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Here, we will consider in more details three important steps in the calculation described in the 

accompanying manuscript: 

 

I - Tunnel Current Probabilities: 

In this part of the manuscript, we have followed closely the discussion of “Tunneling in Metal-

Insulator-Metal Structures”, presented in Chapter 4 of A.T. Fromhold, “Quantum mechanics for 

applied physics and engineering. Dover Publications: New York, 1991; p xvi, 430 p.”(our Ref. 

5). In this manner, the probability Pin1 of charge transport from the cathode (region 1) to the 

molecule (region 2), for instance, can be constructed by considering the electronic flux incident 

at the interfaces and the quantum mechanical transmission coefficient. 

To calculate the incident flux we have considered initially the density of states D(E) resolved 

into a spectrum D(E,px) characterized by the value of the x-component of the momentum (i.e., 

in the direction of the applied electric field), such that 
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Then, 2D(E,px).dpx.dE  represents the number of electronic states with total energy in the range 

E to E+dE but restricted to have x-component of momentum in the range px+dpx. Since the 

occupation probability is given by the Fermi-Dirac function f(E), the corresponding number of 

occupied states is 2f(E)D(E, px)dpxdE. The product of this number by the x-component of the 

velocity vx=px/m gives the flux of electrons incident on the barrier, 
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If there is a barrier between the metal and the molecule, the maximum number of electrons that 

could cross this barrier corresponds to the product of the incident flux by a transmission 

coefficient (T) given by (in our case, chosen to be) a trapezoidal barrier.  
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But an electron will effectively cross the barrier only if there is a corresponding unfilled allowed 

state on the other side. So we can proceed in the same way and define the probability of finding 

unoccupied states as A(E)D(E)dE, where A(E)=1-f(E) is the un-occupation probability and D(E) 



the density of states in the device  region. For the case of discrete levels, D(E) is given by a 

Dirac-Delta function 
,
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S-charge sate. Once we concatenate all this information together, we obtain: 
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where the subscripts 1 and 2 represent the different sides of the barrier (region 1 for cathode and 

region 2 for the molecule for example). Hence, the probability of transport through the cathode 

to molecule (in a S-charge state) can be written as: 1 2
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probabilities can be derived by adopting a similar reasoning.  

 

II - T-matrix: 

 

A very common approach to study excited states of molecular systems is the Configuration 

Interaction with Single excitations (CIS) approximation. Within this formalism, the CIS 

molecular wavefunction 
RΨ  includes the one corresponding to the (Hartree-Fock) ground state 

of the system plus a linear combination of the determinants 
σλψ corresponding to all 

configurations resulting from a single (i.e., one electron) excitation out of the HF ground state, 

in the form 
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where the c´s are linear coefficients to be determined (in a variational manner) and 
σλψ is the 

determinant form of the wavefunction  associated to the configuration where an electron is 

excited from an occupied orbital σ to a virtual one λ. A set of CIS wave functions with their 

correspondent energies could be (variationally) determined by solving the matrix eigenvalues 

equation resulting from differentiating the standard Hamiltonian energy expression with respect 

to the elements of the CI coefficient vector c. The corresponding eigenstates are called the CI 

eigenstates and once they have been determined, the dipole moment µ and the oscillator strength 

f R could be calculated as
R R Rµ µ= Ψ Ψ  and 
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In quantum mechanics, an oscillator strength is usually interpreted as a measure of the relative 

probability that a transition occurs between the two molecular states involved and, with this in 

mind, the elements of the T-matrix can be written as 
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transitions are between the ground state and the S-excited state. 

 



 

 

III – Identification of the role played by individual occupied molecular orbitals in the 

charge transport of the AMNB molecule:  

To assess the relative contribution of some of the FMOs to the intramolecular charge transport 

in the AMNB molecule, we have implemented calculations where the HOMO, HOMO-1 and 

HOMO-2 were artificially suppressed from the molecule.  

In the figures below, the total current as a function of the value of the externally applied electric 

field ξ (superior horizontal axis) [bias V (inferior horizontal axis)] is represented by the red 

curve. 

a) Suppression of the HOMO: The corresponding current as a function of the value of the 

externally applied electric field ξ (superior horizontal axis) [the bias V (inferior 

horizontal axis)] is represented by the black curve. Note that, for instance for positive 

bias, the first peak and part of the second one seen in the full calculation are suppressed. 

 

 

 

 

 

b) Suppression of the (HOMO-1): The corresponding current as a function of the value of 

the externally applied electric field ξ (superior horizontal axis) [the bias V (inferior 

horizontal axis)] is represented by the black curve. Note that, for instance for positive 

bias, the second peak seen in the full calculation is almost entirely suppressed. 



a.  

c) Suppression of the (HOMO-2): The corresponding current as a function of the value of 

the externally applied electric field ξ (superior horizontal axis) [the bias V (inferior 

horizontal axis)] is represented by the black curve. Note that, for instance for positive 

bias, the third peak seen in the full calculation is almost entirely suppressed. 

 


