% yield (<10\% rsm)
d.r. $=2.7: 1$ syn:anti ins./azir. > 20:1

(\pm)-6
66% yield ($<5 \%$ rsm)
d.r. $=17: 1$ syn:anti
terminal

$(\pm)-4^{C}$
52% yield (10\% rsm) d.r. = 3:1 syn:anti ins./azir. = 12:1
${ }^{a}$ All yields are isolated (syn + anti; rsm in parentheses). ${ }^{b}$ All product ratios determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture. ${ }^{c}$ Conditions: $4 x(0.03$ equiv [FePc$] C l, 0.03$ equiv AgSbF_{6}), 2 equiv $\mathrm{Phl}(\mathrm{OPiv})_{2}, 4: 1 \mathrm{PhMe} / \mathrm{MeCN}$, rt, 8 h . ${ }^{d}$ Determined by GC analysis of crude mixture; starting d.r. $=97: 3 .{ }^{e}$ Determined by GC analysis of crude mixture; starting d.r. $=5: 95$.

Single catalyst addition protocol for [FePc$] \mathrm{Cl}-$ mediated intramolecular amination
Into a 10 mL round-bottom flask was added $\mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv $)$, and a stir bar in a glovebox. The flask was then sealed with a rubber septum, covered in aluminum foil, and taken out of the box. 4:1 $\mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$, sulfamate ester ($0.400 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{PhI}(\mathrm{OPiv})_{2}$ (325 mg , $0.800 \mathrm{mmol}, 2.0$ equiv) were then added sequentially; if sulfamate ester was an oil, it was taken up in the solvent mixture and added to the flask via syringe. After addition of oxidant, the deep violet solution gradually turned dark brown. The reaction stirred for 6 h at room temp $\left(\sim 20^{\circ} \mathrm{C}\right)$, then the reaction was concentrated under reduced pressure. The remaining dark brown residue was suspended in $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a pad of Celite. Upon removal of solvent under reduced pressure, flash column chromatography on silica allowed separate isolation of each component.

Iterative catalyst addition protocol for [FePc$] \mathrm{Cl}-$ mediated intramolecular amination

AgSbF_{6} ($4 \mathrm{x} 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv) and $[\mathrm{FePc}] \mathrm{Cl}(4 \mathrm{x} 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv) were weighed out into four separate $1 / 2$-dram borosilicate vials in a glovebox, sealed, covered in aluminum foil, taken out of the box and temporarily stored in a dessicator. A 10 mL roundbottom flask covered in aluminum foil and equipped with a stir bar and rubber septum was charged with $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L}, 0.5 \mathrm{M})$, sulfamate ester ($0.400 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{PhI}(\mathrm{OPiv})_{2}$ ($325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv); if sulfamate ester is an oil, it was taken up in the solvent mixture and added to the flask via syringe. The contents of one vial were quickly added to the reaction flask under a stream of N_{2}, and then the rubber septum was replaced. After stirring for 2 h at room temp, a second portion was added in the same manner; this was then repeated twice more in 2 h intervals for a total of four catalyst additions. The reaction stirred for 2 h more at room temp after addition of the final portion for a total reaction time of 8 h , then the solvent was removed under reduced pressure. Work-up and purification were performed in a manner identical to that described in the single catalyst addition protocol (vide supra). The iterative addition protocol was used for substrates that did not react to completion under the standard single catalyst addition reaction conditions. While simply increasing catalyst loading under standard reaction conditions with less reactive substrates did not result in improved reactivity, iterative addition of the precatalyst mixture had a beneficial effect on overall reactivity and yield of the desired product.

(\pm)-4-(\boldsymbol{E}-styrenyl)-6-methyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [2].

Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-6-phenylhex-5-en-2-yl sulfamate ($102 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $E: Z$ was $>20: 1$, d.r. was $3.5: 1$ syn:anti, and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 3:1 hexanes:EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave pure syn and anti allylic oxathiazinanes separately.
Run 1: (60.3 mg syn +11.9 mg anti ($5: 1$ d.r.), $0.286 \mathrm{mmol}, 71 \%$), $0 \% \mathrm{rsm}$. Run 2: ($59.6 \mathrm{mg} \operatorname{syn}$ +10.4 mg anti (5.7:1 d.r.), $0.278 \mathrm{mmol}, 69 \%$), $0 \% \mathrm{rsm}$. Run 3: (58.4 mg syn +11.2 mg anti (5.2:1 d.r.), $0.276 \mathrm{mmol}, 69 \%$), $0 \% \mathrm{rsm}$. Average: 70\% yield, $\mathbf{0 \%} \mathbf{~ r s m}$.

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=16.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{br} . \mathrm{d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{dt}, J=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dt}, J=14.012 .0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,133.1,129.2,128.9,127.0,126.2,80.8$, 56.6, 37.6, 21.5; IR (film, cm^{-1}) 3259, 3028, 2985, 2935, 1728, 1495, 1415, 1360, 1188, 1066, 866; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 254.0851$, found
 254.0857.

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=16.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-$ 5.07 (m, 1H), 4.54 (br. d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.43 (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06-1.96 (m, 2H), 1.53 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,132.7,128.8,128.5,128.4,126.8$,
126.7, 79.2, 55.2, 35.4, 21.0; IR (film, cm^{-1}) 3269, 3027, 2983, 2931, 1416, 1365, 1184, 1074, 968, 885; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 276.0670$, found 276.0674.
(土)-4-(2-methylprop-1-en-1-yl)-6-methyltetrahydro-1,2,3-oxathiazine-2,2-dioxide [3]. Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-2-methylhept-6-en-3-yl sulfamate ($82.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 x 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $2.7: 1$ syn:anti and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $(300 \mathrm{~mL}) \rightarrow 19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes as eluent gave syn and anti allylic oxathiazinanes separately.
Run 1: (35.1 mg syn +11.3 mg anti (3.1:1 d.r.), $0.228 \mathrm{mmol}, 57 \%$), $<10 \% \mathrm{rsm}$. Run 2: (32.3 mg syn +9.8 mg anti ($3.3: 1$ d.r.), $0.205 \mathrm{mmol}, 51 \%$), $<10 \% \mathrm{rsm}$. Run 3: (31.1 mg syn +9.6 mg anti (3.2:1 d.r.), $0.198 \mathrm{mmol}, 50 \%$), $<10 \% \mathrm{rsm}$. Average: $\mathbf{5 3 \%}$ yield, $<\mathbf{1 0 \%} \mathbf{~ r s m}$.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.96(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H})$, 3.86 (br. d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (dt, $J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{dt}, J=14.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.8,121.7,80.5,53.2,37.8,25.7,21.3,18.7$; IR (film, cm^{-1}) 3269, 2983, 2935, 2920, 1419, 1354, 1186, 1066, 931, 916, 866, 820, 791; HRMS (ESI) m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 228.0670$, found 228.0673 .

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.57(\mathrm{dt}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 2 \mathrm{H})$, 1.87 (ddd, $J=14.0,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (app s, 3H), $1.68(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 137.4,121.7,79.4,51.3,35.8,25.8,20.9,18.2$; IR (film, cm^{-1}) $3271,2981,2937,2920$, 2885, 1421, 1371, 1354, 1290, 1238, 1182, 1136, 1065, 964, 908, 883, 833, 791; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 228.0670$, found 228.0670.

(\pm)-4-vinyl-6-(1-methylethyl)tetrahydro-1,2,3-oxathiazine-2,2-dioxide [4].

Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-2-methylhept-6-en-3-yl sulfamate ($82.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 x 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), AgSbF_{6} ($4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3: 1$ syn:anti and ins./azir. was 12:1. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $6: 1$ hexanes $/ \mathrm{EtOAc}+1 \% \mathrm{AcOH}(300 \mathrm{~mL}) \rightarrow 4: 1$ hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave syn and anti allylic oxathiazinanes separately.
Run 1: (35.5 mg syn +7.8 mg anti ($4.5: 1$ d.r.), $0.211 \mathrm{mmol}, 53 \%$), $<10 \% \mathrm{rsm}$. Run 2: (33.2 mg syn +7.8 mg anti (4.3:1 d.r.), $0.200 \mathrm{mmol}, 50 \%$), $<10 \% \mathrm{rsm}$. Run 3: (35.1 mg syn +7.8 mg anti (4.5:1 d.r.), $0.209 \mathrm{mmol}, 52 \%$), $<10 \% \mathrm{rsm}$. Average: $\mathbf{5 2 \%}$ yield, $<\mathbf{1 0 \%} \mathbf{~ r s m}$.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{ddd}, J=15.5,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (ddd, $J=12.0,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30-4.23 (m, 1H), 3.84 (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (app. sxt, $J=6.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.89(\mathrm{dt}, J=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dt}, J=14.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.3,117.4,88.7,56.3,32.7,32.3$, 18.0, 17.7; IR (film, cm^{-1}) 3261, 2968, 2927, 2881, 1470, 1419, 1360, 1190, 918, 879, 818; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 228.0670$, found 228.0671.

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{ddd}, J=16.5,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{dd}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 1 \mathrm{H})$, 2.06-1.98 (m, 2H), $1.88(\mathrm{dt}, J=14.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.1,117.3,86.8$, $55.3,32.4,30.6,18.1,17.8$; IR (film, cm^{-1}) 3282, 2970, 2933, 2879, 1470, 1410, 1363, 1182 1032, 993, 883, 831; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 228.0670 , found 228.0669.
(土)-4-(1-methylethyl)-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.

Prepared as a standard using general protocol for Rh conditions. Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO_{2}) using $4: 1$ hexanes/EtOAc as eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.32(\mathrm{dt}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.90$ $(\mathrm{m}, 4 \mathrm{H}), 1.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 91.5,40.1,39.2,32.5,29.3$, 27.1, 18.9, 17.9; IR (film, cm^{-1}) 2968, 2931, 2881, 1470, 1360, 1269, 1173, 1014, 985, 960, 899, 860; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 228.0670$, found 228.0670.
(-)-4,5 $\boldsymbol{\beta}$-(cholest-5-enyl)-1,2,3-oxathiazole-2,2-dioxide [5].
Iterative catalyst addition protocol for Fe conditions was followed, with the exception that a small amount of toluene $(2-3 \mathrm{~mL})$ was added to the $\mathrm{Et}_{2} \mathrm{O}$ suspension prior to Celite filtration in order to improve solubility of starting material and product. (-)-3 β-cholest-5-enyl sulfamate ($186 \mathrm{mg}, 0.400$ $\mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 \times 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.10$ equiv), $\mathrm{PhI}(\text { OPiv })_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1$ PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product ins./azir. was $>20: 1$, and d.r. was $>20: 1$ syn:anti. Flash column chromatography on silica (35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}$) using 9:1 hexanes: EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave pure syn product as a white solid ($\% \mathrm{rsm}$ was determined based on crude ratios). Run 1: ($105 \mathrm{mg}, 0.227 \mathrm{mmol}, 57 \%$), ($20.3 \mathrm{mg} \mathrm{rsm}, 0.044 \mathrm{mmol}, 11 \%$). Run 2: ($102.9 \mathrm{mg}, 0.222 \mathrm{mmol}, 56 \%$), ($20.8 \mathrm{mg} \mathrm{rsm}, 0.045 \mathrm{mmol}, 11 \%$). Run 3: ($112.3 \mathrm{mg}, 0.243$ mmol, 61\%), (17.0 mg rsm, $0.037 \mathrm{mmol}, 9 \%$). Average: $\mathbf{5 8 \%}$ yield, $\mathbf{1 0 \%} \mathbf{~ r s m}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{appt}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dt}, J=10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ $(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dq}, J=3.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=18.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{dt}, J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.43(\mathrm{~m}$, $7 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 6 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{dd}, J=7.0,2.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.8,133.9$, $84.3,62.4,56.9,56.2,49.4,42.5,39.6$ (2 peaks), 36.3, 36.2, 35.9, 33.6, 32.3, 31.6, 28.3, 28.2,
24.3, 23.9, 23.8, 23.0, 22.7, 21.3, 20.7, 18.8, 12.0; IR (film, cm^{-1}) 3292, 2953, 2937, 2866, 1466, 1379, 1338, 1281, 1192, 989, 970; $[\alpha]^{25}{ }_{\mathrm{D}}=-67.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; HRMS (EI) m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+}: 463.3120$, found 463.3139 .

(土)-4-phenyl-6-(1-methylethyl)-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [6].

Single catalyst addition protocol for Fe conditions was followed. (\pm)-1-phenyl-5-methylpentan3 -yl sulfamate ($103 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), AgSbF_{6} ($13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}$ ($325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. Flash column chromatography on silica (35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}$) using $4: 1$ hexanes: $\mathrm{EtOAc}+1 \% \mathrm{AcOH}$ as eluent gave pure syn and anti oxathiazinanes separately.
Run 1: ($65.8 \mathrm{mg} \operatorname{syn}+4.0 \mathrm{mg}$ anti ($16: 1$ d.r.), $0.274 \mathrm{mmol}, 68 \%$), $<5 \% \mathrm{rsm}$. Run 2: (63.8 mg syn +3.8 mg anti (17:1 d.r.), $0.262 \mathrm{mmol}, 65 \%),<5 \% \mathrm{rsm}$. Run 3: (63.9 mg syn +3.8 mg anti ($17: 1$ d.r.), $0.265 \mathrm{mmol}, 66 \%$), $<5 \% \mathrm{rsm}$. Average: $\mathbf{6 6 \%}$ yield, $<\mathbf{5 \%}$ rsm.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.34(\mathrm{~m}, 5 \mathrm{H}), 4.78(\mathrm{ddd}, J=12.0,9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (ddd, $J=11.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (br. d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (dt, $J=$ $14.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (app. sxt, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (dt, $J=14.0,12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4,129.3,129.1,126.5,89.0,58.4,33.6,32.8,18.1$, 17.8; IR (film, cm^{-1}) 3267, 2968, 2935, 2879, 1456, 1416, 1363, 1190, 874; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 256.1007$, found 256.1010.

Anti (minor) diastereomer: Isolated as a white waxy solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{dt}, J=8.0,5.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.58 (br. d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.50 (dt, $J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36$2.22(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,129.1,128.5,126.5,88.1,55.5,31.6,31.4$, 18.6, 18.5; IR (film, cm^{-1}) $3284,2968,2935,2902,2875,1450,1423,1360$, 1176, 891; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 278.0827$, found 278.0829.
(+)-(4S, 6R)-4-methyl 4-(4-methylpentyl)-6-propyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [syn-7].

Iterative catalyst addition protocol for Fe conditions was followed. $(-)-(4 R, 6 R)-6,10$-dimethylundecan-4-yl sulfamate $(112 \mathrm{mg}, 0.400$ mmol, 1.0 equiv, $97: 3$ anti:syn $),[\mathrm{FePc}] \mathrm{Cl}(4 \times 8 \mathrm{mg}, 0.053 \mathrm{mmol}$, 0.13 equiv), $\mathrm{AgSbF}_{6}(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}$ $(800 \mu \mathrm{~L})$ were used. By achiral GC analysis of the crude reaction mixture, d.r. was $97: 3$ syn:anti (the diastereomers in this case are based on the oxathiazinane ring rather than the 1,3 relationship between the oxygen and chiral methyl substituent). Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $9: 1$ hexanes: $\mathrm{EtOAc}+1 \% \mathrm{AcOH}$ as eluent gave oxathiazinane product as a $\sim 40: 1$ syn:anti mixture of diastereomers. If desired, the diastereomers could be readily separated under the stated purification conditions; the pure syn oxathiazinane was isolated as a white solid in this case.

Run 1: (49.6 mg ($39: 1$ syn:anti), $0.179 \mathrm{mmol}, 45 \%$), (32.0 mg rsm, $0.114 \mathrm{mmol}, 29 \%$). Run 2 : (51.1 mg ($40: 1$ syn:anti), $0.184 \mathrm{mmol}, 46 \%$), (30.6 mg rsm, $0.109 \mathrm{mmol}, 27 \%$). Run 3: (47.8 mg ($40: 1$ syn:anti), $0.172 \mathrm{mmol}, 43 \%$), (28.4 mg rsm, $0.101 \mathrm{mmol}, 25 \%$). Average: 45% yield, 27\% rsm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.85$ (ddt, $J=11.0,7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (br. s, 1H), 1.76-1.71 $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.27(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.8,58.5,45.2,40.6$, 39.1, 37.5, 28.0, 22.7 (2 peaks), 22.6, 20.5, 18.0, 13.8; IR (film, cm^{-1}) 3257, 2956, 2872, 1466, 1419, 1383, 1356, 1190, 877; $[\alpha]^{26}{ }_{\mathrm{D}}=+11.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1609$, found 300.1610 .
(-)-(4S, 6S)-4-methyl 4-(4-methylpentyl)-6-propyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [anti-7].

Iterative catalyst addition protocol for Fe conditions was followed. $(+)-(4 R, 6 R)-6,10$-dimethylundecan-4-yl sulfamate $(112 \mathrm{mg}, 0.400$ mmol, 1.0 equiv, 97:3 anti:syn), [FePc]Cl ($4 \times 8 \mathrm{mg}, 0.053 \mathrm{mmol}$, 0.13 equiv), $\mathrm{AgSbF}_{6}(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By achiral GC analysis of the crude reaction mixture, d.r. was $5: 95$ syn:anti (the diastereomers in this case are based on the oxathiazinane ring rather than the 1,3 relationship between the oxygen and chiral methyl substituent). Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2 2 $)$ using $9: 1$ hexanes: $\mathrm{EtOAc}+1 \% \mathrm{AcOH}$ as eluent gave oxathiazinane product as a ~ 1 : X syn:anti mixture of diastereomers. If desired, the diastereomers could be readily separated under the stated purification conditions; the pure anti oxathiazinane was isolated as a white solid in this case.
Run 1: (47.4 mg ($1: 19$ syn:anti), $0.172 \mathrm{mmol}, 43 \%$), ($27.5 \mathrm{mg} \mathrm{rsm}, 0.098 \mathrm{mmol}, 25 \%$). Run 2 : (48.1 mg ($1: 19$ syn:anti), $0.172 \mathrm{mmol}, 43 \%$), (23.6 mg rsm, $0.084 \mathrm{mmol}, 21 \%$). Run 3: (44.3 mg ($1: 19$ syn:anti), $0.160 \mathrm{mmol}, 40 \%$), (22.3 mg rsm, $0.080 \mathrm{mmol}, 20 \%$). Average: $\mathbf{4 2 \%}$ yield, 22\% rsm.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.86-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (br. s, 1H), 2.14-2.09 (m, 1H), 1.76-1.67 $(\mathrm{m}, 2 \mathrm{H}), 1.59-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.28-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.6,58.5,41.4,39.2$, $37.4,36.8,28.9,27.9,22.7,21.6,18.0,13.8$; IR (film, cm^{-1}) 3269, 2956, 2872, 1466, 1421, 1383, 1354, 1190, 1157, 876; $[\alpha]^{26}{ }_{\mathrm{D}}=-35.5^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1609$, found 300.1607 .

Confirmation of Stereoretention in a Stereochemically Defined $3^{\circ} \mathrm{C}-\mathrm{H}$ Bond

In order to confirm the configuration of the tertiary center in 7 following $\mathrm{C}-\mathrm{H}$ amination under [FePc$] \mathrm{SbF}_{6}$ catalysis, standards representing each diasteromeric configuration were prepared. A diastereomeric mixture, resulting from the non-selective addition of allylmagnesium bromide to chirally pure (+)-citronellal, was carried forward for use as a standard for quantitative analysis (vide infra). Authentic standards of each oxathiazinane product, $(+)-$ syn- 7 and (-)-anti-7, were prepared under Rh-catalyzed $\mathrm{C}-\mathrm{H}$ amination conditions. These products are readily separated via flash column chromatography, allowing for full characterization of pure samples of each possible diastereomer that could be formed under the $[\mathrm{FePc}] \mathrm{SbF}_{6}$-catalyzed $\mathrm{C}-\mathrm{H}$ amination conditions. NOTE: the standard that was prepared for the minor diastereomer in each case has the opposite enantiomeric configuration to that which would be formed in the case of epimerization at the reacting tertiary $\mathrm{C}-\mathrm{H}$ center of 7 (if the correct enantiomer is desired, (-)citronellal can instead be used as the starting material).

The relative configurations of (+)-syn-7 and (-)-anti-7 were confirmed based on nOe ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. The ethereal proton peaks at $\delta=4.85 \mathrm{ppm}$ and $\delta=4.85-4.81$ ppm , respectively, were irradiated in each case, and the resulting observed relationships are illustrated below (irradiated protons are highlighted in red). (+)-syn-7 gave a characteristic nOe between the pseudo-axial ethereal proton and the axial methyl group. Conversely, (-)-anti-7 gave no measurable nOe for these two groups, as the ethereal proton in this case is in a pseudoequatorial position, placing it on the opposite side of the ring from the axial methyl group.

Quantitative determination of stereoretention was accomplished via achiral GC analysis. Hydrogenation of the Grignard addition product gave compound S4 as a mixture of diastereomers, which was used as a standard to establish a baseline separation of the
diastereomers by GC. The corresponding diastereomerically enriched (-)-anti-S4 or (+)-anti-S4 were subjected to GC analysis to establish the initial diastereomeric ratio of the starting material that would be subjected to the $[\mathrm{FePc}] \mathrm{SbF}_{6}$-catalyzed $\mathrm{C}-\mathrm{H}$ amination reaction. The diastereomeric mixture of (+)-syn-7 and (-)-anti-7, prepared by the synthetic pathway illustrated above, was used as a standard to establish a baseline separation of the oxathiazinane diastereomers by GC. Following standard work-up protocol for the [FePc] SbF_{6}-catalyzed $\mathrm{C}-\mathrm{H}$ amination reaction, the crude reaction mixture was subjected to GC analysis in triplicate runs using the optimized method established by the standard mixture. The stereoretention under the reaction was then determined by comparing the diastereomeric ratio of the starting material with that of oxathiazinane product 7. No loss of d.r. suggests that the purported carbon-centered radical intermediate has a lifetime shorter than $1 \times 10^{-9} \mathrm{~s}$, whereas a change in d.r. would indicate that the radical is sufficiently long-lived to at least partially racemize a stereodefined tertiary center.

Competition studies for Allylic C-H amination

Table 3. Competition Studies for Allylic C-H Amination.
(0,
${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of crude reaction mixture (d.r. $\sim 3: 1$ unless noted). ${ }^{b}$ Isolated (syn + anti; E/Z >20:1 in all cases); rsm in parentheses. ${ }^{c}$ Conditions: 0.10 equiv [FePc]Cl, 0.10 equiv AgSbF_{6}, 2 equiv $\mathrm{Phl}(\mathrm{OPiv})_{2}, 4: 1 \mathrm{PhMe} / \mathrm{MeCN}$, rt, $6 \mathrm{~h} .{ }^{d}$ Conditions: 0.02 equiv $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, 1.1$ equiv $\mathrm{Phl}(\mathrm{OAc})_{2}, 2.3$ equiv $\mathrm{MgO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{rt}, 4 \mathrm{~h}$. ${ }^{e}$ Conditions: $4 \mathrm{x}(0.03$ equiv [FePc]Cl, 0.03 equiv AgSbF_{6}), 2 equiv $\mathrm{Phl}(\mathrm{OPiv})_{2}, 4: 1 \mathrm{PhMe} / \mathrm{MeCN}, \mathrm{rt}, 8 \mathrm{~h}$.

General procedure for $\mathbf{R h}_{2}(\mathbf{O A c})_{4}$-mediated intramolecular amination ${ }^{9}$

A 10 mL round bottom flask equipped with a stir bar and rubber septum was charged with sulfamate ester ($0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}, 0.15 \mathrm{M})$, magnesium oxide (37.1 mg , $0.920 \mathrm{mmol}, 2.3$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}$, $0.008 \mathrm{mmol}, 0.02$ equiv) sequentially (if sulfamate ester is an oil, it was taken up in solvent and added to the flask via syringe). The reaction stirred at room temp for 4 h . Upon completion, the mint green reaction mixture was filtered through a small pad of MgSO_{4} over Celite and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Upon removal of solvent under reduced pressure, flash column chromatography on silica allowed separate isolation of each component.

(\pm)-4-((1E)-1-propenyl)-6-butyltetrahydro-1,2,3-oxathiazine-2,2-dioxide [8].

Entry 1: Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-dec-8-en-5-yl sulfamate ($94.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}$ ($325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $>20: 1$, ins./azir. was $>20: 1$, and d.r. was $3.8: 1$ syn:anti. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $6: 1$ hexanes $/ \mathrm{EtOAc}+1 \% \mathrm{AcOH}$ as eluent gave pure syn and anti oxathiazinanes separately; the olefin maintained a $>20: 1 E / Z$ geometry in each case.
Run 1: ($42.5 \mathrm{mg} \operatorname{syn}+13.8 \mathrm{mg}$ anti (3.1:1 d.r. - this was $2.9: 1 \mathrm{in}$ crude), $0.242 \mathrm{mmol}, 61 \%$), $<5 \%$ rsm. Run 2: (51.0 mg syn +10.8 mg anti ($4.7: 1$ d.r.), $0.264 \mathrm{mmol}, 66 \%$), $<5 \% \mathrm{rsm}$. Run 3: (50.2 mg syn +11.3 mg anti ($4.4: 1$ d.r.), $0.264 \mathrm{mmol}, 66 \%$), $<5 \% \mathrm{rsm}$. Average: $\mathbf{6 4 \%}$ yield allylic, $<\mathbf{5 \%} \mathbf{~ r s m}$.
Entry 2: General protocol for Rh conditions was followed. (\pm)-(E)-dec-8-en-5-yl sulfamate $\left(94.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), $\mathrm{MgO}(37.1 \mathrm{mg}$, $0.920 \mathrm{mmol}, 2.3$ equiv $), \mathrm{PhI}(\mathrm{OAc})_{2}(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1$ equiv $), \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}, 0.15 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $>20: 1$, ins./azir. was $4: 1$, and d.r. was $4: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 5:1 hexanes/EtOAc $(400 \mathrm{~mL}) \rightarrow 3: 1$ hexanes/EtOAc as eluent gave pure syn and anti oxathiazinanes and aziridine separately; the olefin maintained a $>20: 1 E / Z$ geometry in each case.
Run 1: ($48.0 \mathrm{mg} \operatorname{syn}+8.9 \mathrm{mg}$ anti ($5: 1$ d.r.), $0.245 \mathrm{mmol}, 61 \%$), (15.6 mg aziridine ($3.6: 1$ ins/azir), $0.067 \mathrm{mmol}, 17 \%$), $<5 \% \mathrm{rsm}$. Run 2: ($51.8 \mathrm{mg} \mathrm{syn}+10.1 \mathrm{mg}$ anti (5:1 d.r.), 0.267 $\mathrm{mmol}, 66 \%$), (16.5 mg aziridine ($3.8: 1 \mathrm{ins} / \mathrm{azir}$), $0.067 \mathrm{mmol}, 17 \%$), $<5 \% \mathrm{rsm}$. Run 3: (49.3 mg syn +8.7 mg anti (5.7:1 d.r.), $0.247 \mathrm{mmol}, 62 \%$), (17.4 mg mg aziridine ($3.3: 1 \mathrm{ins} / \mathrm{azir}$), 0.074 $\mathrm{mmol}, 19 \%),<5 \% \mathrm{rsm}$. Average: $\mathbf{6 3 \%}$ yield allylic, $<\mathbf{5 \%} \mathbf{~ r s m}$.

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.77(\mathrm{dq}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=15.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.83$ (br. d, $J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84(\mathrm{dt}, J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.31(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.6,128.6,84.5,56.5,36.1,35.3,27.0,22.6,18.1,14.2$; IR (film, cm^{-1}) 3261 , 2937, 2872, 1417, 1362, 1188, 870; HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 234.1164, found 234.1161.

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81$ (ddd, $\left.J=15.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71$ (dq, $J=$ $15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.40$ (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95-1.88 (m, 2H), 1.84 (ddd, $J=14.5,5.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.46$ $(\mathrm{m}, 1 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.1$, $128.5,83.0,55.0,34.4,33.9,27.1,22.4,17.9,14.0$; IR (film, cm^{-1}) $3375,2958,2935,2872$, 1421, 1367, 1184, 874; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 256.0983, found 256.0984.
(\pm)-trans-4-butyl-8-methyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.

Isolated under Rh conditions (entry 2). Purified via flash column chromatography on silica using $4: 1$ hexanes/EtOAc $\rightarrow 2: 1$ hexanes/EtOAc as the eluent system. Isolated as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.31-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.00$ (app. p, $J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 84.0,47.2,38.6,34.4,32.4,27.7,24.8,22.4,17.1$, 14.0; IR (film, cm^{-1}) 2956, 2932, 2870, 1437, 1373, 1180, 1003, 901, 837; HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 234.1164$, found 234.1168.
(\pm)-4-((1E)-1-propenyl)-6-(2-methylpropyl)tetrahydro-1,2,3-oxathiazine-2,2-dioxide [9].
Entry 3: Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-2-methylnon-7-en-4-yl sulfamate ($94.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $>20: 1$, ins./azir. was $>20: 1$, and d.r. was $3.7: 1$ syn:anti. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 6:1 hexanes:EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave pure syn and anti oxathiazinanes separately; the olefin maintained a $>20: 1 \mathrm{E} / \mathrm{Z}$ geometry in each case.
Run 1: ($54.6 \mathrm{mg} \operatorname{syn}+12.1 \mathrm{mg}$ anti (4.5:1 d.r.), $0.286 \mathrm{mmol}, 72 \%$), $<5 \% \mathrm{rsm}$. Run 2: (56.0 mg syn +11.1 mg anti (5:1 d.r.), $0.288 \mathrm{mmol}, 72 \%$), $<5 \% \mathrm{rsm}$. Run 3: (56.3 mg syn +11.2 mg anti (5:1 d.r.), $0.290 \mathrm{mmol}, 73 \%$), $<5 \% \mathrm{rsm}$. Average: $\mathbf{7 2 \%}$ yield allylic, $<\mathbf{5 \%} \mathbf{~ r s m}$.
Entry 4: General protocol for Rh conditions was followed. (\pm)-(E)-2-methylnon-7-en-4-yl sulfamate ($94.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), MgO $\left(37.1 \mathrm{mg}, 0.920 \mathrm{mmol}, 2.3\right.$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}$, 0.15 M) were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $1.3: 1$, ins./azir. was $6: 1$, and d.r. was $4: 1$. Flash column chromatography on silica (35 mm fritted glass column, 110 mm SiO_{2}) using $4: 1$ hexanes:EtOAc as eluent gave syn and anti oxathiazinanes separately, along with product of 3° insertion (the allylic minor diasteromer and 3° products co-eluted) and aziridine; the olefin maintained a $>20: 1 E / Z$ geometry in each case.
Run 1: ($32.3 \mathrm{mg} \operatorname{syn}+5.1 \mathrm{mg}$ anti ($6: 1$ d.r.), $0.161 \mathrm{mmol}, 40 \%$), (28.1 mg tertiary ($\beta: \beta^{\prime}=1.3: 1$), $0.121 \mathrm{mmol}, 30 \%$), (10.1 mg aziridine ($6: 1 \mathrm{ins} /$ azir), $0.043 \mathrm{mmol}, 11 \%$), $0 \% \mathrm{rsm}$. Run 2: (35.2 mg syn +6.4 mg anti (5.5:1 d.r.), $0.179 \mathrm{mmol}, 45 \%)$, (31.7 mg tertiary $\left(\beta: \beta^{\prime}=1.3: 1\right.$), 0.136 $\mathrm{mmol}, 34 \%$), (9.3 mg aziridine ($8: 1 \mathrm{ins} /$ azir), $0.040 \mathrm{mmol}, 10 \%$), $0 \% \mathrm{rsm}$. Run 3: (33.0 mg syn + 7.5 mg anti (4.4:1 d.r.), $0.174 \mathrm{mmol}, 44 \%$), (37.5 mg tertiary ($\beta: \beta^{\prime}=1.1: 1$), $0.136 \mathrm{mmol}, 34 \%$),
(15.0 mg aziridine ($5: 1 \mathrm{ins} / \mathrm{azir}$), $0.065 \mathrm{mmol}, 16 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{4 3 \%}$ yield allylic, $\mathbf{0 \%}$ rsm.

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a waxy solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=15.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), ~ 4.85-4.80(\mathrm{~m}, 1 \mathrm{H}), ~ 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (br. d, $J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=12.5,8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H}$) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.4,128.4,82.7,56.2,44.4,36.3,24.0,23.0$, 22.0, 17.84; IR (film, cm^{-1}) 3261, 2958, 2873, 1416, 1365, 1188, 876; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0983$, found 256.0984 .

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (ddd, $\left.J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.72(\mathrm{dq}, J=15.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (app. spt, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.75$ (d, $J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 129.2,128.5,81.2,55.1,43.5,34.3,24.1,23.0,21.9,17.9$; IR (film, cm^{-1}) 3275,2960 , 2873, 1421, 1369, 1184, 1012, 996, 874; HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 256.0983$, found 256.0983 .
(\pm)-4-((3E)-3-pentenyl)-6,6-dimethyltetrahydro-1,2,3-oxathiazine-2,2-dioxide.

Isolated under Rh conditions (entry 4). Purified via flash column chromatography on silica (35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}$) using 6:1 hexanes/EtOAc as eluent system. Isolated as a colorless oil; the olefin maintained a $>20: 1 \mathrm{E} / \mathrm{Z}$ geometry. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.48 (dq, $J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (ddt, $J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (ddt, $J=11.0,5.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (br. s, 1H), 2.17-2.09 (m, 2H), 1.84-1.77 (m, 1H), 1.65 (dd, $J=6.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 129.2,126.8,80.7,56.0,41.5,35.1,32.0,27.7,25.2,18.0$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3267,2972,2939$, 2922, 2856, 1421, 1389, 1352, 1192, 1157, 968, 941, 872; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0983$, found 256.0983 .
(\pm)-trans-4-butyl-8-methyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.
Isolated under Rh conditions (entry 4). Purified via flash column

chromatography on silica (35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}$) using 6:1 hexanes/EtOAc $\rightarrow 2: 1$ hexanes/EtOAc as the eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.36$ (ddt, $J=$ $11.5,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65-2.63 (m, $1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{ddd}, J=14.5,9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.3,47.2,43.5,38.6,32.9,24.8,24.7,23.1,21.6,17.1$; IR (film, cm^{-1}) 2960, 2931, 2873, 1439, 1375, 1180, 1003, 903, 764; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0983$, found 256.0981.
(土)-4-((1E)-1-propenyl)-6-(2-methoxyethyl)tetrahydro-1,2,3-oxathiazine-2,2-dioxide [10].
Entry 5: Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-1-methoxyoct-6-en-3-yl sulfamate ($94.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24 \mathrm{mg}, 0.040$ mmol, 0.10 equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800$ mmol, 2.0 equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $7: 1$, ins./azir. was $>20: 1$, and d.r. was $3.8: 1$ syn:anti. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using 3:1 hexanes/EtOAc as eluent gave pure syn and anti oxathiazinanes separately; the olefin maintained a $>20: 1 E / Z$ geometry in each case. Due to the instability of the ethereal product on silica, product ratios in this case were based solely on the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations.
Run 1: (53.6 mg syn +13.7 mg anti ($4: 1$ d.r.), $0.286 \mathrm{mmol}, 72 \%$), $0 \% \mathrm{rsm}$. Run 2: ($54.5 \mathrm{mg} \operatorname{syn}$ +11.9 mg anti (4.5:1 d.r.), $0.283 \mathrm{mmol}, 71 \%$), $0 \% \mathrm{rsm}$. Run 3: (54.4 mg syn +11.8 mg anti ($4.6: 1$ d.r.), $0.282 \mathrm{mmol}, 70 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{7 1 \%}$ yield allylic, $\mathbf{0 \%} \mathbf{~ r s m}$.
Entry 6: General protocol for Rh conditions was followed. (\pm)-(E)-1-methoxyoct-6-en-3-yl sulfamate ($94.8 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), MgO ($37.1 \mathrm{mg}, 0.920 \mathrm{mmol}, 2.3$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}$, $0.15 \mathrm{M})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, $\beta: \beta$ ' was $4: 1$ and ins./azir. was $4: 1$ (only the ethereal and aziridine products gave clear peaks in the crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$, so product ratios were based on these peaks and isolated yields). Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}_{2}$) using 2:1 hexanes:EtOAc $+2 \% \mathrm{Et}_{3} \mathrm{~N}(500 \mathrm{~mL}) \rightarrow 1: 1$ hexanes/EtOAc as eluent gave syn and anti allylic oxathiazinanes and aziridine separately; the olefin maintained a $>20: 1 E / Z$ geometry in each case. In one case (Run 3), the crude material was purified using Davisil grade 643 silica gel in order to confirm the crude ratios for the ethereal product (the ethereal product is acid-sensitive and decomposes on normal silica, precluding quantitative isolation); 3:1 hexanes/EtOAc $(300 \mathrm{~mL}) \rightarrow 2: 1$ hexanes/EtOAc $(300 \mathrm{~mL}) \rightarrow 1: 1$ hexanes/EtOAc was used as the eluent.
Run 1: ($35.4 \mathrm{mg} \operatorname{syn}+8.5 \mathrm{mg}$ anti ($4: 1$ d.r.), $0.188 \mathrm{mmol}, 47 \%$), (14.3 mg aziridine ($3.5: 1$ ins./azir.), $0.060 \mathrm{mmol}, 15 \%$), $<5 \% \mathrm{rsm}$. Run $2:(35.3 \mathrm{mg} \operatorname{syn}+8.9 \mathrm{mg}$ anti ($4: 1$ d.r.), 0.188 $\mathrm{mmol}, 47 \%$), (14.9 mg aziridine ($3.7: 1 \mathrm{ins} /$ azir), $0.064 \mathrm{mmol}, 16 \%$), $<5 \% \mathrm{rsm}$. Run 3: (30.0 mg syn +7.6 mg anti (3.9:1 d.r.), $0.160 \mathrm{mmol}, 40 \%$), (11.0 mg ethereal ($\beta: \beta^{\prime}=3.4: 1$), 0.047 mmol , 12% yield), (13.4 mg aziridine ($3.6: 1 \mathrm{ins} / \mathrm{azir}$), $0.057 \mathrm{mmol}, 14 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{4 5 \%}$
yield allylic, $<\mathbf{5 \%} \mathbf{~ r s m}$.

Syn (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dd, $J=15.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96-4.91 (m, 1H), 4.23-4.19 (m, 1H), 3.90-3.83 (m, $1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.57 (dt, $J=14.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.5,128.2,81.6$, 67.6, 59.0, 56.2, 35.9, 35.7, 17.9; IR (film, cm^{-1}) 3259, 3174, 2934, 2881, 1421, 1360, 1188, 1117, 864; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0776$, found 258.0778.

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{dd}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dq}, J=16.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (app. spt, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (br. d, $J=7.5 \mathrm{~Hz}$, 1 H), 4.21 (app. p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57-3.48 (m, 2H), $3.35(\mathrm{~s}, 3 \mathrm{H})$, 2.24-2.18 (m, 1H), 1.97-1.87(m, 3H), 1.73(d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$

NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.3,128.4,80.4,67.9,59.0,54.8,34.7,33.9,17.9$; IR (film, cm^{-1}) 3273, 2924, 2885, 1423, 1369, 1186, 1119, 968 870; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0776$, found 258.0775 .
$(\pm)-4-((3 E)$-3-pentenyl)-6-methoxytetrahydro-1,2,3-oxathiazine-2,2-dioxide.

Due to its instability under silica-based flash column chromatography conditions, the minor ethereal product could not be isolated in a quantitative manner. However, a sufficient amount was isolated pure for the purposes of characterization, to ensure use of appropriate ${ }^{1} \mathrm{H}$ NMR peaks for product ratio determination in the crude reaction mixture. Isolated as a colorless oil; the olefin maintained a $>20: 1 \mathrm{E} / \mathrm{Z}$ geometry. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.49(\mathrm{dq}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{ddt}, J=15.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (dt, J $=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{br} . \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.10(\mathrm{~m}$, $2 \mathrm{H}), 2.09(\mathrm{dt}, J=14.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.9,127.1,87.9,80.0,56.9,37.0$, 34.8, 27.6, 18.1; IR (film, cm^{-1}) 3246, 2922, 2852, 1450, 1416, 1365, 1192, 968, 866; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0776$, found 258.0774.
(\pm)-trans-4-(2-methoxyethyl)-8-methyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.

Isolated under Rh conditions (entry 6). Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO_{2}) using 3:1 hexanes/EtOAc (300 mL) $\rightarrow 2: 1$ hexanes/EtOAc $(500 \mathrm{~mL}) \rightarrow 1: 1$ hexanes/EtOAc as the eluent system. Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.49-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, 3.01 (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{dt}, J=4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.2,68.4,59.0,47.2,38.7,34.9$, 32.5, 24.8, 17.1; IR (film, cm^{-1}) 2974, 2924, 2879, 1439, 1373, 1180, 1003, 903; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 236.0957$, found 236.0957.
(土)-4-((1E)-1-propenyl)-6-(2-phenylethyl)tetrahydro-1,2,3-oxathiazine-2,2-dioxide [11].
Entry 7: Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-1-phenyloct-6-en-3-yl sulfamate ($113 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$ and d.r. was $3.5: 1$ syn:anti (for benzylic product, d.r. was $>20: 1$ syn:anti). Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 9:1 hexanes/EtOAc $+1 \% \mathrm{AcOH}(180 \mathrm{~mL}) \rightarrow 6: 1$ hexanes/EtOAc $+1 \% \mathrm{AcOH}(180 \mathrm{~mL}) \rightarrow 4: 1$ hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave pure benzylic and syn and anti allylic oxathiazinanes separately; the olefin maintained a $>20: 1 \mathrm{E} / \mathrm{Z}$ geometry in each case. Due to overlapping peaks in crude reaction mixture, $\beta: \beta$ ' was calculated based on isolated yields of the allylic and benzylic products after column purification; $\beta: \beta^{\prime}=5: 1$.
Run 1: (56.2 mg syn +10.8 mg anti (5.2:1 d.r.), $0.238 \mathrm{mmol}, 60 \%$), (13.0 mg benzylic ($5: 1$ allylic/benzylic), $0.046 \mathrm{mmol}, 12 \%$), $0 \% \mathrm{rsm}$. Run 2: (53.2 mg syn +13.8 mg anti (3.9:1 d.r.), $0.238 \mathrm{mmol}, 60 \%$), (14.5 mg benzylic ($4.6: 1$ allylic/benzylic), $0.052 \mathrm{mmol}, 13 \%$), $0 \% \mathrm{rsm}$. Run 3: (61.6 mg syn +12.8 mg anti ($4.8: 1$ d.r.), $0.264 \mathrm{mmol}, 66 \%$), $(9.6 \mathrm{mg}$ benzylic ($7: 1$ allylic/benzylic), $0.036 \mathrm{mmol}, 9 \%$). Average: $\mathbf{6 2 \%}$ yield allylic, $\mathbf{0 \%} \mathbf{~ r s m}$.

Entry 8: General protocol for Rh conditions was followed. (\pm)-(E)-1-phenyloct-6-en-3-yl sulfamate ($113 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), MgO ($37.1 \mathrm{mg}, 0.920 \mathrm{mmol}, 2.3$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.6 mL , 0.15 M) were used. Due to significant overlap of relevant peaks, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product was not possible. Flash column chromatography on silica (35 mm fritted glass column, 110 mm SiO 2) using 6:1 hexanes/EtOAc $(500 \mathrm{~mL}) \rightarrow 3: 1$ hexanes/EtOAc $(250 \mathrm{~mL}) \rightarrow 2: 1$ hexanes/EtOAc as eluent gave benzylic, syn and anti allylic oxathiazinanes and aziridine separately; the olefin maintained a $>20: 1 E / Z$ geometry in each case. $\beta: \beta$, ins./azir. and d.r. were calculated based on isolated yields of the allylic and benzylic products after column purification; $\beta: \beta^{\prime}=2: 1$, ins. $/$ azir. $=4: 1$, d.r. $=5: 1$.
Run 1: (46.2 mg syn +9.4 mg anti ($5: 1$ d.r.), $0.199 \mathrm{mmol}, 50 \%$), (26.0 mg benzylic ($\beta: \beta^{\prime}=2: 1$), $0.093 \mathrm{mmol}, 23 \%$), (18.9 mg aziridine ($4: 1 \mathrm{ins} . /$ azir.), $0.068 \mathrm{mmol}, 17 \%$), $0 \% \mathrm{rsm}$. Run 2: (43.3 mg syn +10.2 mg anti ($4: 1$ d.r.), $0.191 \mathrm{mmol}, 48 \%$), (24.1 mg benzylic ($\beta: \beta^{\prime}=2: 1$), 0.086 $\mathrm{mmol}, 22 \%$), (17.6 mg aziridine ($4: 1 \mathrm{ins} /$ azir), $0.063 \mathrm{mmol}, 16 \%$), $0 \% \mathrm{rsm}$. Run 3: ($50.2 \mathrm{mg} \operatorname{syn}$ +9.3 mg anti ($5.4: 1$ d.r.), $0.213 \mathrm{mmol}, 53 \%$), (22.3 mg benzylic ($\beta: \beta^{\prime}=2.6: 1$), 0.080 mmol , 20%), (13.9 mg aziridine ($6: 1 \mathrm{ins} /$ azir), $0.050 \mathrm{mmol}, 12 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{5 0 \%}$ yield allylic, 0\% rsm.

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{dq}, J=$ $15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 1 \mathrm{H})$, 4.22-4.16 (m, 1H), $3.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.77-$ $2.71(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=14.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{dt}, J=14.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,129.5$, $128.8,128.7,128.2,126.5,83.0,56.1,37.2,35.8,30.8,17.9$; IR (film, cm^{-1}) 3263, 3028, 2922, 2856, 1417, 1360, 1186, 870; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 304.0983, found 304.0978.

Anti (minor) diastereomer: Isolated as a colorless waxy oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.76$ (dd, $J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (app. spt, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28 (br. d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22 (app. p, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.88 (ddd, $J=14.0,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (ddd, $J=13.5,9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (ddt, J $=9.0,5.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 140.6,129.3,128.7$ (2 peaks), 128.3, 126.4, 82.0, 54.9, 36.4, 34.0, 31.2, 17.9; IR (film, cm^{-1}) 3286, 3271, 3028, 2922, 2856, 1419, 1367, 1186, 1038, 996, 876; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 304.0983$, found 304.0984 .
(\pm)-4-((3E)-3-pentenyl)-4-phenyltetrahydro-1,2,3-oxathiazine-2,2-dioxide.

Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.33(\mathrm{~m}$, $5 \mathrm{H}), 5.51(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.91-4.86 (m, 1H), 4.80 (ddd, $J=12.0,9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), ~ 4.14-4.12$ (br. $\mathrm{m}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{dt}, J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2$, $129.3,129.1,129.0,127.1,126.4,83.7,58.3,36.3,35.2,27.6,18.1$; IR (film, cm^{-1}) 3261,3024 , 2960, 2937, 2920, 2856, 1456, 1416, 1360, 1186, 1053, 864; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1164$, found 282.1162.
(土)-trans-4-(2-phenylethyl)-8-methyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.
Isolated under Rh conditions (entry 8). Purified via flash column
 chromatography on silica (35 mm fritted glass column, 110 mm SiO_{2}) using 9:1 hexanes/EtOAc $\rightarrow 4: 1$ hexanes/EtOAc $\rightarrow 2: 1$ hexanes/EtOAc as eluent system. Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17$ (m, 3H), 4.32-4.27 (m, 1H), 3.03 (app. p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (ddd, $J=14.0,9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.67$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.7$ (2 peaks), 126.4, 121.8, 82.8, 47.1, 38.7, 36.6, 32.5, 31.8, 24.6, 17.1; IR (film, cm^{-1}) 3026, 2929, 2864, 1496, 1454, 1373, 1180, 1036, 997, 901; HRMS (ESI) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1164$, found 282.1164.
$(\pm)-(E)$-methyl 3-(6-methyl-2,2-dioxido-1,2,3-oxathiazinan-4-yl)acrylate [12]; entry 9.
Iterative catalyst addition protocol for Fe conditions was followed. (\pm) $-(E)$-methyl 6-(sulfamoyloxy)hept-2-enoate ($94.9 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 \mathrm{x} 8 \mathrm{mg}, 0.053 \mathrm{mmol}$, 0.13 equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. $\mathrm{By}{ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3: 1$ syn:anti and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes/ EtOAc as eluent gave syn allylic oxathiazinane, recovered starting material and anti allylic oxathiazinane separately.
Run 1: ($30.6 \mathrm{mg} \operatorname{syn}+8.2 \mathrm{mg}$ anti (3.7:1 d.r.), $0.165 \mathrm{mmol}, 41 \%$), ($21.7 \mathrm{mg} \mathrm{rsm}, 0.091 \mathrm{mmol}$, 23\%). Run 2: ($31.2 \mathrm{mg} \operatorname{syn}+5.9 \mathrm{mg}$ anti ($5.2: 1$ d.r.), $0.158 \mathrm{mmol}, 39 \%$), ($14.8 \mathrm{mg} \mathrm{rsm}, 0.062$ $\mathrm{mmol}, 16 \%$). Run 3: (26.4 mg syn +7.5 mg anti ($3.5: 1$ d.r.), $0.144 \mathrm{mmol}, 36 \%$), (14.8 mg rsm , $0.062 \mathrm{mmol}, 16 \%$). Average: $\mathbf{3 9 \%}$ yield, $\mathbf{1 8 \%} \mathbf{~ r s m}$.
 Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=16.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92$ (dddd, $J=12.0,10.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 1 \mathrm{H})$, 4.31 (br. d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 1.96 (dt, $J=14.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.57(\mathrm{dt}, J=14.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,143.4,122.5,80.5,55.2,52.2,36.4,21.2$; IR (film, cm^{-1}) 3244, 2985, 2956, 1712, 1664, 1439, 1363, 1323, 1286, 1254, 1188, 1124, 1076, 1028, 980, 941, 866, 796; HRMS (ESI) m/z calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$:
 258.0412, found 258.0413.

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=16.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00$ (dddd, $J=16.0,9.5,6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.56 (br. d, $J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (ddd, $J=15.0,9.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.95(\mathrm{dt}, J=14.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.2,144.3,123.5,78.7,53.9,52.1,34.3,21.1$; IR (film, cm^{-1}) 3251, 2993, 2953, 1712, 1662, 1437, 1369, 1321, 1282, 1182, 1072, 885, 862, 808; HRMS (ESI) m / z calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 258.0412$, found 258.0410.
(\pm)-(E)-3-(6-methyl-2,2-dioxido-1,2,3-oxathiazinan-4-yl)allyl acetate [13]; entry 10.
Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-6-(sulfamoyloxy)hept-2-en-1-yl acetate ($101 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}$ ($4 \mathrm{x} 8 \mathrm{mg}, 0.053$ mmol, 0.13 equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}$ ($325 \mathrm{mg}, 0.800$ mmol, 2.0 equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3: 1$ syn:anti and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO) using 19:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(800 \mathrm{~mL}$) \rightarrow 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(150 \mathrm{~mL}) \rightarrow 6: 1 \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ as eluent gave syn and anti allylic oxathiazinanes plus recovered starting material separately.
Run 1: ($39.4 \mathrm{mg} \operatorname{syn}+10.5 \mathrm{mg}$ anti ($3.8: 1$ d.r.), $0.200 \mathrm{mmol}, 50 \%$), ($12.5 \mathrm{mg} \mathrm{rsm}, 0.050 \mathrm{mmol}$, 12%). Run 2: (36.2 mg syn +8.0 mg anti ($4.5: 1$ d.r.), $0.177 \mathrm{mmol}, 44 \%$), ($12.3 \mathrm{mg} \mathrm{rsm}, 0.049$ $\mathrm{mmol}, 12 \%$). Run 3: ($37.2 \mathrm{mg} \operatorname{syn}+10.6 \mathrm{mg}$ anti ($3.5: 1$ d.r.), $0.191 \mathrm{mmol}, 48 \%$), (16.4 mg rsm, $0.065 \mathrm{mmol}, 16 \%)$. Average: 47\% yield, $\mathbf{1 3 \%}$ rsm.

Syn (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (ddt, $\left.J=16.0,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.70$ (dd, $J=$ $16.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 (dddd, $J=12.5,10.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.31$ (br. d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (s, 3H), $1.87(\mathrm{dt}, J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dt}, J=14.0,12.0 \mathrm{~Hz}$, 1H), $1.41(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,130.6,127.3,80.5,63.7$, 55.6, 36.7, 21.2, 20.9; IR (film, cm^{-1}) 3244, 2985, 2939, 1736, 1425, 1363, 1238, 1188, 1111, 1066, 1030, 970, 933, 864, 796; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 272.0569, found 272.0569.

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{ddt}, J=15.5,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (ddt, $J=$ $16.0,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02$ (dddd, $J=16.0,10.0,6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52$ (br. d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (app p, $J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (ddd, $J=14.5,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (dt, $J=14.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,131.5,127.3,78.9,64.0,54.3,34.8,21.0\left(2\right.$ peaks); IR (film, cm^{-1}) 3261, 2985, 2939, 1738, 1425, 1367, 1240, 1184, 1095, 1061, 1030, 970, 883, 837, 796; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 272.0569$, found 272.0570.

(\pm)-(E)-methyl 5-(2,2-dioxido-4-((E)-prop-1-en-1-yl)-1,2,3-oxathiazinan-6-yl)pent-2-enoate [14]; entry 11.

Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-($2 E, 9 E$)-methyl 6-(sulfamoyloxy)undeca-2,9-dienoate ($117 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 x 8 \mathrm{mg}, 0.053$ mmol, 0.13 equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\operatorname{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800$ mmol, 2.0 equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, ins./azir. was $>20: 1$. By GC analysis of the crude product, $\beta: \beta$ ' $=14: 1$ and d.r. $=4: 1$ syn:anti. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 3:1 hexanes/EtOAc as eluent gave syn ester allylic oxathiazinane plus syn and anti methyl allylic oxathiazinanes separately.

Run 1: ($50.3 \mathrm{mg} \operatorname{syn}+12.4 \mathrm{mg}$ anti (4.0:1 d.r.), $0.216 \mathrm{mmol}, 54 \%$), $0 \% \mathrm{rsm}$. Run 2: $(50.1 \mathrm{mg}$ syn +11.9 mg anti ($4.2: 1$ d.r.), $0.214 \mathrm{mmol}, 53 \%$), $0 \% \mathrm{rsm}$. Run 3: (52.6 mg syn +13.7 mg anti (3.8:1 d.r.), $0.229 \mathrm{mmol}, 57 \%$), 0% rsm. Average: 55\% yield, $\mathbf{0 \%}$ rsm.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90$ (dt, $J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (dt, $J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), ~ 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), ~ 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), ~ 4.19-4.18(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.51(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,147.0,129.5,127.9,122.2,82.8,56.1,51.6,35.5$, $33.5,27.2,17.9$; IR (film, cm^{-1}) 3236, 2953, 2922, 2856, 1722, 1657, 1437, 1362, 1323, 1286, 1188, 1049, 968, 868; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0882$, found 312.0883 .

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93$ (dt, $J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.68(\mathrm{~m}, 2 \mathrm{H}), 4.84$ (app spt, J $=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{app} \mathrm{p}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}$, 1 H), 2.12 (ddd, $J=14.5,9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (ddd, $J=14.5,8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (ddd, $J=$ $14.5,5.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.0,147.1,129.4,128.2,122.3,81.7,54.8,51.7,33.8,32.9,27.6,17.9$; IR (film, cm^{-1}) 3257, 2951, 2931, 2854, 1722, 1658, 1437, 1367, 1286, 1184, 1043, 968, 872; HRMS (ESI) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0882$, found 312.0884.
(\pm)-(E)-methyl \quad 3-(2,2-dioxido-6-((E)-pent-3-en-1-yl)-1,2,3-oxathiazinan-4-yl)acrylate:

Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.83 (dd, $J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, $J=16.0,2.0 \mathrm{~Hz}$, 1 H), 5.48 (dq, $J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (ddt, $J=15.0,6.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.27$ (br. $\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{dt}$, $J=14.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{dt}, J=14.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1$, $143.4,128.9,127.1,122.5,83.4,55.2,52.2,35.1,34.9,27.5,18.0$; IR (film, cm^{-1}) 3236,3024 , 2995, 2953, 2920, 2856, 1712, 1664, 1439, 1365, 1323, 1284, 1259, 1188, 1126, 970, 868, 821; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0882$, found 312.0883.
(\pm)-(E)-methyl 5 -(8-methyl-2,2-dioxido-3-oxa-2-thia-1-azabicyclo[5.1.0]octan-4-yl)pent-2enoate.

Prepared as a standard using general protocol for Rh conditions. Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $3: 1$ hexanes/EtOAc $(400 \mathrm{~mL}) \rightarrow 2: 1$ hexanes/EtOAc $(200 \mathrm{~mL}) \rightarrow$ 1:1 hexanes/EtOAc as eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.89(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{app} \mathrm{p}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}$, $3 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 166.9,147.0,122.3,82.6,51.6,47.2,38.7,33.0,32.4,28.2,24.7,17.1 ;$ IR (film, cm^{-1})

2953, 2931, 2852, 1722, 1658, 1439, 1373, 1273, 1180, 1041, 1001, 901, 837, 687, 631; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0882$, found 312.0884.

(\pm)-2-(2,2-dioxido-4-((E)-prop-1-en-1-yl)-1,2,3-oxathiazinan-6-yl)ethyl acetate [15]; entry

 12.Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-3-(sulfamoyloxy) oct6 -en- 1 -yl acetate ($106 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 \times 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and 4:1 PhMe:MeCN $(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3: 1$ syn:anti and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes/EtOAc as eluent gave syn and anti allylic oxathiazinanes separately.
Run 1: ($52.1 \mathrm{mg} \operatorname{syn}+11.9 \mathrm{mg}$ anti (4.4:1 d.r.), $0.244 \mathrm{mmol}, 61 \%$), $0 \% \mathrm{rsm}$. Run 2: (53.1 mg syn +12.3 mg anti ($4.3: 1$ d.r.), $0.249 \mathrm{mmol}, 62 \%$), $0 \% \mathrm{rsm}$. Run 3: (50.3 mg syn +12.2 mg anti (4.1:1 d.r.), $0.238 \mathrm{mmol}, 60 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{6 1 \%}$ yield, $\mathbf{0 \%}$ rsm.

Syn (major) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$
 ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{ddd}, J=$ $15.5,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.26$ (br. d, $J=10.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.23-4.12 (m, 3H), 2.05-1.94 (m, 2H), 2.04 (s, 3H), 1.84 (dt, J $=14.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{dt}, J=14.0$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,129.6,127.9,80.7,59.5,56.2,35.4,34.3$, 21.0, 17.9; IR (film, cm^{-1}) 3255, 2966, 2939, 2922, 2858, 1728, 1425, 1367, 1248, 1188, 1136, 1095, 1051, 970, 866, 823, 769; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 286.0725, found 286.0722.

Anti (minor) diastereomer: Isolated as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80-5.69$
 (m, 2H), 4.99 (app spt, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.28-4.17 (m, 3H), 2.30 (ddt, $J=15.0,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06 (s, $3 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,129.5,128.2,79.6,60.0,54.7,33.6$ (2 peaks), 21.0, 17.9; IR (film, cm^{-1}) 3255, 2962, 2920, 1738, 1425, 1367, 1246, 1186, 1099, 1047, 968, 870, 766; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 286.0725, found 286.0725.
(\pm)-2-(8-methyl-2,2-dioxido-3-oxa-2-thia-1-azabicyclo[5.1.0]octan-4-yl)ethyl acetate.
Prepared as a standard using general protocol for Rh conditions.
 Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes $/ E t O A c(600 \mathrm{~mL}$) $\rightarrow 1: 1$ hexanes/EtOAc as eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.45-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=$ $11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.01$ (app p, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66-2.64 (m, 1H), 2.53-2.42 (m, 2H), 2.05 (s, 3H), 1.99-1.91 (m, 2H), 1.90-1.84 (m, 1H), 1.81$1.72(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,80.4,60.3,47.1$, 38.8, 33.7, 32.3, 24.7, 21.0, 17.1; IR (film, cm^{-1}) 2970, 2931, 1739, 1439, 1373, 1248, 1180, 1047, 1005, 903, 754, 687; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 286.0725$, found 286.0722.
(\pm)-ethyl 2-(2,2-dioxido-4-((E)-prop-1-en-1-yl)-1,2,3-oxathiazinan-6-yl)acetate [16]; entry 13.

Single catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-ethyl 3-(sulfamoyloxy)oct-6-enoate ($106 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}$, 0.10 equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3: 1$ syn:anti and ins./azir. was $>20: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 3:1 hexanes/EtOAc as eluent gave syn and anti allylic oxathiazinanes separately.
Run 1: (58.4 mg syn +18.2 mg anti (3.2:1 d.r.), $0.292 \mathrm{mmol}, 73 \%$), $0 \% \mathrm{rsm}$. Run 2: (57.3 mg syn +15.1 mg anti (3.8:1 d.r.), $0.276 \mathrm{mmol}, 69 \%$), $0 \% \mathrm{rsm}$. Run 3: (53.1 mg syn +14.8 mg anti (3.6:1 d.r.), $0.259 \mathrm{mmol}, 65 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{6 9 \%}$ yield, $\mathbf{0 \%} \mathbf{~ r s m}$.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 5.77(\mathrm{dq}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.38(\mathrm{~m}, 1 \mathrm{H})$, 5.13 (ddt, $J=15.0,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=16.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=16.3,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97(\operatorname{app~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-$ $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,129.6,127.8,79.7$, $61.3,56.1,40.1,35.0,17.9,14.2$; IR (film, cm^{-1}) 3257, 2983, 2941, 2920, 1736, 1423, 1365, 1311, 1219, 1188, 1047, 10128, 941, 870, 791; HRMS (ESI) m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 264.0906$, found 264.0914 .

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.30-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.53$ (br. d, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $16.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=16.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.73(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,129.4$, $128.0,78.5,61.4,54.5,39.1,32.8,18.0,14.2$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3267,2983,2939,2922,1732$, $1425,1371,1309,1186,1034,968,881,787$; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 264.0906$, found 264.0900 .
(\pm)-ethyl trans-2-(8-methyl-2,2-dioxido-3-oxa-2-thia-1-azabicyclo[5.1.0]octan-4-yl)acetate.
Prepared as a standard using general protocol for Rh conditions.
 Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $2: 1$ hexanes/EtOAc as eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.73-4.68 (m, 1H), 4.21-4.11 (m, 2H), 3.03 (app p, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dd, $J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,79.2,61.3,47.1,39.6,38.9,31.9$, 24.6, 17.1, 14.2; IR (film, cm^{-1}) 2981, 2931, 1738, 1443, 1375, 1298, 1265, 1221, 1180, 1034, 1016, 908, 771; HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 264.0906$, found 264.0905 .
(\pm)-4-((E)-prop-1-en-1-yl)-6-(2-(2,6,6-trimethylcyclohex-1-en-1-yl)ethyl)-1,2,3oxathiazinane 2,2-dioxide [17]; entry 14.
Iterative catalyst addition protocol for Fe conditions was followed. (\pm)-(E)-1-(2,6,6-trimethylcyclohex-1-en-1-yl)oct-6-en-3-yl sulfamate ($132 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}$ ($4 \times 8 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13$ equiv), $\mathrm{AgSbF}_{6}\left(4 \times 4.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.13\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}$ ($325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}\left(800 \mu \mathrm{~L}\right.$) were used. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude product, d.r. was $3.5: 1$ syn:anti, ins./azir. was $>20: 1$ and $\beta: \beta$ ' was $7: 1$. Flash column chromatography on silica (35 mm fritted glass column, $150 \mathrm{~mm} \mathrm{SiO}{ }_{2}$) using 19:1 hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave syn methyl allylic oxathazinane separately; the anti methyl and syn tetrasubstituted allylic oxathiazinanes were isolated as a mixture.
Run 1: (51.6 mg syn +13.3 mg anti ($3.9: 1$ d.r.), $0.198 \mathrm{mmol}, 50 \%$), (6.6 mg syn-tetrasubstituted $\left.\left(\beta: \beta^{\prime}=9.8: 1\right), 0.020 \mathrm{mmol}, 5 \%\right), 0 \% \mathrm{rsm}$. Run 2: (59.7 mg syn +13.1 mg anti ($4.6: 1$ d.r. $), 0.220$ $\mathrm{mmol}, 55 \%$), (8.9 mg syn-tetrasubstituted ($\beta: \beta^{\prime}=8.2: 1$), $0.027 \mathrm{mmol}, 7 \%$), $0 \% \mathrm{rsm}$. Run 3: (59.1 mg syn +13.3 mg anti ($4.4: 1$ d.r.), $0.221 \mathrm{mmol}, 55 \%$), (8.3 mg syn-tetrasubstituted ($\beta: \beta^{\prime}=$ $8.7: 1$), $0.025 \mathrm{mmol}, 6 \%$), $0 \% \mathrm{rsm}$. Average: $\mathbf{5 3 \%}$ yield, $\mathbf{0 \%}$ rsm.

$\boldsymbol{S y n}$ (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77$ (ddq, $\left.J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.41$ (ddd, $J=15.5,5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}$, 1 H), 3.97 (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (dt, $J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.01(\mathrm{dt}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{dt}, J=$ $14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.72$ (dt, J $=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,129.4,128.2,128.1,84.7,56.2,39.8,35.9,35.5,35.1,32.8,28.6$, 23.6, 19.9, 19.5, 17.9; IR (film, cm^{-1}) 3261, 2956, 2927, 2866, 2831, 1473, 1419, 1360, 1188, 1057, 966, 912, 870, 818, 735; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.1766 , found 350.1765 .

Anti (minor) diastereomer: Isolated as a colorless oil by resubjecting the product mixture from above to flash column chromatography (25 mm fritted glass column, $140 \mathrm{~mm} \mathrm{SiO}{ }_{2}$) in 3:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hex (the β ' product could not be isolated, even after flushing column). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (ddd, $J=$ $15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dq}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.83$ (m, 1H), 4.34 (br. d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\operatorname{app} \mathrm{p}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93$ $(\mathrm{m}, 3 \mathrm{H}), 1.90(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{app} \mathrm{dt}, J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.72-1.63(\mathrm{~m}, 1 \mathrm{H}) 1.59-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.9,129.3,128.5,128.2,83.4,55.1,39.9,35.4,35.1,33.9$, 32.9, 28.7 (2 peaks), 24.2, 20.0, 19.6, 18.0; IR (film, cm^{-1}) 3273, 2947, 2927, 2864, 1423, 1367, 1186, 1051, 966, 874; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 328.1946$, found 328.1946 .

Intramolecular Kinetic Isotope Effect Study

(\pm)-4-deuterio-4-phenyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [19].
Rh conditions: General protocol for Rh conditions was followed, at a scale of 0.250 mmol for the sulfamate ester. (\pm)-3-deuterio-3-phenylprop-1-yl sulfamate $18(53.8 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(2.2 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.02$ equiv), $\mathrm{MgO}(23.0 \mathrm{mg}, 0.570 \mathrm{mmol}, 2.3$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(90.2 \mathrm{mg}, 0.280 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL}, 0.15 \mathrm{M})$ were used, and reaction stirred at room temp for 6 h . Flash column chromatography on silica (35 mm fritted glass column, 110 mm SiO 2) using $3: 1$ hexanes/EtOAc as eluent gave 46.2 mg of the deuterated and protonated oxathiazinanes as a mixture ($0.218 \mathrm{mmol}, 87 \%$ yield, $<5 \% \mathrm{rsm}$). This sample was used as a control to confirm the KIE determination method. $\mathbf{K I E}=\mathbf{1 . 8} \pm \mathbf{0} .2$ (1.9, 1.9, 1.6); this is in good agreement with that reported by Du Bois and co-workers for the same substrate (1.9 ± 0.2). ${ }^{9}$
Fe conditons: Iterative catalyst addition protocol for Fe conditions was followed, at a scale of 0.600 mmol for the sulfamate ester. (\pm)-3-deuterio-3-phenylprop-1-yl sulfamate $\mathbf{1 8}$ (130 mg , $0.600 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(4 \times 12.1 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.13$ equiv $), \mathrm{AgSbF}_{6}(4 \times 6.8 \mathrm{mg}$, $0.080 \mathrm{mmol}, 0.13$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(487 \mathrm{mg}, 1.20 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(1.2$ mL) were used. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO_{2}) using $4: 1$ hexanes/EtOAc $+1 \% \mathrm{AcOH}$ as eluent gave the deuterated and protonated oxathiazinanes as a mixture, and the recovered starting material separately.
Run 1: ($33.0 \mathrm{mg}, 0.153 \mathrm{mmol}, 26 \%$), ($47.0 \mathrm{mg} \mathrm{rsm}, 0.217 \mathrm{mmol}, 36 \%$), KIE $=2.5 \pm 0.1(2.4,2.4$, 2.6). Run 2: ($35.8 \mathrm{mg}, 0.167 \mathrm{mmol}, 28 \%$), ($39.5 \mathrm{mg} \mathrm{rsm}, 0.182 \mathrm{mmol}, 30 \%$), $\mathrm{KIE}=2.7 \pm 0.2$ (2.7 , 2.5, 2.8). Run 3: ($32.8 \mathrm{mg}, 0.153 \mathrm{mmol}, 25 \%$), (42.0 mg rsm, $0.194 \mathrm{mmol}, 32 \%$), KIE $=2.4 \pm 0.1$ (2.5, 2.3, 2.4). Average: 26\% yield, 33\% rsm, $\mathrm{KIE}=\mathbf{2 . 5} \pm \mathbf{0} . \mathbf{2}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.90-4.85(\mathrm{~m}, 2 \mathrm{H}-$
 protonated), 4.87 (ddd, $J=13.0,11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}-$ deuterated), 4.66 (ddd, $J=$ $11.5,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.35 (br. s, 1 H - deuterated), 4.35 (br. d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}-$ protonated), 2.30-2.21 (m, 1H), 2.05-2.00 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 137.7$ (protonated), 137.7 (deuterated), 129.0, 128.7, 126.1, 71.8, 58.7 (protonated), 58.4 (deuterated - 1:1:1 triplet), 30.0 (protonated) 29.9 (deuterated); IR (film, cm^{-1}) 3261, 3062, 3033, 2964, 2926, 2852, 1728, 1498, 1450, 1410, 1354, 1190, 1024, 995, 930, 874, 779; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{DNO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 237.0420, found 237.0419; HRMS (ESI) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 236.0357$, found 237.0355 .

Method for KIE Determination: The column-purified product mixture 19 (35-40 mg in $700 \mu \mathrm{~L}$ CDCl_{3}, in a straight-walled NMR tube) was analyzed by ${ }^{13} \mathrm{C}-\mathrm{NMR}$. ${ }^{8,10}$ In order to obtain an accurately integratable ${ }^{13} \mathrm{C}-\mathrm{NMR}$, the experiment was run under inverse-gated decoupling conditions (decoupling switched off during the relaxation delay; for Varian, the command is $d m=$ 'nny'). A delay of 5 s was used, with sufficient scans to obtain a signal-to-noise (S / N) ratio of $>30: 1$ on the deuterated peak. The KIE was reported as the area of the deuterated peak over that of the protonated peak. Three identical experiments were run and an average value was calculated with measurement error.
Alternative Method: $15 \mathrm{mg} \mathrm{Cr}(\mathrm{acac})_{3}$ was added to the NMR sample; this additive significantly reduces relaxation time for ${ }^{13} \mathrm{C}$-NMR and allows for more accurate integration than inverse-gated decoupling alone. ${ }^{11}$ Experimental conditions were otherwise identical to the standard method. It was found that for both the Rh - and Fe-catalyzed $\mathrm{C}-\mathrm{H}$ amination reactions, the calculated KIEs were noticeably higher, although the trend remains the same. The following KIEs were determined: Rh conditions -3.5 ± 0.4 (3.7, 3.7, 3.1); Fe conditions - 4.8 ± 0.3 (4.7, 5.1, 4.7).

Evidence of Olefin Isomerization in Fe-catalyzed C-H Amination

(\pm)-4-((1Z)-1-propenyl)-6-methyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [Z-21].
Rh conditions: General protocol for Rh conditions was followed. (\pm)-(Z)-hept-5-en-2-yl sulfamate 20 ($77.3 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), $\mathrm{MgO}\left(37.0 \mathrm{mg}, 0.920 \mathrm{mmol}, 2.3\right.$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.6 \mathrm{~mL}, 0.15 \mathrm{M})$ were used, and reaction stirred at room temp for 4 h . By GC analysis of the crude product, $Z: E$ was $>30: 1$. By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, d.r. was $4: 1$ syn:anti, and ins./azir. was 2.7:1. Flash column chromatography on silica (35 mm fritted glass column, 110 mm SiO 2) using 4:1 hexanes/EtOAc as eluent gave pure syn and anti oxathiazinanes and aziridine separately: (42.1 mg syn +10.4 mg anti ($4: 1$ d.r.), $0.275 \mathrm{mmol}, \mathbf{6 9 \%}$ yield), (17.4 mg aziridine $(3: 1$ ins./azir.), $0.091 \mathrm{mmol}, 23 \%$).
Fe Conditions: Single catalyst addition protocol for Fe conditions was followed. (\pm)-(Z)-hept-5-en-2-yl sulfamate 20 ($77.3 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $[\mathrm{FePc}] \mathrm{Cl}(24.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10$ equiv), $\mathrm{AgSbF}_{6}\left(13.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.10\right.$ equiv), $\mathrm{PhI}(\mathrm{OPiv})_{2}(325 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and $4: 1 \mathrm{PhMe}: \mathrm{MeCN}(800 \mu \mathrm{~L})$ were used. By GC analysis of the crude product, $Z: E$ was $9: 1$ (this ratio was confirmed by subjecting column-purified Z / E mixtures of products to GC analysis). By ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis, d.r. was $3: 1$ syn:anti, and ins./azir. was $>10: 1$. Flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes $(500 \mathrm{~mL}) \rightarrow 19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes as eluent gave syn and anti oxathiazinanes as a mixture. This mixture was further purified by flash column chromatography using $4: 1$ hexanes:EtOAc $+1 \%$ AcOH as eluent; this gave pure syn and anti allylic oxathiazinanes separately (as E / Z mixtures).

Although the reaction did not go to complete conversion, the remaining starting material was not isolated under the given purification conditions.
Run 1: (21.3 mg syn +7.2 mg anti ($3: 1$ d.r.), $0.149 \mathrm{mmol}, 37 \%$). Run $2:(18.1 \mathrm{mg}$ syn $+5.8 \mathrm{mg}$ anti (3.1:1 d.r.), $0.125 \mathrm{mmol}, 31 \%$), $0 \% \mathrm{rsm}$. Run 3: ($17.9 \mathrm{mg} \operatorname{syn}+5.7 \mathrm{mg}$ anti (3.1:1 d.r.), $0.123 \mathrm{mmol}, 31 \%$). Average: $\mathbf{3 3 \%}$ yield.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, CDCl_{3}) $\delta 5.72$ (ddq, $J=10.5,6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (ddd, $J=10.5,6.5,1.5 \mathrm{~Hz}$, 1 H), 4.91 (ddt, $J=12.0,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.49$ (m, 1H), 3.99 (br. d, $J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76(\mathrm{dt}, J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{dt}$, $J=14.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $130.6,127.1,80.6,52.0,37.5,21.2,13.7$; IR (film, cm^{-1}) 3234, 3033, 2983, 2943, 2852, 1429, $1385,1346,1296,1171,1078,947,910,864$; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 214.0514$, found 214.0515 .

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{ddd}, J=10.5,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{ddq}, J=11.0,7.0,1.0 \mathrm{~Hz}$, 1 H), 5.04 (dddd, $J=15.5,9.0,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.56-4.51$ (m, 1H), 4.48 (br. d, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=14.5,9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.5,4.0,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $128.6,127.4,79.2,50.3,35.7,21.0,13.3$; IR (film, cm^{-1}) 3280, 3026, 2983, 2935, 2860, 1425, 1402, 1379, 1358, 1184, 1080, 957, 904, 883, 835, 796 750; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 214.0514$, found 214.0517.
(\pm)-cis-4,8-dimethyl-3-oxa-2-thia-1-azabicyclo[5.1.0]octane-2,2-dioxide.

Purified via flash column chromatography on silica (35 mm fritted glass column, 150 mm SiO 2) using $4: 1$ hexanes/EtOAc $\rightarrow 3: 1$ hexanes/EtOAc as eluent system. Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.84-4.82(\mathrm{~m}, 1 \mathrm{H}), 3.00(\operatorname{app~q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (app. p, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J=$ $14.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, CDCl_{3}) $\delta 78.7,45.2,41.9,29.7,20.9,18.2,9.3$; IR (film, cm^{-1}) 3284, 2983, 2943, 2877, 1448, 1371, 1298, 1176, 1146, 1117, 1076, 1005, 962, 893, 839, 785, 768; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 214.0514$, found 214.0513.
(\pm)-4-((1E)-1-propenyl)-6-methyl-tetrahydro-1,2,3-oxathiazine-2,2-dioxide [E-21].
Prepared as a standard under the Rh conditions described above: (\pm)-(E)-hept-5-en-2-yl sulfamate 20 ($77.3 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(3.5 \mathrm{mg}, 0.008 \mathrm{mmol}, 0.02$ equiv), $\mathrm{MgO}\left(37.0 \mathrm{mg}, 0.920 \mathrm{mmol}, 2.3\right.$ equiv), $\mathrm{PhI}(\mathrm{OAc})_{2}\left(142 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.6 \mathrm{~mL}, 0.15 \mathrm{M})$ were used, and reaction stirred at room temp for 4 h . Flash column chromatography on silica (35 mm fritted glass column, $110 \mathrm{~mm} \mathrm{SiO}_{2}$) using $4: 1$ hexanes/EtOAc as eluent gave pure syn and anti oxathiazinanes separately. These compounds were used in order to confirm Z / E ratios by GC analysis.

Syn (major) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{ddq}, J=15.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{ddd}, J=15.5,6.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.86 (ddt, $J=12.0,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16$ (m, 1H), 4.03 (br. d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=14.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.52(\mathrm{dt}, J=14.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.4$,
128.1, 80.6, 56.2, 37.1, 21.2, 17.9; IR (film, cm^{-1}) 3263, 2983, 2939, 2922, 2858, 1421, 1360, $1186,1136,1093,1061,966,945,914,866,796$; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 214.0514$, found 214.0513.

Anti (minor) diastereomer: Isolated as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{ddd}, J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{ddq}, J=15.0,6.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03$ (ddd, $J=6.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (br. d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21 (app. p, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.3,128.6$, $79.3,55.0,35.4,21.0,18.0$; IR (film, cm^{-1}) 3267, 2985, 2964, 2922, 2856, 1429, 1360, 1327, $1236,1182,1136,1092,1051,964,879,862$; HRMS (ESI) m / z calculated for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 214.0514$, found 214.0518 .

Synthesis of Starting Materials

Synthesis of alcohols S1, S5, S6, S8 and S16 for optimization substrate, secondary, tertiary and benzylic competition substrates, and E-methyl olefin substrate ${ }^{12,13}$

Synthesis of alcohols S2 and S3 for terminal olefin and benzylic substrates ${ }^{14,15}$

Synthesis of alcohol S4 for $3^{0} \mathrm{C}-\mathrm{H}$ stereoretention substrate ${ }^{16}$

6,10-dimethylundeca-1,9-dien-4-ol.

This compound was prepared according to the methods described in the literature. ${ }^{16}$ The initial product was isolated as a $1: 1$ anti:syn mixture of diastereomers following flash column chromatography on silica using 9:1 hexanes/EtOAc as eluent. It was diastereomerically enriched via MPLC purification with a 240 g basic alumina column (Activity II-III) using neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent (the order of elution was the anti diastereomer first, then syn). After 4-6 iterations in which fractions containing only one diastereomer were removed each time, the pure products were isolated as a $>20: 1$ mixture (as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis). This compound has been previously reported in the literature as a diastereomeric mixture. ${ }^{16}$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (ddt, $\left.J=16.5,9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15-5.08(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.72$ (m, 1H), 2.27 (dt, $J=14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.93$ (m, 2H), 1.68$1.64(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.16(\mathrm{~m}$, $2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}-s y n), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$ - anti). This data is in agreement with the literature. ${ }^{25}$

6,10-dimethylundecan-4-ol [S4].

6,10-dimethylundeca-1,9-dien-4-ol (1.0 equiv) was dissolved in MeOH (0.1 M) in a flask equipped with a stir bar. Activated $30 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg}$ per mmol of substrate) was added, and then the flask was sealed with a rubber septum. A balloon of H_{2} was placed over the flask, and H_{2} was bubbled through the reaction mixture with stirring until complete disappearance of olefins was observed, as monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. Upon completion, the reaction mixture was filtered through a short silica plug, which was washed with additional MeOH . The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. No further purification was necessary.

(-)-(4R,6R)-6,10-dimethylundecan-4-ol: The diastereomeric ratio was quantitatively established by achiral GC analysis in triplicate, and was found to be 97:3 anti:syn. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 6 \mathrm{H})$, $1.19-1.10(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 69.5,45.2,40.7,39.4,38.3,29.4,28.1,24.9$, 22.8 (2 peaks), 19.4, 10.0, 14.3; IR (film, cm^{-1}) 3350, 2956, 2927, 2872, 1466, 1379, 1367, 1146, 1122, 1066, 1024; $[\alpha]^{25}{ }_{\mathrm{D}}=-10.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; HRMS (EI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{26}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 182.20345$, found 182.20253 (ESI failed for this compound, and the the peak resulting from alcohol elimination was the dominant peak in the EI spectrum, the minor peak being extrusion of H^{+}- no M+ peak was observed under ESI, EI, or FD methods).
(+)-(4R,6S)-6,10-dimethylundecan-4-ol: The diastereomeric ratio
 was quantitatively established by achiral GC analysis in triplicate, and was found to be 5:95 anti:syn. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.70(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.18(\mathrm{~m}, 12 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.02(\mathrm{~m}$, $1 \mathrm{H}), 0.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $69.9,45.5,40.1,39.5,37.0,29.8,28.1,24.7,22.9,22.7,20.5,18.9,14.3$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3338,2956,2927,2872,1466,1379,1367,1124,1005 ;[\alpha]^{25}=+6.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

Synthesis of alcohols $S 7, S 12$ and $S 13$ for ethereal competition substrate and β functionalized substrates ${ }^{12,17,18,19,20}$

Synthesis of alcohols S9 and S10 for electron-poor olefin substrates ${ }^{\mathbf{2 0 , 2 1}}$

Synthesis of alcohol S11 for olefin electronic competition substrate ${ }^{12,13,22,23}$

(\pm)-S11

Synthesis of alcohol S14 for olefin steric competition substrate ${ }^{12,13,24}$

(土)-S14

Synthesis of alcohol S15 for \boldsymbol{Z}-olefin isomerization substrate ${ }^{14,15}$

See separate supporting information file for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of all sulfamate ester starting materials, syn and anti oxathiazinanes, and aziridines, as well as labeled, integrated ${ }^{1} \mathrm{H}$-NMR spectra of crude reaction mixtures, labeled, integrated ${ }^{13} \mathrm{C}$-NMR spectra of purified H/D mixtures for the KIE study, relevant nOe NMR spectra, GC traces of standards and enriched substrates for the stereoretention and olefin isomerization experiments, and GC traces of crude reaction mixtures for the stereoretention, olefin competition and olefin isomerization experiments.

[^0]${ }^{11}$ LeFevre, J.W.; Silveira, A. J. Chem. Ed. 2000, 77, 83.
${ }^{12}$ Hay, M.B.; Wolfe, J.P. J. Am. Chem. Soc. 2005, 127, 16468.
${ }^{13}$ Harris, J.R.; Waetzig, S.R.; Woerpel, K.A. Org. Lett. 2009, 11, 3290. The published procedure for Weinreb amide formation was modified by using instead a solution of trimethylaluminum in hexanes, which was added slowly to a suspension of $\mathrm{MeNH}(\mathrm{OMe}) \cdot \mathrm{HCl}$ in PhMe at $0^{\circ} \mathrm{C}$. The mixture stirred for 15 min at $0^{\circ} \mathrm{C}$, then 30 min at rt before cooling back to $0^{\circ} \mathrm{C}$ and adding ester.
${ }^{14}$ Tailler, C.; Hameury, T.; Bellosta, V.; Cossy, J. Tetrahedron 2007, 63, 4472.
${ }^{15}$ For product characterization, see: Shi, L.; Tu, Y-Q.; Wang, M.; Zhang, F-M.; Fan, C-A.; Zhao, Y-M.; Xia, W-J. J. Am. Chem. Soc. 2005, 127, 10836.
${ }^{16}$ De Sio, V.; Massa, A.; Scettri, A. Org. Biomol. Chem. 2010, 8, 3055.
${ }^{17}$ Due to volatility of this compound, removal of solvents under reduced pressure was performed at $0^{\circ} \mathrm{C}$.
${ }^{18}$ Donohoe, T.J.; Winship, P.C.M.; Walter, D.S. J. Org. Chem. 2009, 74, 6394.
${ }^{19}$ Wuts, P.G.; Greene, T.W. Greene's Protective Groups in Organic Synthesis, $4^{\text {th }}$ Ed., WileyInterscience: Hoboken, NJ, 2007; pp. 25.
${ }^{20}$ Stork, G.; Takahashi, T.; Kawamoto, I.; Suzuki, T. J. Am. Chem. Soc. 1978, 100, 8272.
${ }^{21}$ Stangeland, E.L.; Sammakia, T. J. Org. Chem. 2004, 69, 2381. Performing the basic work-up as described led to Michael-type cyclization of the product to an undesired tetrahydrofuran; quenching the reaction instead with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and performing an aqueous extraction prevented decomposition of the product.
${ }^{22}$ Vermeulen, N.A.; Delcamp, J.H.; White, M.C. J. Am. Chem. Soc. 2010, 132, 11323.
${ }^{23}$ Bal, B.S.; Childers, W.E.; Pinnick, H.W. Tetrahedron 1981, 37, 2091.
${ }^{24}$ Bull, S.R.; Palmer, L.C.; Fry, N.J.; Greenfield, M.A.; Messmore, B.W.; Meade, T.J.; Stupp, S.I. J. Am. Chem. Soc. 2008, 130, 2742. The reaction was run in $\mathrm{Et}_{2} \mathrm{O}$ instead of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and was quenched by diluting with an equal volume of hexanes, filtering through a short plug of silica, and rinsing the filter with additional hexanes. The crude material was purified as described.

[^0]: ${ }^{1}$ Preparation of $\mathrm{Fe}(R, R-\mathrm{pdp})\left(\mathrm{SbF}_{6}\right)_{2}$: Chen, M.S.; White, M.C. Science 2007, 318, 783.
 ${ }^{2}$ Preparation of $\mathrm{Fe}(R, R$-salen)Cl: Salomão, G.C.; Olsen, M.H.N.; Drago, V.; Fernandes, C.; Filho, L.C.; Antunes, O.A.C. Cat. Commun. 2007, 8, 69. No characterization data is reported in the literature, but successful preparation of the catalyst was confirmed via low-resolution field desorption (LR-FD) mass spectrometry: $m / z=600.4\left(\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Fe}, 5 \%\right), 635.3$ $\left(\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{ClFe}, 100 \%\right)$.
 ${ }^{3}$ Caution: $\mathrm{ClSO}_{2} \mathrm{NCO}$ reacts violently with water, so the transfer should be done under an inert atmosphere, preferably in a glovebox. Because of its propensity for freezing glass stopcocks, $\mathrm{ClSO}_{2} \mathrm{NCO}$ should be stored in a flask with Teflon stopcocks.
 ${ }^{4}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
 ${ }^{5}$ Espino, C.G.; Wehn, P.M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935.
 ${ }^{6}$ Delcamp, J.H.; Brucks, A.P.; White, M.C. J. Am. Chem. Soc. 2008, 130, 11270.
 ${ }^{7}$ Karlsson, S.; Hallberg, A.; Gronowitz, S. J. Organomet. Chem. 1991, 403, 133.
 ${ }^{8}$ Wehn, P.M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823.
 ${ }^{9}$ Fiori, K.W.; Espino, C.G.; Brodsky, B.H.; Du Bois, J. J. Tetrahedron 2009, 65, 3042.
 ${ }^{10}$ Wang, P.; Adams, J. J. Am. Chem. Soc. 1994, 116, 3296.

