Supporting Information. Mechanistic Variations in Ionic Hydrogenation of Unsaturated Phosphine and Amine Boranes Timothy S. De Vries, Supriyo Majumder, Angela M. Sandelin, Guoqiang Wang, and Edwin Vedejs*

S-3
S-4
S-4
S-5
S-7
S-7
S-8
S-9
S-10
S-10
S-11
S-11
S-12

4-Phenylpent-4-en-2-yl Diphenylphosphinate 24a	S-12
2,2-Dimethyl-5-phenylhex-5-en-3-yl Diphenylphosphinate 24b	S-13
2,2,5-Trimethylhex-5-en-3-yl Diphenylphosphinate 24c	S-13
4-Methylpent-4-en-2-yl Diphenylphosphinate 24d	S-14
Preparation of Amine Borane Complexes; 26a, 26b	S-16
Ionic Hydrogenation of Amine Borane 26a; Representative Procedure	S-16
Conversion of 26a to 27a Using Stoichiometric MsOH	S-17
4-(Dimethylamino)-2-phenylbutan-2-yl acetate borane complex (30)	S-17
Ionic Hydrogenation of 30 Activated by TMSOTf; N,N-Dimethyl-3-phenylbutanamine (33)	S-17
Footnote 7, Borane Complex <i>i</i>	S-18
Footnote 7, Ionic Hydrogenation Product <i>ii</i>	S-18
Reaction of 26b with (+)-Camphorsulfonic Acid	S-19
Preparation of 38 from Me ₃ N·BH ₃ (37) and (-)-Camphorsulfonic Acid	S-19
References for Supporting Information	S-20
X-Ray Crystal Structure of 38 and Data Tables	S-21
¹ H and ¹³ C NMR Spectra of Isolable Compounds	S-27

Experimental

The following chemicals were commercially available and used as received: trimethylamine borane; tributylphosphine borane; trifluoroacetic acid; methanesulfonic acid; borane tetrahydrofuran, 1.0 M solution in tetrahydrofuran; methyltriphenylphosphonium bromide; sodium bis(trimethylsilyl)amide; 3-methylcyclohexanol (mixture of *cis* and *trans*); *p*-toluenesulfonyl chloride; diphenylphosphine; (+)-camphorsulfonic acid; 3-methyl-2-cyclohexen-1-ol; methanesulfonyl chloride; dimethylamine, 33% in absolute ethanol. Chloroform-*d* and methylene chloride-*d*₂ were dried by storing over activated 4Å molecular sieves; dichloromethane (DCM) and tetrahydrofuran (THF) were dried by passing through a column of activated alumina; triethylamine was distilled from CaH₂ and pyridine from KOH under an N₂ atmosphere. All reactions were performed at room temperature under an N₂ atmosphere unless otherwise stated. Nuclear magnetic resonance experiments were performed on Varian Inova 500 and Inova 400 spectrometers at the following frequencies: ¹H 500 MHz; {¹H}¹³C 101 MHz; ¹¹B 160 MHz; ¹⁹F 376 MHz, unless otherwise stated. All spectra were recorded in CDCl₃ and referenced to the ¹H signal of internal Me₄Si (unless otherwise stated) according to recommendations,¹ using a Ξ of 25.145020 for Me₄Si (¹³C), a Ξ of 32.083974 for BF₃·OEt₂ (¹¹B), and a Ξ of 94.094011 for CCl₃F (¹⁹F).

Hydrogen Evolution from Me₃N·BH₃ (37) vs. Bu₃P·BH₃ with CF₃CO₂H

Neat CF₃CO₂H (6 μ L, 78 μ mol) was added by syringe to a stirred solution of Me₃N·BH₃ (4.8 mg, 66 μ mol) in anhydrous CD₂Cl₂ (1.0 mL) under an N₂ atmosphere. After 45 min, this solution was transferred via syringe to an N₂-flushed NMR tube. Assay by ¹H NMR showed ca. 45% of Me₃N·BH₃ remaining by integration of its B–*H* signal at δ 2.0-1.3 ppm relative to the methyl singlet at δ 2.61 ppm (overlapping Me₃N·BH₃ and Me₃N·BH₂(O₂CCF₃) signals). The formation of trifluoroacetoxyborane complex was confirmed by reaction of Me₃N·BH₃ with 10 equiv CF₃CO₂H

(50 μ L, 650 μ mol) under the same conditions, giving Me₃N·BH₂(O₂CCF₃) as the major product after 1 h: ¹H NMR: δ 3.1-2.0 (2H br s), 2.63 (9H, s).

The reaction of Bu₃P·BH₃ (20 µL, 75 µmol) with CF₃CO₂H (6 µL, 78 µmol) in 1.0 mL CD₂Cl₂ was performed under the same conditions, assay by 1H NMR after 45 min showing less than 2% conversion to Bu₃P·BH₂(O₂CCF₃) by integration of its α -CH₂ at δ 1.76-1.67 ppm relative to the α -CH₂ peak for unreacted Bu₃P·BH₃ at δ 1.60-1.50 ppm. This product trifluoroacetoxyborane complex was also confirmed by reaction of Bu₃P·BH₃ with 10 equiv CF₃CO₂H (50 µL, 650 µmol) under the same conditions, giving Bu₃P·BH₂(O₂CCF₃) as the major product after 1 h: ¹H NMR: δ 3.4-2.3 (2H br s), 1.76-1.67 (6H, m), 1.53-1.37 (6H, m), 0.94 (9H, t, J = 7.1 Hz); ³¹P NMR: δ 3.1-0.4 (br m).

Representative Procedure for Ionic Hydrogenation of Phosphine Borane 4

Neat MsOH (100 μ L, 1.54 mmol) was added by syringe to a stirred solution of **4** (138 mg, 0.51 mmol) in anhydrous DCM (5 mL) under an N₂ atmosphere. After 10 min, this solution was quenched by addition of 10 mL MeOH, 1 mL 20% aq. NaOH and 1 mL 35% aq. H₂O₂. After an additional 1 h, this mixture was diluted with 10 mL H₂O, separated and the aqueous layer extracted with 2 x 10 mL DCM. The combined organic layers were dried over Na₂SO₄ and reduced by rotatory evaporation. The product was purified by flash chromatography (FC) on silica gel (15 cm x 20 mm diameter, 19:1 DCM/EtOH), isolating 110 mg product **5** (Rf = 0.3, 78% y) and recovering 18 mg **6** (Rf = 0.07, 12% y). ¹H and ¹³C NMR spectral data matched those reported for **5** and **6**.²

Preparation and Ionic Hydrogenation of Phosphine Borane 12

Methyltriphenylphosphonium bromide (520 mg, 1.46 mmol) and sodium bis(trimethylsilyl)-amide (242 mg, 1.32 mmol) were transferred under an N₂ atmosphere to an oven-dried 50 mL round-bottom flask fused to a reflux condenser and dissolved in anhydrous THF (20 mL). After 30 min the now yellow solution was heated to reflux, cooling after 1 h and filtering through an N₂-flushed fritted filter into a flask containing a stirred solution of 3-diphenylphosphinylcyclohexanone borane³ (355 mg, 1.20 mmol) in anhydrous THF (10 mL), rinsing the flask in which the phosphonium ylide was formed with 10 mL THF. After 1 d the reaction mixture was washed with H₂O (50 mL) and brine (50 mL), dried over MgSO₄, and reduced by rotatory evaporation. The product was purified by FC on silica gel (15 cm x 30 mm diameter, 2:1 hexanes/Et₂O), isolating 337 mg (3-Methylenecyclohexyl)-diphenylphosphine borane (12): analytical thin layer chromatography (TLC) on K6F silica gel 60Å, 2:1 hexanes/Et₂O, Rf = 0.53. Molecular ion calculated for $C_{19}H_{24}BNaP$: 317.1606; [M+Na], ESMS found m/z = 317.1591; IR (neat, cm⁻¹) 2381, B–H; 2348, B–H; 1650, C=C; ¹H NMR: δ 7.78-7.70 (4H, m), 7.52-7.41 (6H, m), 4.66 (1H, s), 4.57 (1H, s), 2.55-2.45 (1H, m), 2.31 (1H, br d, J = 13.1 Hz), 2.28-2.17 (2H, m), 2.00 (1H, td, J = 13.4, 4.4 Hz), 1.95-1.87 (1H, m), 1.73-1.66 (1H, m), 1.61 (1H, qt, J = 12.7, 4.4 Hz), 1.35 13.0, 3.9 Hz), 1.3-0.5 (3H, br m); 13 C NMR: δ 147.4 (d, J = 12 Hz), 132.6 (d, J = 9 Hz), 132.6 (d, J = 8 Hz), 131.2 (d, J = 2 Hz), 131.1 (d, J = 2 Hz), 131.1 (d, J = 2 Hz) Hz), 128.8 (d, J = 10 Hz), 128.8 (d, J = 10 Hz), 128.3 (d, J = 54 Hz), 128.0 (d, J = 53 Hz), 108.6, 35.0 (d, J = 10 Hz), 34.8 (d, J = 27 Hz), 34.4 (d, J = 10 Hz), 128.8 (d, J = = 2 Hz), 27.9 (d, J = 12 Hz), 26.1; ¹¹B NMR: δ -42.1 (qd, J = 93, 30 Hz); ³¹P NMR: δ 19.7-18.0 (br m).

Reaction of **12** under the same conditions as for **4** above gave ionic hydrogenation product **14b** (76% y), and a minor byproduct resulting from hydroboration (14%). *trans*-(3-Methylcyclohexyl)-diphenylphosphine oxide (**14b**): TLC on K6F silica gel 60Å, 19:1 DCM/EtOH, Rf = 0.18. Molecular ion calculated for C₁₉H₂₃NaOP: 298.1486; [M^{*+}], EIMS found *m*/*z* = 298.1478; IR (neat, cm⁻¹) 1181, P=O; ¹H NMR: δ 7.82-7.74 (4H, m), 7.52-7.41 (6H, m), 2.55-2.45 (1H, m), 2.15-2.06 (1H, m), 1.87-1.77 (1H, m), 1.71-1.40 (6H, m), 1.38-1.30 (1H, m), 0.96 (3H, d, J = 7.1 Hz); ¹³C NMR: δ 132.6 (d, J = 94 Hz), 132.4 (d, J = 94 Hz), 131.4 (d, J = 3 Hz), 131.4 (d, J = 3 Hz), 131.0 (d, J = 8 Hz), 131.0 (d, J = 8 Hz), 128.6 (d, J = 94 Hz), 128.

= 11 Hz), 128.5 (d, J = 11 Hz), 31.7, 31.5 (d, J = 73 Hz), 31.0 (d, J = 3 Hz), 27.1 (d, J = 10 Hz), 25.0 (d, J = 3 Hz), 20.8 (d, J = 11 Hz), 18.5; ³¹P NMR: δ 36.4.

Independent Synthesis of Minor Diastereomer 14a

Pyridine (5 mL, 62 mmol) was added to *p*-toluenesulfonyl chloride (1.63 g, 8.5 mmol) at 0 °C under an N₂ atmosphere to dissolve; the solution developed a yellow color. To this was added the commercially available mixture of *cis*- and *trans*-3-methylcyclohexanol (**15**), the yellow color fading on alcohol addition. After 20 h at 0 °C, the reaction was quenched by pouring onto 150 mL iced 1 M aq. HCl, extracting with ethyl ether (3 x 20 mL), drying the combined organic layers over MgSO₄ before reducing by rotatory evaporation, leaving 1.74 g (88% y) of residue. ¹H NMR assay shows a mixture of *cis*- and *trans*-3-methylcyclohexyl-*p*-toluenesulfonates (**16**) in a ratio of 2.6:1 by integration of the methyl doublets at 0.89 and 0.82 ppm, respectively. This crude tosylate mixture was taken on without purification.

Diphenylphosphine (0.62 g, 3.3 mmol) was charged to a 50 mL round-bottom flask under an N₂ atmosphere and dissolved in anhydrous THF (17 mL). After cooling the solution to -40 °C, a solution of *n*BuLi (1.98 M in hexane, 1.7 mL, 3.4 mmol) was added slowly, the resulting solution developing a deep red color. After stirring 4 h, the solution was warmed to 0 °C and a mixture of *cis*- and *trans*-3-methylcyclohexyl*p*-toluenesulfonate (**16**, 0.96 g, 3.6 mmol) was added by syringe. After 2 h the deep red color had mostly faded to a light orange, and the mixture was oxidized by the addition of 5 mL 35% aq. H₂O₂. After warming to rt, the layers were separated and the aqueous layer washed with ethyl ether (2 x 20 mL), the combined organic layers dried over MgSO₄ and reduced by rotatory evaporation. Assay of the crude product mixture (1.14 g) by ¹H NMR showed unreacted tosylate **16** further enriched in the *cis*-isomer as well as the desired *cis*-diastereomer (**14a**); no trace of *trans*-(3-methylcyclohexyl)-diphenylphosphine oxide (**14b**) was observed. Purification of a portion of the crude product (176 mg) by preparative thin layer

chromatography (PLC) on silica gel (20 x 20 cm x 1000 μ m, EtOAc) gave pure *cis*-(3-methylcyclohexyl)-diphenylphosphine oxide (**14a**, 23 mg, 50% based on *trans*-3-methylcyclohexyl-*p*-toluenesulfonate): TLC on K6F silica gel 60Å, EtOAc, Rf = 0.42. Molecular ion calculated for C₁₉H₂₃NaOP: 298.1486; [M^{*+}], EIMS found *m*/*z* = 298.1490; IR (neat, cm⁻¹) 1181, P=O; ¹H NMR: δ 7.82-7.74 (4H, m), 7.54-7.43 (6H, m), 2.33-2.24 (1H, m), 1.86-1.79 (1H, m), 1.74-1.65 (3H, m), 1.54-1.17 (4H, m), 0.92 (1H, qd, J = 12.6, 3.7 Hz), 0.86 (3H, d, J = 6.6 Hz); ¹³C NMR: δ 132.2 (d, J = 94 Hz), 132.1 (d, J = 94 Hz), 131.4 (d, J = 3 Hz), 131.4 (d, J = 3 Hz), 131.1 (d, J = 9 Hz), 128.6 (d, J = 11 Hz), 128.5 (d, J = 12 Hz), 37.1 (d, J = 73 Hz), 36.6, 32.9 (d, J = 13 Hz), 32.7 (d, J = 3 Hz), 26.3 (d, J = 14 Hz), 24.3 (d, J = 3 Hz), 22.7; ³¹P NMR: δ 34.1.

General Procedure for the Synthesis of Unsaturated Phosphinite Boranes: To a solution of homoallylic alcohol in ether at 0 °C was added Et_3N followed by the dropwise addition of chlorodiphenyl phosphine. The resulting mixture was warmed to room temperature and stirred for 1 h. The progress of the reaction was monitored by TLC and upon completion the solution was filtered through a plug of silica and concentrated. 20% EtOAc in hexanes was added to the concentrate and filtered once again to remove the remaining ammonium salts. The filtrate was concentrated under reduced pressure and dried under vacuum. The crude material was dissolved in THF and cooled to 0 °C. THF·BH₃ (1M solution in THF) was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude material was purified by column chromatography on silica.

3-Methylenecyclohexyl Diphenylphosphinite Borane 18. The general procedure was followed from 3-methylenecyclohexanol (672 mg, 6 mmol), Et₃N (1.7 mL, 12 mmol), chlorodiphenyl phosphine (1.72 mL, 9.6 mmol) and THF·BH₃ (4.7 mL, 4.7 mmol). The crude product was purified by column chromatography using 1:19 EtOAc/hexanes to yield **18** (1.0 g, 68%) as colorless oil which slowly crystalized to a white solid, mp 49-50 °C. Molecular ion calculated for C₁₉H₂₄BOP: 309.1574; [M-H], ESMS found *m/z* = 309.1573; IR (neat, cm⁻¹) 2384, B–H; 2344, B–H;

1653, C=C; ¹H NMR: δ 7.80-7.74 (4H, m), 7.52-7.48 (2H, m), 7.46-7.42 (4H, m), 4.73 (1H, s), 4.64 (1H, s), 4.51-4.44 (1H, m), 2.52 (1H, dd, J = 13.0 and 4 Hz), 2.28 (1H, dd, J = 13.5 and 8.0 Hz), 2.17-2.12 (1H, m), 2.07-2.02 (1H, m), 1.94-1.90 (1H, m), 1.83-1.76 (1H, m), 1.70-1.62 (1H, m), 1.44-1.36 (1H, m), 1.28-0.72 (3H, br m); ¹³C NMR: δ 144.7, 133.3 (d, J = 64.8 Hz), 133.2 (d, J = 64.4 Hz), 131.5, 131.2 (d, J = 7.1 Hz), 131.1 (d, J = 7.1 Hz), 128.5 (d, J = 1.9 Hz), 128.4 (d, J = 1.9 Hz), 77.0 (d, J = 2.4 Hz), 42.4 (d, J = 3.4 Hz), 33.9, 33.1 (d, J = 3.4 Hz), 23.5; ¹¹B NMR: δ - 38.6 to -41.3 (m); ³¹P NMR: δ 102.1-101.9 (br m).

Ionic hydrogenation of phosphinate 19 using TfOH activation. To a solution of phosphinite borane 18 (62 mg, 0.2 mmol) at -78 °C in CH₂Cl₂ (5 mL) was added CF₃SO₃H (18 µL, 0.2 mmol) dropwise under nitrogen. The solution was stirred at that temperature for 4 h. Then the solution was treated with a premixed solution of H₂O₂ (0.5 mL) and 20% NaOH (0.5 mL) in methanol 4 mL) and stirred for further 4h. The reaction mixture was extracted with CH₂Cl₂ (3x), dried over MgSO₄, filtered and concentrated. NMR analysis of the crude sample showed diastereoselectivity of 19:1 according to a comparison of methyl signals vs. independently synthesized diastereomers. The crude product was purified by PLC using 40% EtOAc in hexanes to yield 19 (27 mg, 43%) as a pure diastereomer, mp 80-81 °C. Molecular ion calcd for C₁₉H₂₃O₂P: 315.1508; [M+H], ESMS found *m*/*z* = 315.1505; IR (neat, cm⁻¹) 1221, P=O; ¹H NMR: δ 7.84-7.80 (4H, m), 7.52-7.49 (2H, m), 7.46-7.42 (4H, m), 4.76-4.74 (1H, m), 1.94-1.86 (3H, m), 1.82-1.76 (1H, m), 1.75-1.69 (1H, m), 1.59-1.54 (1H, m), 1.43-1.37 (1H, m), 1.14 (1H, t, J = 7.5 Hz), 0.98-0.88 (1H, m), 0.86 (3H, d, J = 6.5 Hz); ¹³C NMR (175 MHz): δ 132.5 (interpreted as two carbon signals, d, J = 136.8 Hz), 131.8 (interpreted as two overlapping carbon signals, d, J = 2.6 Hz), 131.6 (d, J = 10.1 Hz), 131.5 (d, J = 10.1 Hz), 128.3 (interpreted as two overlapping carbon signals, d, J = 2.6 Hz), 40.4 (d, J = 3.0 Hz), 34.1, 31.8 (d, J = 4.0 Hz), 26.6, 22.1, 20.3; ³¹P NMR: δ 29.4 (s).

Independent Synthesis of 19 and 20

Both the major and the minor diastereomers (19 and 20) ware independently synthesized by the oxidation of the phosphonite borane of *trans* and cis 3-methylcychohexanol. To a solution of Cis-3-methylcyclohexanol (1 equiv, commertially available as a pure diastereomer) or trans-3methylcyclohexanol (1 equiv, 80:20 mixture of trans:cis) at 0 °C in diethyl ether was added Et₃N (2 equiv) followed by the dropwise addition of chlorodiphenyl phosphine (1.5 equiv). The resulting mixture was warmed to room temperature and stirred for 1 h. The progress of the reaction was monitored by TLC and upon completion the solution was filtered through a plug of silica and concentrated. 20% EtOAc in hexanes was added to the concentrate and filtered once again to remove the remaining ammonium salts. The filtrate was concentrated under reduced pressure and dried under vacuum. The crude material was dissolved in THF and cooled to 0 °C. THF·BH₃ (1 equiv, 1M solution in THF) was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude material was purified by flash column chromatography on silica using 5% acetone in hexanes. Oxidation procedure: The phosphinite borane (1 equiv) was dissolved in dry dichloromethane and was treated with 0.5 equiv I₂. The solution was stirred under N₂ until the iodine color vanishes and then was poured in a premixed solution of H_2O_2 and NaOH. The solution was stirred at room temperature for 4h. Usual work-up followed by PLC using 30-40% EtOAc in hexanes produced pure samples of both trans (19) and cis (20) diastereomer. Phosphinate 20: R_f: 0.34 in 30% EtOAc hexanes. Molecular ion calcd for $C_{19}H_{23}O_2P$: 315.1508; [M+H], ESMS found m/z = 315.1504; IR (neat, cm⁻¹) 1229, P=O; ¹H NMR: δ7.81-7.76 (4H, m), 7.49-7.45 (2H, m), 7.42-7.38 (4H, m), 4.34-4.26 (1H, m), 2.07-2.00 (2H, m), 1.70-1.66 (1H, m), 1.54-1.51 (1H, m), 1.42-1.33 (2H, m), 1.23-1.14 (2H, m), 0.85 (3H, d, J = 6.5 Hz), 0.81-0.73 (1H, m); ¹³C NMR (175 MHz): δ 132.57 (d, J = 136.8 Hz), 132.53 (d, J = 136.3 Hz)Hz), 131.8 (interpreted as two overlapping carbon signals, d, J = 2.6 Hz), 131.6 (d, J = 10.1 Hz), 131.5 (d, J = 10.1 Hz), 128.3 (interpreted as two overlapping carbon signals, d, J = 12.9 Hz), 75.6 (d, J = 6.8 Hz), 42.9 (d, J = 4.2 Hz), 33.9 (d, J = 4.2 Hz), 33.6, 31.3, 23.9, 22.1; ³¹P NMR: δ 29.8 (s).

Phosphinite borane 22a. The general procedure was followed from 4-phenylpent-4-en-2-ol (972 mg, 6 mmol), Et₃N (1.4 mL, 10 mmol), chlorodiphenyl phosphine (1.62 mL, 9 mmol) and THF·BH₃ (4 mL, 4 mmol). The crude product was purified by column chromatography using 1:19 acetone/hexanes to yield **22a** (900 mg, 63%) as colorless oil. Molecular ion calcd for C₂₃H₂₃OP: 346.1487; [M-BH₃], ESMS found *m/z* = 346.1478; IR (neat, cm⁻¹) 2384, B–H; 2344, B–H; 1626, C=C; ¹H NMR: δ 7.75-7.69 (4H, m), 7.52-7.42 (6H, m), 7.31-7.27 (4H, m), 5.33 (1H, d, J = 1.5 Hz), 5.14 (1H, d, J = 1.0 Hz), 4.65-4.60 (1H, m), 3.08 (1H, dd, J = 14.0 and 6.0 Hz), 2.70 (1H, dd, J = 14.0 and 7.5 Hz), 1.25 (3H, d, J = 6 Hz), 1.2-0.70 (3H, br m); ¹³C NMR: δ 144.2, 140.1, 133.1 (d, J = 63.9 Hz), 132.9 (d, J = 65.4 Hz), 131.5 (interpreted as two overlapping carbon signals, d, J = 2.9 Hz), 131.3 (d, J = 10.8 Hz), 131.1 (d, J = 11 Hz), 128.4 (d, J = 10.5 Hz), 128.3 (d, J = 11.5), 128.3, 127.5, 126.1, 115.6, 74.5 (d, J = 1.8 Hz), 43.8 (d, J = 4.4 Hz), 21.6 (d, J = 2.9 Hz); ¹¹B NMR: δ -39.9 to -40.0 (m); ³¹P NMR: δ 102-101.5 (br m).

Phosphinite borane 22b. This compound was prepared following a similar procedure to that of phosphinite borane **22c**. The reaction was carried out with 2,2-dimethyl-5-phenylhex-5-en-3-ol (612 mg, 3 mmol), *n*-BuLi (2.4 mL, 3.84 mmol), chlorodiphenyl phosphine (0.72 mL, 4 mmol) and THF·BH₃ (2.7 mL, 2.7 mmol). The crude product was purified by column chromatography using 1:19 acetone/hexanes to yield **22b** (864 mg, 79%) as colorless oil. Molecular ion calculated for C₂₆H₃₂BOP: 401.2200; [M-H], ESMS found *m*/*z* = 401.2198; IR (neat, cm⁻¹) 2386, B–H; 2347, B–H; 1627, C=C; ¹H NMR: δ 7.80-7.74 (4H, m), 7.47-7.36 (6H, m), 7.30-7.26 (3H, m), 7.17-7.16 (2H, m), 4.96 (1H, s), 4.87 (1H, d, J = 1.0 Hz), 4.42-4.46 (1H, m), 2.98 (1H, dd, J = 15.0 and 4 Hz), 2.69 (1H, dd, J = 15.5 and 7.5 Hz), 0.93 (9H, s), 1.28-0.75 (3H, br m); ¹³C NMR: δ 144.1, 140.3, 134.3 (d, J = 82.9 Hz), 133.9 (d, J = 87.3 Hz), 131.3 (d, J = 11.0 Hz), 131.1 (d, J = 2.4 Hz), 130.8 (d, J = 10.4 Hz), 128.5 (d, J = 14.1, 140.3, 134.3 (d, J = 10.4 Hz), 128.5 (d, J = 10.4 H

10.5 Hz), 128.3 (d, J = 11.0 Hz), 128.1, 128.0 (d, J = 11.9 Hz), 127.4, 126.4, 115.8, 86.7 (d, J = 4.2 Hz), 38.0 (d, J = 2.0 Hz), 36.2 (d, J = 3.4 Hz), 26.4; ¹¹B NMR: δ -40.8 (br s); ³¹P NMR: δ 102.2-101.8 (br m).

Phosphinite borane 22c: To a solution of 2,2,5-trimethylhex-5-en-3-ol (650 mg, 4.57 mmol) in THF (30 mL) at 0 °C was added *n*-BuLi (3.57 mL, 5.7 mmol) dropwise. The resulting dark red solution was stirred at that temperature for 1 h and then chlorodiphenyl phosphine (1.02 mL, 5.7 mmol) was added keeping the temperature at 0 °C. The solution was slowly warmed to room temperature and stirred for 2 h. The resulting light yellow solution was filtered and concentrated under reduced pressure. The crude material was dissolved in THF (25 mL) and cooled to 0 °C. THF·BH₃ (4.3 mL, 4.3 mmol) was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude product was purified by column chromatography using 1:19 acetone/hexanes to yield **22c** (670 mg, 46%) as colorless oil. Molecular ion calculated for C₂₁H₂₇OP: 326.1800; [M-BH₃], ESMS found *mlz* = 326.1798; IR (neat, cm⁻¹) 2386, B–H; 2347, B–H; 1651, C=C; ¹H NMR: δ 7.82-7.74 (4H, m), 7.48-7.36 (6H, m), 4.47-4.52 (1H, m), 4.41 (2H, d, J = 0.5 Hz), 2.37 (1H, dd, J = 14.5 and 3.5 Hz), 2.25 (1H, dd, J = 15.0 and 7.5 Hz), 1.67 (3H, s), 0.94 (9H, s), 1.47-0.97 (3H, br m); ¹³C NMR: δ 141.4, 134.5 (d, J = 85 Hz), 133.8 (d, J = 89 Hz), 131.3 (d, J = 11.5 Hz), 131.2 (d, J = 2.4 Hz), 131.1 (d, J = 2.5 Hz), 130.9 (d, J = 11 Hz), 128.3 (d, J = 10.5 Hz), 128.1 (d, J = 10.5 Hz), 113.7, 86.3 (d, J = 4.2 Hz), 40.9 (d, J = 1.9 Hz), 36.1 (d, J = 3.9 Hz), 26.2, 22.2; ¹¹B NMR: δ -39.3 to -40.0 (m); ³¹P NMR: δ 102.1-101.6 (br m).

Phosphinite borane 22d: The general procedure was followed from 4-methylpent-4-en-2-ol (1 g, 10 mmol), Et₃N (2.1 mL, 15 mmol), chlorodiphenyl phosphine (2.16 mL, 12 mmol) and THF·BH₃ (7 mL, 7 mmol). The crude product was purified by column chromatography using 1:9 EtOAc/hexanes to yield **22d** (790 mg, 38%) as colorless oil. Molecular ion calculated for C₁₈H₂₃BOP: 297.1580; [M-H], ESMS found m/z = 297.1585; IR (neat, cm⁻¹) 2384, B–H; 2344, B–H; 1650, C=C; ¹H NMR: δ 7.77-7.69 (4H, m), 7.52-7.40 (6H, m), 4.76 (1H, s), 4.74 (1H, s), 4.73-

4.69 (1H, m), 2.48 (1H, dd, J = 14.0 and 6.5 Hz), 2.22 (1H, dd, J = 13.5 and 7.0 Hz), 1.67 (3H, s), 1.26 (3H, d, J = 6.5 Hz), 1.42-0.88 (3H, br m); ¹³C NMR: δ 141.5, 133.5 (d, J = 63.9 Hz), 133.1 (d, J = 66.8 Hz), 131.5 (d, J = 7.6 Hz), 131.4 (d, J = 7.6 Hz), 131.3 (d, J = 1.9 Hz), 131.2 (d, J = 1.5 Hz), 128.4 (d, J = 14.2 Hz), 128.3 (d, J = 14.8 Hz), 113.7, 74.3 (d, J = 2.4 Hz), 46.6 (d, J = 4.8 Hz), 22.4, 21.8 (d, J = 2.4 Hz); ¹¹B NMR: δ - 39.4 to -40.6 (m); ³¹P NMR: δ 101.9-101.0 (br m).

General Procedure for the Ionic Hydrogenation of Unsaturated Acyclic Phosphinite Boranes. To a solution of phosphinite borane in CH_2Cl_2 (ca. 0.1 M) was added MeSO₃H (3 equiv) at room temperature under nitrogen. The solution was stirred at that temperature for 15-60 min until TLC assay indicated completion, and the solution was then treated with a premixed solution of H_2O_2 and 20%NaOH in methanol and stirred for an additional 4h. The reaction mixture was extracted with CH_2Cl_2 (3x), dried over MgSO₄, filtered and concentrated. The crude product was purified either by column chromatography or by PLC.

Phosphinate 24a: The general procedure was followed from phosphinite borane **22a** (144 mg, 0.4 mmol) and MeSO₃H (80 µL, 1.2 mmol) in 4 mL CH₂Cl₂. The solution was oxidized with a premixed solution of 30% H₂O₂ (1 mL) and 20% NaOH (1 mL) in methanol (8 mL). The crude product was purified by column chromatography using 40% EtOAc in hexanes to yield **24a** (112 mg, 77%) as a mixture of two diastereomers (dr ~ 2.6:1). Molecular ion calcd for C₂₃H₂₅O₂P: 365.1665; [M+H], ESMS found *m*/*z* = 365.1655; IR (neat, cm⁻¹) 1230, P=O; Major diastereomer (signals based on a mixture of two inseparable diastereomers): ¹H NMR: δ 7.81-7.73 (4H, m), 7.52-7.38 (6H, m), 7.25-7.00 (5H, m), 4.43-4.37 (1H, m), 2.79-2.74 (1H, m), 2.15-2.09 (1H, m), 1.79-1.74 (1H, m), 1.31 (3H, d, J = 6.5 Hz), 1.15 (3H, d, J = 7 Hz); ¹³C NMR: 146.2, 132.3 (d, J = 132.0 Hz), 132.2 (d, J = 109.2 Hz), 131.8 (d, J = 2.5 Hz), 131.6 (d, J = 10.0 Hz), 131.5 (d, J = 10.0 Hz), 128.4 (d, J = 4.3 Hz), 128.3 (d, J = 1.9 Hz), 128.2 (d, J = 3.4 Hz), 126.9, 126.5, 125.9, 71.7 (d, J = 6.1 Hz), 45.8 (d, J = 5.3 Hz), 36.0, 22.5, 22.1 (d, J = 2.4 Hz); ³¹P NMR: δ 29.3 (s).

Phosphinate 24b: The general procedure was followed from phosphinite borane 22b (80.4 mg, 0.2 mmol) and MeSO₃H (40 µL, 0.6 mmol) in 2 mL CH₂Cl₂. The solution was oxidized with a premixed solution of 30% H₂O₂ (0.5 mL) and 20%NaOH (0.5 mL) in methanol (4 mL). The crude product was purified by column chromatography using 30% EtOAc in hexanes to yield 24b (49 mg, 60%) as a mixture of two diastereomers (dr ~ 1:0.85). Two diastereomers were separated by repeated PLC using 30% EtOAc in hexanes. Major diastereomer: Molecular ion calcd for $C_{26}H_{31}O_2P$: 407.2134; [M+H], ESMS found m/z = 407.2136; IR (neat, cm⁻¹) 1229, P=O; ¹H NMR (700 MHz): δ 7.91-7.88 (2H, m), 7.76-7.73 (2H, m), 7.51-7.49 (1H, m), 7.47-7.43 (3H, m), 7.39-7.36 (2H, m), 7.22 (2H, t, J = 7.7 Hz), 7.11 (1H, t, J = 7.7 Hz), 7.08 (2H, d, J = 7.0 Hz), 4.00-3.98 (1H, m), 2.76-2.73 (1H, m), 1.92-1.88 (1H, m), 1.83-1.79 (1H, m), 0.97 (3H, d, J = 7.0 Hz), 0.71 (9H, s); ¹³C NMR (175 MHz): δ 146.1. 134.0 (d. J = 134.7 Hz), 133.2 (d, J = 133.3 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 10.1 Hz), 131.5 (d, J = 2.6 Hz), 131.3 (d, J = 10.1 Hz), 128.4 (d, J = 12.7 Hz) Hz), 128.3 (d, J = 12.9 Hz), 128.2, 127.6, 125.9, 84.0 (d, J = 8.0 Hz), 40.7 (d, J = 1.4 Hz), 36.6, 35.3 (d, J = 4.7 Hz), 25.8 (3C), 23.1; ³¹P NMR: δ 28.5 (s). Minor diastereomer: mp 101-102 °C. Molecular ion calcd for $C_{26}H_{31}O_2P$: 407.2134; [M+H], ESMS found m/z = 407.2136; IR (neat, cm⁻) ¹) 1228, P=O; ¹H NMR (700 MHz): δ 7.87-7.84 (2H, m), 7.81-7.78 (2H, m), 7.50 (1H, t, J = 7.0 Hz), 7.47-7.39 (5H, m), 7.16 (2H, t, J = 7.0 Hz), 7.11 (1H, t, J = 7.0 Hz), 6.77 (2H, d, J = 7.7 Hz), 4.51 (1H, t, J = 9.0 Hz), 2.51-2.48 (1H, m), 1.89-1.85 (1H, m), 1.73 (1H, t, J = 13.3 Hz), 1.13 (3H, d, J = 7.0 Hz), 0.90 (9H, s); ¹³C NMR (175 MHz); δ 148.1, 134.2 (d, J = 136.9 Hz), 133.4 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.7 (d, J = 2.8 Hz), 131.6 (d, J = 137.4 Hz), 131.8 Hz), 131.8 Hz) = 2.8 Hz), 131.4 (d, J = 9.6 Hz), 131.3 (d, J = 9.5 Hz), 128.4 (d, J = 12.9 Hz), 128.3 (d, J = 12.9 Hz), 128.2, 126.5, 125.7, 84.4 (d, J = 8.0 Hz), 40.5 $(d, J = 2.1 Hz), 35.4 (d, J = 4.2 Hz), 35.3, 26.3 (3C), 20.1; {}^{31}P NMR: \delta 29.5 (s).$

Phosphinate 24c: The general procedure was followed from phosphinite borane **22c** (68 mg, 0.2 mmol) and MeSO₃H (40 μ L, 0.6 mmol) in 2 mL CH₂Cl₂. The solution was oxidized with a premixed solution of 30% H₂O₂ (0.5 mL) and 20% NaOH (0.5 mL) in methanol (4 mL). The crude

product was purified by column chromatography using 30% EtOAc in hexanes to yield **24c** (42 mg, 61%) as a white solid, mp 94-95 °C. Molecular ion calculated for C₂₁H₂₉O₂P: 345.1978; [M+H], ESMS found *m*/*z* = 345.1972; IR (neat, cm⁻¹) 1222, P=O; ¹H NMR: δ 7.83-7.78 (4H, m), 7.48-7.39 (6H, m), 4.37-4.33 (1H, m), 1.62-1.56 (1H, m), 1.45-1.37 (1H, m), 1.33-1.26 (1H, m), 0.90 (9H, s), 0.75 (3H, d, J = 6.5 Hz), 0.65 (3H, d, J = 6.5 Hz); ¹³C NMR: δ 134.0 (d, J = 136.4 Hz), 133.5 (d, J = 137.9 Hz), 131.5 (d, J = 2.9 Hz), 131.4 (d, J = 2.9 Hz), 131.3 (d, J = 10.0 Hz), 131.2 (d, J = 10.0 Hz), 128.2 (d, J = 6.8 Hz), 128.1 (d, J = 6.8 Hz), 83.8 (d, J = 8.1 Hz), 40.9 (d, J = 2.4 Hz), 35.3 (d, J = 3.8 Hz), 26.2 (3C), 24.7, 23.6, 21.3; ³¹P NMR: δ 28.9 (s).

Phosphinate 24d and Phosphinite borane 25: The general procedure was followed from phosphinite borane 22d (298 mg, 1 mmol) and MeSO₃H (200 µL, 3 mmol) in 10 mL CH₂Cl₂. The solution was oxidized with a premixed solution of 30% H₂O₂ (2.5 mL) and 20% NaOH (2.5 mL) in methanol (20 mL). The crude product was chromatographed on silica gel using 40% EtOAc in hexanes. The nonpolar fractions were collected and saved for further isolation of pure phosphinite borane 25. The more polar fractions provided pure 24d (195 mg, 65%) as viscous oil. Molecular ion calcd for C₁₈H₂₃O₂P: 303.1508; [M+H], ESMS found m/z = 303.1509; IR (neat, cm⁻¹) 1230, P=O; ¹H NMR: δ 7.85-7.83 (4H, m), 7.52-7.48 (2H, m), 7.46-7.41 (4H, m), 4.63-4.56 (1H, m), 1.73-1.62 (2H, m), 1.39-1.33 (1H, m), 1.31 (3H, d, J = 6 Hz), 0.81 (6H, app. t, J = 6.5 Hz); ¹³C NMR: δ 132.7 (d, J = 136.9 Hz), 132.3 (d, J = 132.5 Hz), 131.8 (d, J = 2.4 Hz), 131.6 (d, J = 10.0 Hz), 131.5 (d, J = 10.0 Hz), 128.3 (d, J = 12.9 Hz), 131.6 (d, J = 10.0 Hz), 131.5 (d, J = 10.0 Hz), 128.3 (d, J = 12.9 Hz), 131.8 (d, J = 10.0 Hz), 128.2 (d, J = 12.9 Hz), 72.1 (d, J = 6.8 Hz), 47.2 (d, J = 5.8 Hz), 24.4, 22.7, 22.6 (d, J = 2.4 Hz), 22.3; ³¹P NMR: δ 29.3 (s). The upper nonpolar fractions were concentrated and purified twice by PLC. In the second PLC using 2% Et₂O in hexanes, the upper nonpolar band was roughly divided into two halves. Extraction of the upper half provided the pure phosphinite borane 25. Molecular ion calculated for C₁₈H₂₃OP: 286.1486; [M-BH₃], EIMS found m/z = 286.1483; IR (neat, cm⁻¹) 2383, B–H; 2345, B–H; ¹H NMR: δ 7.75-7.64 (4H, m), 7.49-7.37 (6H, m), 4.65-4.55 (1H, m), 1.66-1.54 (2H, m), 1.32-1.27 (1H, m), 1.20 (3H, d, J = 6.0 Hz), 0.81 (3H, d, J = 6.4 Hz), 0.81 (3H, d, J = 6.4 Hz); 13 C NMR: δ 133.5 (d, J = 63.7)

Hz), 133.3 (d, J = 67.0 Hz), 131.5 (2C), 131.2 (d, J = 12.9 Hz), 131.1 (d, J = 12.9 Hz), 128.4 (d, J = 10.1 Hz), 128.3 (d, J = 10.8 Hz), 74.9 (d, J = 2.1 Hz), 47.3 (d, J = 5.4 Hz), 24.5, 22.8, 22.5 (d, J = 2.1 Hz), 22.3; ¹¹B NMR: δ -38.6 to -41.4 (m); ³¹P NMR: δ 101.6-100.4 (br m).

Preparation of Amine Borane Complexes; 26a and 26b

BH₃·THF (6.3 mL, 6.3 mmol) was added by syringe under an N₂ atmosphere to the known (3-methyl-3-butenyl)-dimethylamine⁴ (1.0 mL, 6.8 mmol) in anhydrous DCM (20 mL). After 1 h, the solution was filtered through a plug of silica gel, flushing with DCM and removing solvent by rotary evaporation, yielding 0.78 g (3-methyl-3-butenyl)-dimethylamine borane **26a** (97% y): TLC on K6F silica gel 60Å, 9:1 hexanes/Et₂O, Rf = 0.26. Molecular ion calculated for C₇H₁₇BN: 126.1454; [M-H], EIMS found m/z = 126.1452; IR (neat, cm⁻¹) 2366, B–H; 2319, B–H; 2273, B–H; 1650, C=C; 1459, B–N; 1167, C–N; ¹H NMR: δ 4.81 (1H, s), 4.73 (1H, s), 2.90-2.85 (2H, m), 2.61 (6H, s), 2.46-2.41 (2H, m), 2.1-1.3 (3H, br m), 1.77 (3H, s); ¹³C NMR: δ 141.9, 112.1, 63.0, 51.4, 32.1, 22.7; ¹¹B NMR: δ -9.9 (q, J = 98 Hz).

Borane complexation from (3-phenyl-3-butenyl)-dimethylamine⁵ under the same conditions gave **26b** (67%): TLC on K6F silica gel 60Å, 2:1 hexanes/EtOAc, Rf = 0.27. Molecular ion calculated for C₁₂H₂₀BNNa: 212.1586; [M+Na], ESMS found m/z = 212.1582; IR (neat, cm⁻¹) 2366, B–H; 2319, B–H; 2273, B–H; 1627, C=C; 1461, B–N; 1167, C–N; ¹H NMR: δ 7.44-7.41 (2H, m), 7.37-7.33 (2H, m), 7.32-7.28 (1H, m), 5.38 (1H, d, J = 1.0 Hz), 5.15 (1H, q, J = 1.0 Hz), 3.02-2.97 (2H, m), 2.85-2.80 (2H, m), 2.61 (6H, s), 2.1-1.3 (3H, br m); ¹³C NMR: δ 144.8, 139.8, 128.6, 128.0, 126.0, 114.6, 63.6, 51.8, 30.4; ¹¹B NMR: δ -10.2 (q, J = 97 Hz).

Ionic Hydrogenation of Amine Boranes 26; Isolation of 29a and 29b

Neat MsOH (100 µL, 1.54 mmol) was added by syringe to a stirred solution of **26a** (64 mg, 0.50 mmol) in anhydrous DCM (5 mL) under an N₂ atmosphere. After 1 h, the reaction was quenched by addition of 5 mL 5% aq. NaOH, separated and the aqueous layer extracted with 2 x 5 mL DCM. The combined organic layers were dried over Na₂SO₄ and reduced by rotatory evaporation. The product was purified by flash chromatography (FC) on silica gel (15 cm x 20 mm diameter, 1:2 hexanes/EtOAc), isolating 71 mg (3-methylbutyl)-dimethylamine bis(methylsulfonyloxy)borane (**29a**, 44%): TLC on K6F silica gel 60Å, 1:2 hexanes/EtOAc, Rf = 0.20. Molecular ion calculated for C₉H₂₄BNNaO₆S₂: 340.1036; [M+Na], ESMS found *m*/*z* = 340.1027; IR (neat, cm⁻¹) 2508, B–H; 1484, B–N; 1318, B–O; 1173, C–N; ¹H NMR: δ 3.8-2.8 (1H, br m), 3.07 (6H, s), 2.95-2.90 (2H, m), 2.61 (6H, s), 1.65-1.52 (3H, m), 0.96 (6H, d, J = 6.4 Hz); ¹³C NMR: δ 57.8, 44.5, 38.9, 30.4, 26.6, 22.4; ¹¹B NMR: δ 1.0 (d, J = 134 Hz).

The same rocedure was used from **26b** and afforded 3-phenylbutyl)-dimethylamine bis(methylsulfonyloxy)borane **29b**, was purified by reverse-phase PLC on K18F silica gel (70%): TLC on K18F silica gel 60Å, 4:1 MeOH/H₂O buffered with 0.5% Et₃N and 0.5% CF₃CO₂H, Rf = 0.62. Molecular ion calculated for C₁₄H₂₅BNO₆S₂: 378.1216; [M-H], EIMS found *m*/*z* = 378.1215; IR (neat, cm⁻¹) 2512, B–H; 1484, B–N; 1322, B–O; 1177, C–N; ¹H NMR: δ 7.33 (2H, t, J = 7.5 Hz), 7.23 (1H, t, J = 7.3 Hz), 7.18 (2H, d, J = 7.3 Hz), 3.02 (3H, s), 3.01 (3H, s), 2.95 (1H, td, J = 12.7, 4.9 Hz), 2.74-2.66 (1H m), 2.60 (1H, td, J = 12.7, 4.4 Hz), 2.56 (3H, s), 2.52 (3H, s), 2.07-1.90 (2H, m), 1.32 (3H, d, J = 7.1 Hz); ¹³C NMR: δ 145.0, 128.9, 126.8, 126.7, 58.3, 45.0, 44.7, 38.9, 38.9, 38.2, 30.3, 22.5; ¹¹B NMR: δ 0.8 (d, J = 111 Hz).

Conversion of 26a to 27a Using Stoichiometric MsOH

Neat MsOH (40 µL, 0.62 mmol) was added by syringe to a stirred solution of **26a** (64 mg, 0.50 mmol) in anhydrous DCM (5 mL) under an N₂ atmosphere. After 1 h, the reaction was quenched by addition of 2 mL 5% aq. NaOH, diluted with 3 mL H₂O, separated and the aqueous layer extracted with 2 x 5 mL DCM. The combined organic layers were dried over Na₂SO₄ and reduced by rotatory evaporation. The product was purified by flash chromatography (FC) on silica gel (15 cm x 20 mm diameter, 1:2 hexanes/EtOAc), isolating 57 mg (3-methyl-3-butenyl)-dimethylamine methylsulfonyloxy-borane (**27a**, 52%): TLC on K6F silica gel 60Å, 1:2 hexanes/EtOAc, Rf = 0.37. Molecular ion calculated for C₈H₂₀BNNaO₃S: 244.1155; [M+Na], ESMS found *m*/*z* = 244.1156; IR (neat, cm⁻¹) 2347, B–H; 2325, B–H; 1466, B–N; 1314, B–O; 1146, C–N; ¹H NMR: δ 4.85 (1H, s), 4.76 (1H, s), 3.0-2.1 (2H, br m), 2.97-2.92 (2H, m), 2.91 (3H, s), 2.61 (6H, s), 2.42-2.36 (2H, m), 1.77 (3H, s); ¹³C NMR: δ 141.1, 112.9, 59.0, 46.9, 37.7, 30.9, 22.6; ¹¹B NMR: δ 3.2 to -1.2 (br m).

4-(**Dimethylamino**)-**2**-phenylbutan-**2**-yl Acetate Borane Complex (**30**). To a solution of amine (120 mg, 0.51 mmol) in THF (2 mL) was slowly added BH₃·THF (0.85 M, 0.9 mL) at 0 °C. The resulting mixture was stirred for 2 h at rt. After removal of solvent, flash chromatography (hexane-ethyl acetate, 5:1) of the residue afforded 107 mg (84%) of the amine borane **30**: IR (neat) 3053, 1733, 2985, 1419, 1095, 895, 704 cm ⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.20-2.00 (br m, 3H), 1.87 (s, 3H), 2.10 (s, 3H), 2.38-2.44 (m, 1H), 2.49 (s, 3H), 2.50 (s, 3H), 2.53-2.59 (m, 1H), 2.62-2.73 (m, 2H), 7.26-7.38 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 22.2, 25.8, 35.9, 51.3, 51.4, 59.7, 82.7, 124.3, 127.4, 128.5, 143.7, 169.5; HRMS (ESI) *m/z* C₁₄H₂₄BNO₂Na 272.1798 [M+Na]⁺, found 272.1794.

Ionic Hydrogenation of 30 Activated by TMSOTf; N,N-Dimethyl-3-phenylbutanamine (33).⁶ To a solution of amine borane complex 30 (18 mg, 0.072 mmol) in CH₃CN (2 mL) was added TMSOTf (25 μ L) at 0 °C. The mixture was stirred overnight at rt, and quenched by addition of

NaOH (2N). After separation, the aqueous layer was extracted with DCM, the combined organic layers were dried over sodium sulfate and concentrated (vacuum) to give 10.5 mg (83%) of 33^6 after preparatory TLC using 3 : 1 : 0.02 hexane : ether : triethylamine; ¹H NMR (500 MHz, CDCl₃) δ 1.27 (d, *J* = 7.0 Hz), 1.71-1.83 (m, 2H), 2.11-2.27 (m, 2H), 2.20 (s, 6H), 2.71-2.79 (m, 1H), 7.17-7.22 (m, 3H), 7.26-7.32 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 22.4, 36.0, 38.0, 45.4, 57.9, 125.8, 126.9, 128.3, 147.3.

2-((Dimethylamino)methyl)-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl Acetate Borane Complex (Footnote 7, *i*). The same procedure was used as for the preparation of **30** to give *I*; IR (neat) 3052, 1733, 1456, cm ⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.20-2.10 (br m, 3H), 1.92 (s, 3H), 2.08 (s, 3H), 2.17-2.24 (m, 1H), 2.33-2.41 (m, 1H), 2.60 (s, 3H), 2.61 (s, 3H), 2.70-2.75 (m, 1H), 2.82-2.90 (m, 2H), 2.94-3.02 (m, 2H), 7.10-7.15 (m, 1H), 7.18-7.24 (m, 2H), 7.60-7.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 22.5, 24.7, 25.7, 28.1, 38.4, 51.5, 52.9, 63.2, 83.0, 126.0, 126.6, 127.6, 129.0, 135.1, 138.8, 170.1; HRMS (ESI) *m/z* C₁₆H₂₆BNO₂Na 298.1954 [M+Na]⁺, found 298.1951.

N,N-Dimethyl(1-methyl-1,2,3,4-tetrahydronaphthalen-2-yl)methanamine (Footnote 7, *ii*). The same procedure was used as for the ionic hydrogenation of **30** and gave *ii* in 52% yield as a mixture of diastereoisomer (dr = 2.7:1) from *i* (starting *dr* = 3.5:1): major isomer IR (neat) 3052, 2985, 1419 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.32 (d, *J* = 7.4 Hz, 3H), 1.60-1.68 (m, 1H), 1.76-1.84 (m, 1H), 1.96-2.08 (m, 1H), 2.12-2.28 (m, 2H), 2.24 (s, 3H), 2.27 (s, 3H), 2.64-2.76 (m, 2H), 2.82-2.88 (m, 1H), 7.05-7.18 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 17.5, 22.5, 24.1, 26.2, 36.2, 37.4, 46.0, 63.5, 125.4, 129.4, 136.1, 141.1; HRMS (ESI) *m/z* C₁₄H₂₂N 204.1752 [M+H]⁺, found 204.1745.

Reaction of 26b with (+)-Camphorsulfonic Acid

Solid (+)-camphorsulfonic acid (CSA, **34**, 35 mg, 0.15 mmol) was added to a stirred solution of **26b** (25 mg, 0.13 mmol) in anhydrous DCM (5 mL) which was then quickly capped with a septum and an N₂ inlet. After stirring 2 h, neat MsOH (15 μ L, 0.23 mmol) was added by syringe, monitoring the reaction by MS. After 1 h, the major peak corresponded to **36**. The solvent was then removed by a stream of N₂, and the residue was dissolved in MeOH (1.0 mL) which was then acidified by addition of 0.10 mL 6M aq. HCl before heating to reflux 16 h. The mixture was cooled to rt, made alkaline with 5% aq. NaOH and extracted with Et₂O (2 x 5 mL), the organic layers dried over MgSO₄ and reduced by rotatory evaporation. The product was purified by PLC on silica gel (20 x 20 cm x 250 μ m, 65:33:2 hexanes/acetone/Et₃N), isolating 12 mg (3-phenylbutyl)-dimethylamine (**33**, 53%, 68% ee). Conditions for enantiomeric excess assay by HPLC (Chiralcel OD column, 0.1% *i*PrOH/hexane, 1 mL/min) were optimized using racemic **33**, obtained by hydrolysis of *rac-29b* with HCl, with peaks at 13 and 23 minutes (peak at 40 minutes for (3-phenyl-3-butenyl)-dimethylamine impurity).

Reaction of Me₃N·BH₃ (37) with (-)-Camphorsulfonic Acid

Solid (–)-camphorsulfonic acid (*ent*-CSA, *ent*-**34**, 152 mg, 0.65 mmol) was added to a stirred solution of Me₃N·BH₃ (**37**, 43 mg, 0.59 mmol) in anhydrous DCM (2.2 mL) which was then quickly capped with a septum and an N₂ inlet. After stirring 4 h the solution was washed with H₂O (5 mL), the layers separated and the aqueous layer extracted with 5 mL DCM. The combined organic layers were dried over Na₂SO₄ and reduced by rotatory evaporation. The residue was taken up in minimal DCM (ca. 1 mL) and hexanes was added until the solution started to turn cloudy (ca. 15 mL). The flask was left open to allow solvent evaporation, collecting the long needles that formed after 1 d, rinsing with hexanes and collecting 41 mg trimethylamine ((1*S*,2*R*,4*R*)-2-hydroxy-7,7-dimethyl-bicyclo[2.2.1]hept-1-yl)-methylsulfonyloxyborane (**38**, 27%):

Molecular ion calculated for C₁₃H₂₅BNO₄S: 302.1597; [M-H₂-H⁻], EIMS found m/z = 302.1595; IR (neat, cm⁻¹) 3512, O–H, 2427, B–H; 2342, B–H; 1468, B–N; 1316, B–O; 1138, C–N; ¹H NMR: δ 4.15-4.08 (1H, m), 3.44 (1H, d, J = 14.0 Hz), 3.37 (1H, d, J = 3.3 Hz), 2.93 (1H, d, J = 14.0 Hz), 2.90 (1H, d, J = 4.0 Hz), 2.8-2.0 (2H, br m), 2.64 (9H, s), 1.88-1.47 (6H, m), 1.08 (3H, s), 0.83 (3H, s); ¹³C NMR: δ 76.4, 50.0, 49.9, 49.7, 48.5, 44.5, 38.8, 30.5, 27.4, 20.6, 19.9; ¹¹B NMR: δ 3.4 to -0.2 (br m).

References for Supporting Information

- (1) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795.
- (2) Shapland, P.; Vedejs, E. J. Org. Chem. 2004, 69, 4094.
- (3) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244.
- (4) Krafft, M. E.; Juliano, C. A.; Scott, I. L.; Wright, C.; McEachin, M. D. J. Am. Chem. Soc. 1991, 113, 1693.
- (5) Aoyama, H.; Sugiyama, J.-I.; Yoshida, M.; Hatori, H.; Hosomi, A. J. Org. Chem. 1992, 57, 3037.
- (6) Bussas, R.; Muenster, H.; Kresze, G. J. Org. Chem. 1983, 48, 2828.

X-ray Crystal Structure of 38

Table 1. Crystal data and structure refinement for 38.

Identification code	38
Empirical formula	C13 H28 B N O4 S
Formula weight	305.23
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	a = 6.8265(5) A alpha = 90 deg. b = 9.4699(8) A beta = 90 deg. c = 24.772(2) A gamma = 90 deg.
Volume	1601.4(2) A^3
Z, Calculated density	4, 1.266 Mg/m^3
Absorption coefficient	0.214 mm^-1
F(000)	664
Crystal size	0.50 x 0.34 x 0.22 mm
Theta range for data collection	1.64 to 28.34 deg.
Limiting indices	-9<=h<=9, -12<=k<=12, -33<=l<=33
Reflections collected / unique	57330 / 3997 [R(int) = 0.0376]
Completeness to theta = 28.34	100.0 %

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9545 and 0.9007
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3997 / 0 / 190
Goodness-of-fit on F^2	1.171
Final R indices [I>2sigma(I)]	R1 = 0.0330, wR2 = 0.0892
R indices (all data)	R1 = 0.0332, wR2 = 0.0893
Absolute structure parameter	0.04(6)
Largest diff. peak and hole	0.356 and -0.189 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for **4-25**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
		J		
B(1)	3664(3)	6617(2)	8546(1)	26(1)
N(1)	4294(2)	5263(1)	8193(1)	18(1)
S (1)	502(1)	7984(1)	8102(1)	17(1)
O(1)	1510(2)	6860(1)	8448(1)	22(1)
O(2)	-633(2)	7258(2)	7697(1)	30(1)
O(3)	1845(2)	9044(1)	7918(1)	26(1)
O(4)	-708(2)	11747(1)	8363(1)	23(1)

C(1)	2985(3)	4063(2)	8310(1)	59(1)
C(2)	6321(3)	4857(2)	8345(1)	26(1)
C(3)	4276(3)	5583(3)	7609(1)	45(1)
C(4)	-1217(2)	8733(2)	8555(1)	15(1)
C(5)	-429(2)	9704(1)	8990(1)	12(1)
C(6)	1174(2)	9081(2)	9361(1)	17(1)
C(7)	1072(2)	10025(2)	9875(1)	22(1)
C(8)	-559(2)	11080(2)	9733(1)	20(1)
C(9)	260(2)	12077(2)	9299(1)	22(1)
C(10)	396(2)	11134(2)	8787(1)	16(1)
C(11)	-2028(2)	10165(2)	9410(1)	16(1)
C(12)	-3744(2)	11000(2)	9172(1)	23(1)
C(13)	-2899(2)	8950(2)	9737(1)	21(1)

B(1)-O(1)	1.507(2)
B(1)-N(1)	1.610(2)
N(1)-C(1)	1.474(2)
N(1)-C(3)	1.478(2)
N(1)-C(2)	1.485(2)
S(1)-O(3)	1.4340(12)
S(1)-O(2)	1.4428(12)
S(1)-O(1)	1.5306(11)
S(1)-C(4)	1.7716(14)
O(4)-C(10)	1.4174(18)
C(4)-C(5)	1.5162(18)
C(5)-C(6)	1.5458(19)
C(5)-C(10)	1.5510(19)
C(5)-C(11)	1.5692(19)
C(6)-C(7)	1.556(2)
C(7)-C(8)	1.536(2)
C(8)-C(9)	1.536(2)
C(8)-C(11)	1.548(2)
C(9)-C(10)	1.554(2)
C(11)-C(13)	1.527(2)
C(11)-C(12)	1.532(2)
O(1)-B(1)-N(1)	107.18(13)
C(1)-N(1)-C(3)	110.3(2)
C(1)-N(1)-C(2)	108.39(15)
C(3)-N(1)-C(2)	108.03(14)
C(1)-N(1)-B(1)	110.15(15)
C(3)-N(1)-B(1)	111.43(14)
C(2)-N(1)-B(1)	108.48(12)
O(3)-S(1)-O(2)	117.10(8)
O(3)-S(1)-O(1)	112.21(7)
O(2)-S(1)-O(1)	107.45(7)

Table 3. Bond lengths [A] and angles [deg] for 38.

O(3)-S(1)-C(4)	110.20(7)
O(2)-S(1)-C(4)	105.97(7)
O(1)-S(1)-C(4)	102.78(6)
B(1)-O(1)-S(1)	129.38(12)
C(5)-C(4)-S(1)	117.27(10)
C(4)-C(5)-C(6)	116.26(11)
C(4)-C(5)-C(10)	115.32(11)
C(6)-C(5)-C(10)	105.60(11)
C(4)-C(5)-C(11)	113.19(12)
C(6)-C(5)-C(11)	101.81(11)
C(10)-C(5)-C(11)	102.98(10)
C(5)-C(6)-C(7)	103.59(12)
C(8)-C(7)-C(6)	102.69(12)
C(7)-C(8)-C(9)	107.17(13)
C(7)-C(8)-C(11)	102.92(12)
C(9)-C(8)-C(11)	102.57(12)
C(8)-C(9)-C(10)	103.89(12)
O(4)-C(10)-C(5)	113.89(12)
O(4)-C(10)-C(9)	109.76(12)
C(5)-C(10)-C(9)	102.41(11)
C(13)-C(11)-C(12)	107.18(12)
C(13)-C(11)-C(8)	113.56(12)
C(12)-C(11)-C(8)	113.95(13)
C(13)-C(11)-C(5)	114.34(12)
C(12)-C(11)-C(5)	114.82(12)
C(8)-C(11)-C(5)	92.76(11)

Symmetry transformations used to generate equivalent atoms:

S-28

S-30

tdvVI-180b-C

Мe

S-32

SM-155-1H-minorisomer-pure

Sample Name:

Data Collected on: Sn.Chem.LSA.UMich.edu-inova500 Archive directory:

Sample directory:

ridrile: SM-156-1H-pure

Мe

SM-145-1H-Pure

Sample Name:

Data Collected on: Sn.Chem.LSA.UMich.edu-inova500 Archive directory:

Sample directory:

ridrile: SM-145-1H-Pure

Fulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: May 24 2011

🔆 Agilent Technologies

SM-96-1H

Sample Name:

Data Collected on: Sn.Chem.LSA.UKich.edu-inova500 Archive directory:

Sample directory:

FidFile: SM-96-1H-Pure

Fulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Mar 21 2011

Agilent Technologies

SM-106-1H-pure

Sample Name:

🔆 Agilent Technologies

SM-86-1H

Sample Name:

🔆 Agilent Technologies

SM-147-1H-Upper-diastereomer-major

Sample Name:

SM-147-1H-Lower-diastereomer-minor

Sample Name:

Data Collected on: Yb-vnmrs700 Archive directory:

Sample directory:

FidFile: SM-147-1H-Lower-diastereomer-minor

Pulse Sequence: PROTON (s2pul) Solvent: cdcl3 Data collected on: Jum 11 2011

X Agrient reconclugies

tdvVI-187-14-C

File: Carbon

220

200

Pulse Sequence: s2pul

Solvent: cdcl3 Ambient temperature Operator: tdevries INOVA-400 "Zr.Chem.LSA.UMich.Edu"

Relax. delay 0.100 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 24140.0 Hz 96 repetitions OBSERVE C13, 100.5712653 MHz DECOUPLE H1, 399.9669644 MHz Power 39 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.8 Hz FT size 65536 Total time 2 min, 15 sec Acquisition date: Nov 10 2007

=

