Supporting Information. Mechanistic Variations in Ionic Hydrogenation of Unsaturated Phosphine and Amine Boranes Timothy S. De Vries,
Supriyo Majumder, Angela M. Sandelin, Guoqiang Wang, and Edwin Vedejs*
Hydrogen Evolution from $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}(37)$ vs. $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ..... S-3
Ionic Hydrogenation of Phosphine Borane 4 ..... S-4
Preparation and Ionic Hydrogenation of Phosphine Borane 12 ..... S-4
Independent Synthesis of Minor Diastereomer 14a ..... S-5
General procedure for the synthesis of unsaturated phosphinite-boranes ..... S-7
3-Methylenecyclohexyl Diphenylphosphinite borane 18 ..... S-7
Ionic hydrogenation of phosphinite borane 18 using TfOH activation; preparation of 19 ..... S-8
Independent Synthesis of 19 and 20 ..... S-9
4-Phenylpent-4-en-2-yl Diphenylphosphinite borane 22a ..... S-10
2,2-Dimethyl-5-phenylhex-5-en-3-yl Diphenylphosphinite borane 22b ..... S-10
2,2,5-Trimethylhex-5-en-3-yl Diphenylphosphinite borane 22c ..... S-11
4-Methylpent-4-en-2-yl Diphenylphosphinite borane 22d ..... S-11
General procedure for the ionic hydrogenation of unsaturated acyclic phosphinite-boranes ..... S-12
4-Phenylpent-4-en-2-yl Diphenylphosphinate 24a ..... S-12
2,2-Dimethyl-5-phenylhex-5-en-3-yl Diphenylphosphinate 24b ..... S-13
2,2,5-Trimethylhex-5-en-3-yl Diphenylphosphinate 24c ..... S-13
4-Methylpent-4-en-2-yl Diphenylphosphinate 24d ..... S-14
Preparation of Amine Borane Complexes; 26a, 26b ..... S-16
Ionic Hydrogenation of Amine Borane 26a; Representative Procedure ..... S-16
Conversion of 26a to 27a Using Stoichiometric MsOH ..... S-17
4-(Dimethylamino)-2-phenylbutan-2-yl acetate borane complex (30) ..... S-17
Ionic Hydrogenation of 30 Activated by TMSOTf; N,N-Dimethyl-3-phenylbutanamine (33) ..... S-17
Footnote 7, Borane Complex $\boldsymbol{i}$ ..... S-18
Footnote 7, Ionic Hydrogenation Product ii ..... S-18
Reaction of 26b with (+)-Camphorsulfonic Acid ..... S-19
Preparation of 38 from $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}$ (37) and (-)-Camphorsulfonic Acid ..... S-19
References for Supporting Information ..... S-20
X-Ray Crystal Structure of 38 and Data Tables ..... S-21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Isolable Compounds ..... S-27

## Experimental

The following chemicals were commercially available and used as received: trimethylamine borane; tributylphosphine borane; trifluoroacetic acid; methanesulfonic acid; borane tetrahydrofuran, 1.0 M solution in tetrahydrofuran; methyltriphenylphosphonium bromide; sodium bis(trimethylsilyl)amide; 3-methylcyclohexanol (mixture of cis and trans); p-toluenesulfonyl chloride; diphenylphosphine; (+)camphorsulfonic acid; 3-methyl-2-cyclohexen-1-ol; methanesulfonyl chloride; dimethylamine, $33 \%$ in absolute ethanol. Chloroform- $d$ and methylene chloride- $d_{2}$ were dried by storing over activated $4 \AA$ molecular sieves; dichloromethane (DCM) and tetrahydrofuran (THF) were dried by passing through a column of activated alumina; triethylamine was distilled from $\mathrm{CaH}_{2}$ and pyridine from KOH under an $\mathrm{N}_{2}$ atmosphere. All reactions were performed at room temperature under an $\mathrm{N}_{2}$ atmosphere unless otherwise stated. Nuclear magnetic resonance experiments were performed on Varian Inova 500 and Inova 400 spectrometers at the following frequencies: ${ }^{1} \mathrm{H} 500 \mathrm{MHz} ;\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C} 101 \mathrm{MHz} ;{ }^{11} \mathrm{~B} 160 \mathrm{MHz}$; ${ }^{19} \mathrm{~F}$ 376 MHz , unless otherwise stated. All spectra were recorded in $\mathrm{CDCl}_{3}$ and referenced to the ${ }^{1} \mathrm{H}$ signal of internal $\mathrm{Me}_{4} \mathrm{Si}$ (unless otherwise stated) according to recommendations, ${ }^{1}$ using a $\Xi$ of 25.145020 for $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{13} \mathrm{C}\right)$, a $\Xi$ of 32.083974 for $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}\right)$, and a $\Xi$ of 94.094011 for $\mathrm{CCl}_{3} \mathrm{~F}$ $\left({ }^{19} \mathrm{~F}\right)$.

## Hydrogen Evolution from $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}(\mathbf{3 7})$ vs. $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

Neat $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(6 \mu \mathrm{~L}, 78 \mu \mathrm{~mol})$ was added by syringe to a stirred solution of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}(4.8 \mathrm{mg}, 66 \mu \mathrm{~mol})$ in anhydrous $\mathrm{CD}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under an $\mathrm{N}_{2}$ atmosphere. After 45 min , this solution was transferred via syringe to an $\mathrm{N}_{2}$-flushed NMR tube. Assay by ${ }^{1} \mathrm{H}$ NMR showed ca. $45 \%$ of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}$ remaining by integration of its $\mathrm{B}-H$ signal at $\delta 2.0-1.3 \mathrm{ppm}$ relative to the methyl singlet at $\delta 2.61 \mathrm{ppm}$ (overlapping $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}$ and $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)$ signals $)$. The formation of trifluoroacetoxyborane complex was confirmed by reaction of $\mathrm{Me}{ }_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}$ with 10 equiv $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
$(50 \mu \mathrm{~L}, 650 \mu \mathrm{~mol})$ under the same conditions, giving $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)$ as the major product after $1 \mathrm{~h}:{ }^{1} \mathrm{H}$ NMR: $\delta 3.1-2.0(2 \mathrm{H}$ br s), $2.63(9 \mathrm{H}$, s).

The reaction of $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}(20 \mu \mathrm{~L}, 75 \mu \mathrm{~mol})$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(6 \mu \mathrm{~L}, 78 \mu \mathrm{~mol})$ in $1.0 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ was performed under the same conditions, assay by 1 H NMR after 45 min showing less than $2 \%$ conversion to $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)$ by integration of its $\alpha-\mathrm{CH}_{2}$ at $\delta 1.76-1.67$ ppm relative to the $\alpha-\mathrm{CH}_{2}$ peak for unreacted $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}$ at $\delta 1.60-1.50 \mathrm{ppm}$. This product trifluoroacetoxyborane complex was also confirmed by reaction of $\mathrm{Bu}_{3} \mathrm{P} \cdot \mathrm{BH}_{3}$ with 10 equiv $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(50 \mu \mathrm{~L}, 650 \mu \mathrm{~mol})$ under the same conditions, giving $\mathrm{Bu} \mathrm{B}_{3} \mathrm{P} \cdot \mathrm{BH}_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)$ as the major product after $1 \mathrm{~h}:{ }^{1} \mathrm{H}$ NMR: $\delta 3.4-2.3(2 \mathrm{H} \mathrm{br} \mathrm{s}), 1.76-1.67(6 \mathrm{H}, \mathrm{m}), 1.53-1.37(6 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta 3.1-0.4$ (br m).

## Representative Procedure for Ionic Hydrogenation of Phosphine Borane 4

Neat $\mathrm{MsOH}(100 \mu \mathrm{~L}, 1.54 \mathrm{mmol})$ was added by syringe to a stirred solution of $\mathbf{4}(138 \mathrm{mg}, 0.51 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ under an $\mathrm{N}_{2}$ atmosphere. After 10 min , this solution was quenched by addition of $10 \mathrm{~mL} \mathrm{MeOH}, 1 \mathrm{~mL} 20 \% \mathrm{aq} . \mathrm{NaOH}$ and $1 \mathrm{~mL} 35 \% \mathrm{aq} . \mathrm{H}_{2} \mathrm{O}_{2}$. After an additional 1 h , this mixture was diluted with $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, separated and the aqueous layer extracted with $2 \times 10 \mathrm{~mL}$ DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and reduced by rotatory evaporation. The product was purified by flash chromatography ( FC ) on silica gel ( 15 cm x 20 mm diameter, $19: 1 \mathrm{DCM} / \mathrm{EtOH})$, isolating 110 mg product $5(\mathrm{Rf}=0.3,78 \% \mathrm{y})$ and recovering $18 \mathrm{mg} 6(\mathrm{Rf}=0.07,12 \% \mathrm{y}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data matched those reported for $\mathbf{5}$ and 6. ${ }^{2}$

## Preparation and Ionic Hydrogenation of Phosphine Borane 12

Methyltriphenylphosphonium bromide ( $520 \mathrm{mg}, 1.46 \mathrm{mmol}$ ) and sodium bis(trimethylsilyl)-amide ( $242 \mathrm{mg}, 1.32 \mathrm{mmol}$ ) were transferred under an $\mathrm{N}_{2}$ atmosphere to an oven-dried 50 mL round-bottom flask fused to a reflux condenser and dissolved in anhydrous THF ( 20 mL ). After 30 min the now yellow solution was heated to reflux, cooling after 1 h and filtering through an $\mathrm{N}_{2}$-flushed fritted filter into a flask containing a stirred solution of 3-diphenylphosphinylcyclohexanone borane ${ }^{3}$ ( $355 \mathrm{mg}, 1.20 \mathrm{mmol}$ ) in anhydrous THF ( 10 mL ), rinsing the flask in which the phosphonium ylide was formed with 10 mL THF. After 1 d the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine ( 50 mL ), dried over $\mathrm{MgSO}_{4}$, and reduced by rotatory evaporation. The product was purified by FC on silica gel ( 15 cm x 30 mm diameter, 2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ ), isolating 337 mg (3-Methylenecyclohexyl)-diphenylphosphine borane (12): analytical thin layer chromatography (TLC) on K6F silica gel $60 \AA \AA^{2}$, $2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}, \mathrm{Rf}=0.53$. Molecular ion calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BNaP}: 317.1606 ;[\mathrm{M}+\mathrm{Na}], \mathrm{ESMS}$ found $m / z=317.1591 ;$ IR (neat, $\mathrm{cm}^{-1}$ ) 2381, $\mathrm{B}-\mathrm{H}$; 2348, B-H; 1650, C=C; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.78-7.70(4 \mathrm{H}, \mathrm{m}), 7.52-7.41(6 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{s}), 4.57(1 \mathrm{H}, \mathrm{s}), 2.55-2.45(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=13.1$ $\mathrm{Hz}), 2.28-2.17(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=13.4,4.4 \mathrm{~Hz}), 1.95-1.87(1 \mathrm{H}, \mathrm{m}), 1.73-1.66(1 \mathrm{H}, \mathrm{m}), 1.61(1 \mathrm{H}, \mathrm{qt}, \mathrm{J}=12.7,4.4 \mathrm{~Hz}), 1.35(1 \mathrm{H}, \mathrm{qt}, \mathrm{J}=$ 13.0, 3.9 Hz), 1.3-0.5 (3H, br m); ${ }^{13} \mathrm{C}$ NMR: $\delta 147.4(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}), 132.6(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 132.6(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=2$ $\mathrm{Hz}), 128.8(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 128.8(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=54 \mathrm{~Hz}), 128.0(\mathrm{~d}, \mathrm{~J}=53 \mathrm{~Hz}), 108.6,35.0(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 34.8(\mathrm{~d}, \mathrm{~J}=27 \mathrm{~Hz}), 34.4(\mathrm{~d}, \mathrm{~J}$ $=2 \mathrm{~Hz}), 27.9(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}), 26.1 ;{ }^{11} \mathrm{~B}$ NMR: $\delta-42.1(\mathrm{qd}, \mathrm{J}=93,30 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta$ 19.7-18.0 (br m).

Reaction of $\mathbf{1 2}$ under the same conditions as for $\mathbf{4}$ above gave ionic hydrogenation product $\mathbf{1 4 b}$ ( $\mathbf{7 6 \%}$ y), and a minor byproduct resulting from hydroboration (14\%). trans-(3-Methylcyclohexyl)-diphenylphosphine oxide (14b): TLC on K 6 F silica gel 60Å, 19:1 DCM/EtOH, Rf $=0.18$. Molecular ion calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NaOP}$ 298.1486; [ $\mathrm{M}^{++}$], EIMS found $m / z=298.1478$; IR (neat, $\mathrm{cm}^{-1}$ ) 1181, $\mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.82-7.74$ (4H, m), 7.52-7.41 ( $6 \mathrm{H}, \mathrm{m}$ ), 2.55-2.45 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.15-2.06 $(1 \mathrm{H}, \mathrm{m}), 1.87-1.77(1 \mathrm{H}, \mathrm{m}), 1.71-1.40(6 \mathrm{H}, \mathrm{m}), 1.38-1.30(1 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$; ${ }^{13}$ C NMR: $\delta 132.6(\mathrm{~d}, \mathrm{~J}=94 \mathrm{~Hz}), 132.4(\mathrm{~d}, \mathrm{~J}=94 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 131.0(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 131.0(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 128.6(\mathrm{~d}, \mathrm{~J}$
$=11 \mathrm{~Hz}), 128.5(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 31.7,31.5(\mathrm{~d}, \mathrm{~J}=73 \mathrm{~Hz}), 31.0(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 27.1(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 25.0(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 20.8(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 18.5 ;{ }^{31} \mathrm{P}$ NMR: $\delta 36.4$.

## Independent Synthesis of Minor Diastereomer 14a

Pyridine ( $5 \mathrm{~mL}, 62 \mathrm{mmol}$ ) was added to $p$-toluenesulfonyl chloride ( $1.63 \mathrm{~g}, 8.5 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$ under an $\mathrm{N}_{2}$ atmosphere to dissolve; the solution developed a yellow color. To this was added the commercially available mixture of cis- and trans-3-methylcyclohexanol (15), the yellow color fading on alcohol addition. After 20 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched by pouring onto 150 mL iced 1 M aq . HCl , extracting with ethyl ether ( $3 \times 20 \mathrm{~mL}$ ), drying the combined organic layers over $\mathrm{MgSO}_{4}$ before reducing by rotatory evaporation, leaving $1.74 \mathrm{~g}(88 \% \mathrm{y})$ of residue. ${ }^{1} \mathrm{H}$ NMR assay shows a mixture of cis- and trans-3-methylcyclohexyl-p-toluenesulfonates (16) in a ratio of 2.6:1 by integration of the methyl doublets at 0.89 and 0.82 ppm , respectively. This crude tosylate mixture was taken on without purification.

Diphenylphosphine ( $0.62 \mathrm{~g}, 3.3 \mathrm{mmol}$ ) was charged to a 50 mL round-bottom flask under an $\mathrm{N}_{2}$ atmosphere and dissolved in anhydrous THF ( 17 mL ). After cooling the solution to $-40^{\circ} \mathrm{C}$, a solution of $n \operatorname{BuLi}(1.98 \mathrm{M}$ in hexane, $1.7 \mathrm{~mL}, 3.4 \mathrm{mmol})$ was added slowly, the resulting solution developing a deep red color. After stirring 4 h , the solution was warmed to $0{ }^{\circ} \mathrm{C}$ and a mixture of cis- and trans-3-methylcyclohexyl-ptoluenesulfonate ( $\mathbf{1 6}, 0.96 \mathrm{~g}, 3.6 \mathrm{mmol}$ ) was added by syringe. After 2 h the deep red color had mostly faded to a light orange, and the mixture was oxidized by the addition of $5 \mathrm{~mL} 35 \%$ aq. $\mathrm{H}_{2} \mathrm{O}_{2}$. After warming to rt , the layers were separated and the aqueous layer washed with ethyl ether ( 2 x $20 \mathrm{~mL})$, the combined organic layers dried over $\mathrm{MgSO}_{4}$ and reduced by rotatory evaporation. Assay of the crude product mixture $(1.14 \mathrm{~g})$ by ${ }^{1} \mathrm{H}$ NMR showed unreacted tosylate $\mathbf{1 6}$ further enriched in the cis-isomer as well as the desired cis-diastereomer (14a); no trace of trans-(3-methylcyclohexyl)-diphenylphosphine oxide ( $\mathbf{1 4 b}$ ) was observed. Purification of a portion of the crude product ( 176 mg ) by preparative thin layer
chromatography (PLC) on silica gel ( $20 \times 20 \mathrm{~cm} \times 1000 \mu \mathrm{~m}$, EtOAc) gave pure cis-(3-methylcyclohexyl)-diphenylphosphine oxide (14a, 23 mg , $50 \%$ based on trans-3-methylcyclohexyl-p-toluenesulfonate): TLC on K 6 F silica gel $60 \AA \mathrm{~A}, \mathrm{EtOAc}, \mathrm{Rf}=0.42$. Molecular ion calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NaOP}: 298.1486 ;\left[\mathrm{M}^{+}\right]$, EIMS found $m / z=298.1490$; IR (neat, $\mathrm{cm}^{-1}$ ) $1181, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.82-7.74(4 \mathrm{H}, \mathrm{m}), 7.54-7.43(6 \mathrm{H}, \mathrm{m}), 2.33-$ $2.24(1 \mathrm{H}, \mathrm{m}), 1.86-1.79(1 \mathrm{H}, \mathrm{m}), 1.74-1.65(3 \mathrm{H}, \mathrm{m}), 1.54-1.17(4 \mathrm{H}, \mathrm{m}), 0.92(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}=12.6,3.7 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR: $\delta$ $132.2(\mathrm{~d}, \mathrm{~J}=94 \mathrm{~Hz}), 132.1(\mathrm{~d}, \mathrm{~J}=94 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 128.6(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 128.5(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz})$, $37.1(\mathrm{~d}, \mathrm{~J}=73 \mathrm{~Hz}), 36.6,32.9(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}), 32.7(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 26.3(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}), 24.3(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 22.7 ;{ }^{31} \mathrm{P}$ NMR: $\delta 34.1$.

General Procedure for the Synthesis of Unsaturated Phosphinite Boranes: To a solution of homoallylic alcohol in ether at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ followed by the dropwise addition of chlorodiphenyl phosphine. The resulting mixture was warmed to room temperature and stirred for 1 h . The progress of the reaction was monitored by TLC and upon completion the solution was filtered through a plug of silica and concentrated. $20 \%$ EtOAc in hexanes was added to the concentrate and filtered once again to remove the remaining ammonium salts. The filtrate was concentrated under reduced pressure and dried under vacuum. The crude material was dissolved in THF and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{THF} \cdot \mathrm{BH}_{3}$ (1M solution in THF) was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude material was purified by column chromatography on silica.

3-Methylenecyclohexyl Diphenylphosphinite Borane 18. The general procedure was followed from 3-methylenecyclohexanol ( 672 mg , 6 $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 12 \mathrm{mmol})$, chlorodiphenyl phosphine $(1.72 \mathrm{~mL}, 9.6 \mathrm{mmol})$ and THF•BH $(4.7 \mathrm{~mL}, 4.7 \mathrm{mmol})$. The crude product was purified by column chromatography using 1:19 EtOAc/hexanes to yield $\mathbf{1 8}(1.0 \mathrm{~g}, 68 \%)$ as colorless oil which slowly crystalized to a white solid, $\mathrm{mp} 49-50^{\circ} \mathrm{C}$. Molecular ion calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BOP}: 309.1574$; $[\mathrm{M}-\mathrm{H}]$, ESMS found $m / z=309.1573$; IR (neat, $\mathrm{cm}^{-1}$ ) 2384, B-H; 2344, B-H;

1653, $\mathrm{C}=\mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.80-7.74(4 \mathrm{H}, \mathrm{m}), 7.52-7.48(2 \mathrm{H}, \mathrm{m}), 7.46-7.42(4 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{s}), 4.64(1 \mathrm{H}, \mathrm{s}), 4.51-4.44(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 13.0 and 4 Hz$), 2.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5$ and 8.0 Hz$), 2.17-2.12(1 \mathrm{H}, \mathrm{m}), 2.07-2.02(1 \mathrm{H}, \mathrm{m}), 1.94-1.90(1 \mathrm{H}, \mathrm{m}), 1.83-1.76(1 \mathrm{H}, \mathrm{m}), 1.70-1.62(1 \mathrm{H}$, m), 1.44-1.36 (1H, m), 1.28-0.72 (3H, br m); ${ }^{13} \mathrm{C}$ NMR: $\delta 144.7$, $133.3(\mathrm{~d}, \mathrm{~J}=64.8 \mathrm{~Hz}), 133.2(\mathrm{~d}, \mathrm{~J}=64.4 \mathrm{~Hz}), 131.5,131.2(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 131.1$ $(\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 128.5(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 77.0(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 42.4(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 33.9,33.1(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 23.5 ;{ }^{11} \mathrm{~B} \operatorname{NMR}: \delta-$ 38.6 to -41.3 (m); ${ }^{31} \mathrm{P}$ NMR: $\delta 102.1-101.9$ (br m).

Ionic hydrogenation of phosphinate 19 using TfOH activation. To a solution of phosphinite borane $\mathbf{1 8}(62 \mathrm{mg}, 0.2 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(18 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ dropwise under nitrogen. The solution was stirred at that temperature for 4 h . Then the solution was treated with a premixed solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ and $20 \% \mathrm{NaOH}(0.5 \mathrm{~mL})$ in methanol 4 mL$)$ and stirred for further 4 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x), dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. NMR analysis of the crude sample showed diastereoselectivity of 19:1 according to a comparison of methyl signals vs. independently synthesized diastereomers. The crude product was purified by PLC using $40 \%$ EtOAc in hexanes to yield $19(27 \mathrm{mg}, 43 \%)$ as a pure diastereomer, $\mathrm{mp} 80-81{ }^{\circ} \mathrm{C}$. Molecular ion calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ : 315.1508; [M+H], ESMS found $m / z=315.1505$; IR $\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1221, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.84-7.80(4 \mathrm{H}, \mathrm{m}), 7.52-7.49(2 \mathrm{H}, \mathrm{m}), 7.46-7.42(4 \mathrm{H}, \mathrm{m})$,
 $0.88(1 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( 175 MHz ): $\delta 132.5$ (interpreted as two carbon signals, $\mathrm{d}, \mathrm{J}=136.8 \mathrm{~Hz}$ ), 131.8 (interpreted as two overlapping carbon signals, $\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}), 131.6(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 128.3$ (interpreted as two overlapping carbon signals, d, J $=12.9 \mathrm{~Hz}), 72.7(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}), 40.4(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 34.1,31.8(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 26.6,22.1,20.3 ;{ }^{31} \mathrm{P}$ NMR: $\delta 29.4(\mathrm{~s})$.

## Independent Synthesis of 19 and 20

Both the major and the minor diastereomers ( $\mathbf{1 9}$ and $\mathbf{2 0}$ ) ware independently synthesized by the oxidation of the phosphonite borane of trans and cis 3-methylcychohexanol. To a solution of Cis-3-methylcyclohexanol (1 equiv, commertially available as a pure diastereomer) or trans-3methylcyclohexanol ( 1 equiv, 80:20 mixture of trans:cis) at $0^{\circ} \mathrm{C}$ in diethyl ether was added $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv) followed by the dropwise addition of chlorodiphenyl phosphine ( 1.5 equiv). The resulting mixture was warmed to room temperature and stirred for 1 h . The progress of the reaction was monitored by TLC and upon completion the solution was filtered through a plug of silica and concentrated. $20 \%$ EtOAc in hexanes was added to the concentrate and filtered once again to remove the remaining ammonium salts. The filtrate was concentrated under reduced pressure and dried under vacuum. The crude material was dissolved in THF and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{THF} \cdot \mathrm{BH}_{3}$ ( 1 equiv, 1 M solution in THF) was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude material was purified by flash column chromatography on silica using $5 \%$ acetone in hexanes. Oxidation procedure: The phosphinite borane (1 equiv) was dissolved in dry dichloromethane and was treated with 0.5 equiv $\mathrm{I}_{2}$. The solution was stirred under $\mathrm{N}_{2}$ until the iodine color vanishes and then was poured in a premixed solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH . The solution was stirred at room temperature for 4 h . Usual work-up followed by PLC using 30-40\% EtOAc in hexanes produced pure samples of both trans (19) and cis (20) diastereomer. Phosphinate 20: $\mathrm{R}_{\mathrm{f}}$ : 0.34 in $30 \%$ EtOAc hexanes. Molecular ion calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}: 315.1508 ;[\mathrm{M}+\mathrm{H}], \mathrm{ESMS}$ found $m / z=315.1504 ;$ IR (neat, $\mathrm{cm}^{-1}$ ) $1229, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.81-7.76(4 \mathrm{H}, \mathrm{m}), 7.49-7.45(2 \mathrm{H}, \mathrm{m}), 7.42-7.38(4 \mathrm{H}, \mathrm{m}), 4.34-4.26(1 \mathrm{H}, \mathrm{m}), 2.07-2.00(2 \mathrm{H}, \mathrm{m}), 1.70-1.66(1 \mathrm{H}, \mathrm{m}), 1.54-1.51(1 \mathrm{H}, \mathrm{m}), 1.42-1.33$ $(2 \mathrm{H}, \mathrm{m}), 1.23-1.14(2 \mathrm{H}, \mathrm{m}), 0.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 0.81-0.73(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(175 \mathrm{MHz}): \delta 132.57(\mathrm{~d}, \mathrm{~J}=136.8 \mathrm{~Hz}), 132.53(\mathrm{~d}, \mathrm{~J}=136.3$

Hz ), 131.8 (interpreted as two overlapping carbon signals, $\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}$ ), $131.6(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 128.3$ (interpreted as two
overlapping carbon signals, $\mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 75.6(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 42.9(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 33.9(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 33.6,31.3,23.9,22.1 ;{ }^{31} \mathrm{P}$ NMR: $\delta 29.8$ (s).

Phosphinite borane 22a. The general procedure was followed from 4-phenylpent-4-en-2-ol ( $972 \mathrm{mg}, 6 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}$ ( $1.4 \mathrm{~mL}, 10 \mathrm{mmol}$ ), chlorodiphenyl phosphine ( $1.62 \mathrm{~mL}, 9 \mathrm{mmol}$ ) and $\mathrm{THF} \cdot \mathrm{BH}_{3}(4 \mathrm{~mL}, 4 \mathrm{mmol})$. The crude product was purified by column chromatography using 1:19 acetone/hexanes to yield 22a ( $900 \mathrm{mg}, 63 \%$ ) as colorless oil. Molecular ion calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{OP}: 346.1487$; $\left[\mathrm{M}-\mathrm{BH}_{3}\right]$, ESMS found $\mathrm{m} / \mathrm{z}=$ 346.1478; IR (neat, $\mathrm{cm}^{-1}$ ) 2384, B-H; 2344, B-H; 1626, C=C; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.75-7.69(4 \mathrm{H}, \mathrm{m}), 7.52-7.42(6 \mathrm{H}, \mathrm{m}), 7.31-7.27(4 \mathrm{H}, \mathrm{m}), 5.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=1.5 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 4.65-4.60(1 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0$ and 6.0 Hz$), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0$ and 7.5 Hz$), 1.25(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\mathrm{Hz}), 1.2-0.70(3 \mathrm{H}, \mathrm{br} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.2,140.1,133.1(\mathrm{~d}, \mathrm{~J}=63.9 \mathrm{~Hz}), 132.9(\mathrm{~d}, \mathrm{~J}=65.4 \mathrm{~Hz}), 131.5$ (interpreted as two overlapping carbon signals, $\mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=11.5), 128.3,127.5,126.1,115.6,74.5(\mathrm{~d}, \mathrm{~J}$ $=1.8 \mathrm{~Hz}), 43.8(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 21.6(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}) ;{ }^{11} \mathrm{~B}$ NMR: $\delta-39.9$ to $-40.0(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR: $\delta 102-101.5(\mathrm{br} \mathrm{m})$.

Phosphinite borane 22b. This compound was prepared following a similar procedure to that of phosphinite borane 22c. The reaction was carried out with 2,2-dimethyl-5-phenylhex-5-en-3-ol ( $612 \mathrm{mg}, 3 \mathrm{mmol}$ ), $n-\operatorname{BuLi}(2.4 \mathrm{~mL}, 3.84 \mathrm{mmol})$, chlorodiphenyl phosphine ( $0.72 \mathrm{~mL}, 4 \mathrm{mmol}$ ) and THF• $\mathrm{BH}_{3}(2.7 \mathrm{~mL}, 2.7 \mathrm{mmol})$. The crude product was purified by column chromatography using 1:19 acetone/hexanes to yield $\mathbf{2 2 b}$ ( $864 \mathrm{mg}, 79 \%$ ) as colorless oil. Molecular ion calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BOP}: 401.2200$; [M-H], ESMS found $\mathrm{m} / \mathrm{z}=401.2198$; IR (neat, $\mathrm{cm}^{-1}$ ) 2386, B-H; 2347, B-H; 1627, $\mathrm{C}=\mathrm{C} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.80-7.74(4 \mathrm{H}, \mathrm{m}), 7.47-7.36(6 \mathrm{H}, \mathrm{m}), 7.30-7.26(3 \mathrm{H}, \mathrm{m}), 7.17-7.16(2 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 4.42-$ $4.46(1 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}$, dd, $\mathrm{J}=15.0$ and 4 Hz$), 2.69(1 \mathrm{H}$, dd, $\mathrm{J}=15.5$ and 7.5 Hz$), 0.93(9 \mathrm{H}, \mathrm{s}), 1.28-0.75(3 \mathrm{H}, \mathrm{br} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.1,140.3,134.3(\mathrm{~d}, \mathrm{~J}=82.9 \mathrm{~Hz}), 133.9(\mathrm{~d}, \mathrm{~J}=87.3 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 130.8(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, \mathrm{~J}=$
$10.5 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}), 128.1,128.0(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}), 127.4,126.4,115.8,86.7(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 38.0(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 36.2(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz})$, 26.4; ${ }^{11}$ B NMR: $\delta-40.8$ (br s); ${ }^{31}$ P NMR: $\delta 102.2-101.8$ (br m).

Phosphinite borane 22c: To a solution of 2,2,5-trimethylhex-5-en-3-ol ( $650 \mathrm{mg}, 4.57 \mathrm{mmol}$ ) in THF ( 30 mL ) at $0{ }^{\circ} \mathrm{C}$ was added $n$ - $\mathrm{BuLi}(3.57 \mathrm{~mL}$, 5.7 mmol ) dropwise. The resulting dark red solution was stirred at that temperature for 1 h and then chlorodiphenyl phosphine ( $1.02 \mathrm{~mL}, 5.7 \mathrm{mmol}$ ) was added keeping the temperature at $0^{\circ} \mathrm{C}$. The solution was slowly warmed to room temperature and stirred for 2 h . The resulting light yellow solution was filtered and concentrated under reduced pressure. The crude material was dissolved in THF ( 25 mL ) and cooled to $0{ }^{\circ} \mathrm{C}$. THF• $\mathrm{BH}_{3}$ $(4.3 \mathrm{~mL}, 4.3 \mathrm{mmol})$ was added dropwise and the resulting solution was slowly warmed to room temperature and stirred overnight. The solution was concentrated under reduced pressure and the crude product was purified by column chromatography using 1:19 acetone/hexanes to yield 22c (670 $\mathrm{mg}, 46 \%$ ) as colorless oil. Molecular ion calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{OP}: 326.1800$; $\left[\mathrm{M}-\mathrm{BH}_{3}\right]$, ESMS found $m / z=326.1798$; IR (neat, $\mathrm{cm}^{-1}$ ) 2386, B-H; 2347, B-H; 1651, C=C; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.82-7.74(4 \mathrm{H}, \mathrm{m}), 7.48-7.36(6 \mathrm{H}, \mathrm{m}), 4.47-4.52(1 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=0.5 \mathrm{~Hz}), 2.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.5 \mathrm{and}$ $3.5 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.0$ and 7.5 Hz$), 1.67(3 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 1.47-0.97(3 \mathrm{H}, \mathrm{br} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 141.4,134.5(\mathrm{~d}, \mathrm{~J}=85 \mathrm{~Hz}), 133.8(\mathrm{~d}, \mathrm{~J}=$ $89 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}), 128.1(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz})$, 113.7, $86.3(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}), 40.9(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 36.1(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 26.2,22.2 ;{ }^{11} \mathrm{~B}$ NMR: $\delta-39.3$ to $-40.0(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR: $\delta 102.1-101.6$ (br m).

Phosphinite borane 22d: The general procedure was followed from 4-methylpent-4-en-2-ol ( $1 \mathrm{~g}, 10 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}$ ( $2.1 \mathrm{~mL}, 15 \mathrm{mmol}$ ), chlorodiphenyl phosphine ( $2.16 \mathrm{~mL}, 12 \mathrm{mmol}$ ) and $\mathrm{THF} \cdot \mathrm{BH}_{3}(7 \mathrm{~mL}, 7 \mathrm{mmol})$. The crude product was purified by column chromatography using 1:9 EtOAc/hexanes to yield 22d ( $790 \mathrm{mg}, 38 \%$ ) as colorless oil. Molecular ion calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BOP}: 297.1580$; [M-H], ESMS found $\mathrm{m} / \mathrm{z}=$ 297.1585; IR (neat, $\mathrm{cm}^{-1}$ ) 2384, B-H; 2344, B-H; 1650, C=C; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.77-7.69(4 \mathrm{H}, \mathrm{m}), 7.52-7.40(6 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{s}), 4.74(1 \mathrm{H}, \mathrm{s}), 4.73-$
$4.69(1 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0$ and 6.5 Hz$), 2.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.5$ and 7.0 Hz$), 1.67(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.42-0.88(3 \mathrm{H}, \mathrm{br} \mathrm{m})$;
${ }^{13} \mathrm{C}$ NMR: $\delta 141.5,133.5(\mathrm{~d}, \mathrm{~J}=63.9 \mathrm{~Hz}), 133.1(\mathrm{~d}, \mathrm{~J}=66.8 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}), 113.7,74.3(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 46.6(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 22.4,21.8(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}) ;{ }^{11} \mathrm{~B} \mathrm{NMR}: \delta-$ 39.4 to -40.6 (m); ${ }^{31} \mathrm{P}$ NMR: $\delta 101.9-101.0$ (br m).

General Procedure for the Ionic Hydrogenation of Unsaturated Acyclic Phosphinite Boranes. To a solution of phosphinite borane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 0.1 M ) was added $\mathrm{MeSO}_{3} \mathrm{H}$ (3 equiv) at room temperature under nitrogen. The solution was stirred at that temperature for 15-60 min until TLC assay indicated completion, and the solution was then treated with a premixed solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ and $20 \% \mathrm{NaOH}$ in methanol and stirred for an additional 4h. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$, dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The crude product was purified either by column chromatography or by PLC.

Phosphinate 24a: The general procedure was followed from phosphinite borane 22a ( $144 \mathrm{mg}, 0.4 \mathrm{mmol}$ ) and $\mathrm{MeSO}_{3} \mathrm{H}(80 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in 4 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was oxidized with a premixed solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ and $20 \% \mathrm{NaOH}(1 \mathrm{~mL})$ in methanol ( 8 mL ). The crude product was purified by column chromatography using $40 \%$ EtOAc in hexanes to yield $\mathbf{2 4 a}(112 \mathrm{mg}, 77 \%)$ as a mixture of two diastereomers ( $\mathrm{dr} \sim 2.6: 1$ ). Molecular ion calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}: 365.1665$; $[\mathrm{M}+\mathrm{H}]$, ESMS found $m / z=365.1655$; IR (neat, $\mathrm{cm}^{-1}$ ) 1230, $\mathrm{P}=\mathrm{O}$; Major diastereomer (signals based on a mixture of two inseparable diastereomers): ${ }^{1} \mathrm{H}$ NMR: $\delta 7.81-7.73(4 \mathrm{H}, \mathrm{m}), 7.52-7.38(6 \mathrm{H}, \mathrm{m}), 7.25-7.00(5 \mathrm{H}, \mathrm{m}), 4.43-4.37(1 \mathrm{H}, \mathrm{m}), 2.79-2.74$ $(1 \mathrm{H}, \mathrm{m}), 2.15-2.09(1 \mathrm{H}, \mathrm{m}), 1.79-1.74(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: 146.2, $132.3(\mathrm{~d}, \mathrm{~J}=132.0 \mathrm{~Hz}), 132.2(\mathrm{~d}$, $\mathrm{J}=109.2 \mathrm{~Hz}), 131.8(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 131.6(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 128.2(\mathrm{~d}, \mathrm{~J}=3.4$ $\mathrm{Hz}), 126.9,126.5,125.9,71.7(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 45.8(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 36.0,22.5,22.1(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR: $\delta 29.3(\mathrm{~s})$.

Phosphinate 24b: The general procedure was followed from phosphinite borane 22b ( $80.4 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) and $\mathrm{MeSO}_{3} \mathrm{H}(40 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ in 2 $\mathrm{mLCH} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was oxidized with a premixed solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ and $20 \% \mathrm{NaOH}(0.5 \mathrm{~mL})$ in methanol ( 4 mL ). The crude product was purified by column chromatography using $30 \%$ EtOAc in hexanes to yield $\mathbf{2 4 b}(49 \mathrm{mg}, 60 \%)$ as a mixture of two diastereomers (dr ~ 1:0.85). Two diastereomers were separated by repeated PLC using $30 \%$ EtOAc in hexanes. Major diastereomer: Molecular ion calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}: 407.2134 ;[\mathrm{M}+\mathrm{H}], \mathrm{ESMS}$ found $m / z=407.2136$; IR (neat, $\mathrm{cm}^{-1}$ ) 1229, $\mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR ( 700 MHz ): 8 7.91-7.88 (2H, m), 7.76-7.73 (2H, m), 7.51-7.49 (1H, m), 7.47-7.43 ( $3 \mathrm{H}, \mathrm{m}$ ), 7.39-7.36 $(2 \mathrm{H}, \mathrm{m}), 7.22(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 4.00-3.98$ $(1 \mathrm{H}, \mathrm{m}), 2.76-2.73(1 \mathrm{H}, \mathrm{m}), 1.92-1.88(1 \mathrm{H}, \mathrm{m}), 1.83-1.79(1 \mathrm{H}, \mathrm{m}), 0.97(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.71(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( 175 MHz ): $\delta 146.1,134.0(\mathrm{~d}$, $\mathrm{J}=134.7 \mathrm{~Hz}), 133.2(\mathrm{~d}, \mathrm{~J}=133.3 \mathrm{~Hz}), 131.7(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=12.7$ $\mathrm{Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 128.2,127.6,125.9,84.0(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 40.7(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 36.6,35.3(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 25.8(3 \mathrm{C}), 23.1$; ${ }^{31} \mathrm{P}$ NMR: $\delta$ 28.5 (s). Minor diastereomer: $\mathrm{mp} 101-102{ }^{\circ} \mathrm{C}$. Molecular ion calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}: 407.2134$; $[\mathrm{M}+\mathrm{H}], \mathrm{ESMS}$ found $m / z=407.2136$; IR (neat, $\mathrm{cm}^{-}$ ${ }^{1}$ ) $1228, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H} \operatorname{NMR}(700 \mathrm{MHz}): \delta 7.87-7.84(2 \mathrm{H}, \mathrm{m}), 7.81-7.78(2 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.47-7.39(5 \mathrm{H}, \mathrm{m}), 7.16(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz})$, $7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 2.51-2.48(1 \mathrm{H}, \mathrm{m}), 1.89-1.85(1 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}), 1.13$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(175 \mathrm{MHz}): \delta 148.1,134.2(\mathrm{~d}, \mathrm{~J}=136.9 \mathrm{~Hz}), 133.4(\mathrm{~d}, \mathrm{~J}=137.4 \mathrm{~Hz}), 131.7(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 128.2,126.5,125.7,84.4(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 40.5$ (d, J = 2.1 Hz), 35.4 (d, J = 4.2 Hz), 35.3, 26.3 (3C), 20.1; ${ }^{31} \mathrm{P}$ NMR: $\delta 29.5$ ( s ).

Phosphinate 24c: The general procedure was followed from phosphinite borane $\mathbf{2 2 c}(68 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{MeSO}_{3} \mathrm{H}(40 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ in 2 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was oxidized with a premixed solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ and $20 \% \mathrm{NaOH}(0.5 \mathrm{~mL})$ in methanol ( 4 mL ). The crude
product was purified by column chromatography using $30 \% \mathrm{EtOAc}$ in hexanes to yield $\mathbf{2 4 c}(42 \mathrm{mg}, 61 \%)$ as a white solid, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$. Molecular ion calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}: 345.1978 ;[\mathrm{M}+\mathrm{H}], \mathrm{ESMS}$ found $m / z=345.1972$; IR (neat, $\mathrm{cm}^{-1}$ ) $1222, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.83-7.78(4 \mathrm{H}, \mathrm{m}), 7.48-$ $7.39(6 \mathrm{H}, \mathrm{m}), 4.37-4.33(1 \mathrm{H}, \mathrm{m}), 1.62-1.56(1 \mathrm{H}, \mathrm{m}), 1.45-1.37(1 \mathrm{H}, \mathrm{m}), 1.33-1.26(1 \mathrm{H}, \mathrm{m}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 0.65(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 134.0(\mathrm{~d}, \mathrm{~J}=136.4 \mathrm{~Hz}), 133.5(\mathrm{~d}, \mathrm{~J}=137.9 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 131.4(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 131.3(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 131.2(\mathrm{~d}$, $\mathrm{J}=10.0 \mathrm{~Hz}), 128.2(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 128.1(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 83.8(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 40.9(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 35.3(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 26.2(3 \mathrm{C}), 24.7$, 23.6, 21.3; ${ }^{31}$ P NMR: $\delta 28.9$ (s).

Phosphinate 24d and Phosphinite borane 25: The general procedure was followed from phosphinite borane 22d (298 mg, 1 mmol ) and $\mathrm{MeSO}_{3} \mathrm{H}$ ( $200 \mu \mathrm{~L}, 3 \mathrm{mmol}$ ) in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was oxidized with a premixed solution of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.5 \mathrm{~mL})$ and $20 \% \mathrm{NaOH}(2.5 \mathrm{~mL})$ in methanol ( 20 mL ). The crude product was chromatographed on silica gel using $40 \%$ EtOAc in hexanes. The nonpolar fractions were collected and saved for further isolation of pure phosphinite borane 25. The more polar fractions provided pure $\mathbf{2 4 d}(195 \mathrm{mg}, 65 \%)$ as viscous oil. Molecular ion calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}: 303.1508 ;[\mathrm{M}+\mathrm{H}]$, ESMS found $m / z=303.1509$; IR (neat, $\mathrm{cm}^{-1}$ ) $1230, \mathrm{P}=\mathrm{O} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.85-7.83(4 \mathrm{H}, \mathrm{m}), 7.52-7.48(2 \mathrm{H}$, m), 7.46-7.41 ( $4 \mathrm{H}, \mathrm{m}), 4.63-4.56(1 \mathrm{H}, \mathrm{m}), 1.73-1.62(2 \mathrm{H}, \mathrm{m}), 1.39-1.33(1 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 0.81(6 \mathrm{H}$, app. $\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 132.7(\mathrm{~d}, \mathrm{~J}=136.9 \mathrm{~Hz}), 132.3(\mathrm{~d}, \mathrm{~J}=132.5 \mathrm{~Hz}), 131.8(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 131.6(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz})$, $128.2(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 72.1(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 47.2(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}), 24.4,22.7,22.6(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 22.3 ;{ }^{31} \mathrm{P}$ NMR: $\delta 29.3(\mathrm{~s})$. The upper nonpolar fractions were concentrated and purified twice by PLC. In the second PLC using $2 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, the upper nonpolar band was roughly divided into two halves. Extraction of the upper half provided the pure phosphinite borane 25. Molecular ion calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{OP}$ : 286.1486; [M$\left.\mathrm{BH}_{3}\right]$, EIMS found $m / z=286.1483$; IR (neat, $\mathrm{cm}^{-1}$ ) 2383, B-H; 2345, B-H; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.75-7.64(4 \mathrm{H}, \mathrm{m}), 7.49-7.37(6 \mathrm{H}, \mathrm{m}), 4.65-4.55(1 \mathrm{H}, \mathrm{m})$, $1.66-1.54(2 H, m), 1.32-1.27(1 H, m), 1.20(3 H, d, J=6.0 \mathrm{~Hz}), 0.81(3 H, d, J=6.4 \mathrm{~Hz}), 0.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 133.5(\mathrm{~d}, \mathrm{~J}=63.7$
$\mathrm{Hz}), 133.3(\mathrm{~d}, \mathrm{~J}=67.0 \mathrm{~Hz}), 131.5(2 \mathrm{C}), 131.2(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 131.1(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}), 74.9(\mathrm{~d}, \mathrm{~J}=$ 2.1 Hz), $47.3(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}), 24.5,22.8,22.5(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 22.3 ;{ }^{11} \mathrm{~B}$ NMR: $\delta-38.6$ to $-41.4(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR: $\delta 101.6-100.4(\mathrm{br} \mathrm{m})$.

## Preparation of Amine Borane Complexes; 26a and 26b

$\mathrm{BH}_{3} \cdot \mathrm{THF}$ ( $6.3 \mathrm{~mL}, 6.3 \mathrm{mmol}$ ) was added by syringe under an $\mathrm{N}_{2}$ atmosphere to the known (3-methyl-3-butenyl)-dimethylamine ${ }^{4}$ ( 1.0 mL , $6.8 \mathrm{mmol})$ in anhydrous DCM ( 20 mL ). After 1 h , the solution was filtered through a plug of silica gel, flushing with DCM and removing solvent by rotary evaporation, yielding 0.78 g (3-methyl-3-butenyl)-dimethylamine borane $\mathbf{2 6 a}$ ( $97 \% \mathrm{y}$ ): TLC on K6F silica gel 60£, 9:1 hexanes/Et $2 \mathrm{O}, \mathrm{Rf}^{2}$ $=0.26$. Molecular ion calculated for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{BN}: 126.1454 ;[\mathrm{M}-\mathrm{H}]$, EIMS found $m / z=126.1452$; IR (neat, $\mathrm{cm}^{-1}$ ) 2366, B-H; 2319, B-H; 2273, BH; 1650, C=C; 1459, B-N; 1167, C-N; ${ }^{1} \mathrm{H}$ NMR: $\delta 4.81(1 \mathrm{H}, \mathrm{s}), 4.73(1 \mathrm{H}, \mathrm{s}), 2.90-2.85(2 \mathrm{H}, \mathrm{m}), 2.61(6 \mathrm{H}, \mathrm{s}), 2.46-2.41(2 \mathrm{H}, \mathrm{m}), 2.1-1.3(3 \mathrm{H}, \mathrm{br}$ m), $1.77(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 141.9,112.1,63.0,51.4,32.1,22.7 ;{ }^{11} \mathrm{~B}$ NMR: $\delta-9.9(\mathrm{q}, \mathrm{J}=98 \mathrm{~Hz})$.

Borane complexation from (3-phenyl-3-butenyl)-dimethylamine ${ }^{5}$ under the same conditions gave 26b (67\%): TLC on K6F silica gel $60 \AA$, 2:1 hexanes/EtOAc, $\mathrm{Rf}=0.27$. Molecular ion calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BNNa}: 212.1586$; $[\mathrm{M}+\mathrm{Na}], \mathrm{ESMS}$ found $m / z=212.1582$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 2366, \mathrm{~B}-$ H; 2319, B-H; 2273, B-H; 1627, C=C; 1461, B-N; 1167, C-N; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.44-7.41(2 \mathrm{H}, \mathrm{m}), 7.37-7.33(2 \mathrm{H}, \mathrm{m}), 7.32-7.28(1 \mathrm{H}, \mathrm{m}), 5.38(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=1.0 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}), 3.02-2.97(2 \mathrm{H}, \mathrm{m}), 2.85-2.80(2 \mathrm{H}, \mathrm{m}), 2.61(6 \mathrm{H}, \mathrm{s}), 2.1-1.3(3 \mathrm{H}, \mathrm{br} \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 144.8,139.8,128.6$, 128.0, 126.0, 114.6, 63.6, 51.8, 30.4, ${ }^{11}$ B NMR: $\delta-10.2(q, J=97 \mathrm{~Hz})$.

## Ionic Hydrogenation of Amine Boranes 26; Isolation of 29a and 29b

Neat $\mathrm{MsOH}(100 \mu \mathrm{~L}, 1.54 \mathrm{mmol})$ was added by syringe to a stirred solution of $\mathbf{2 6 a}(64 \mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous DCM ( 5 mL ) under an $\mathrm{N}_{2}$ atmosphere. After 1 h , the reaction was quenched by addition of $5 \mathrm{~mL} 5 \% \mathrm{aq}$. NaOH , separated and the aqueous layer extracted with $2 \times 5$ mL DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and reduced by rotatory evaporation. The product was purified by flash chromatography (FC) on silica gel ( $15 \mathrm{~cm} \times 20 \mathrm{~mm}$ diameter, 1:2 hexanes/EtOAc), isolating 71 mg (3-methylbutyl)-dimethylamine bis(methylsulfonyloxy)borane (29a, 44\%): TLC on K6F silica gel $60 \AA, 1: 2$ hexanes/EtOAc, $\operatorname{Rf}=0.20$. Molecular ion calculated for $\mathrm{C}_{9} \mathrm{H}_{24} \mathrm{BNNaO}_{6} \mathrm{~S}_{2}: 340.1036 ;[\mathrm{M}+\mathrm{Na}], \mathrm{ESMS}$ found $m / z=340.1027$; IR (neat, $\mathrm{cm}^{-1}$ ) $2508, \mathrm{~B}-\mathrm{H} ; 1484, \mathrm{~B}-\mathrm{N} ; 1318, \mathrm{~B}-\mathrm{O} ; 1173, \mathrm{C}-\mathrm{N} ;{ }^{1} \mathrm{H}$ NMR: $\delta$ 3.8-2.8 ( $1 \mathrm{H}, \mathrm{br} \mathrm{m}$ ), $3.07(6 \mathrm{H}, \mathrm{s}), 2.95-2.90(2 \mathrm{H}, \mathrm{m}), 2.61(6 \mathrm{H}, \mathrm{s}), 1.65-1.52(3 \mathrm{H}, \mathrm{m}), 0.96(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 57.8,44.5,38.9,30.4$, 26.6, 22.4; ${ }^{11}$ B NMR: $\delta 1.0(\mathrm{~d}, \mathrm{~J}=134 \mathrm{~Hz})$.

The same rocedure was used from 26b and afforded 3-phenylbutyl)-dimethylamine bis(methylsulfonyloxy)borane 29b, was purified by reversephase PLC on K18F silica gel ( $70 \%$ ): TLC on K 18 F silica gel $60 \AA, 4: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ buffered with $0.5 \% \mathrm{Et}_{3} \mathrm{~N}$ and $0.5 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Rf}=0.62$. Molecular ion calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{BNO}_{6} \mathrm{~S}_{2}$ : 378.1216; [M-H], EIMS found $m / z=378.1215$; IR (neat, $\mathrm{cm}^{-1}$ ) 2512, B-H; 1484, B-N; 1322, B-O; 1177, C-N; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.33(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.02(3 \mathrm{H}, \mathrm{s}), 3.01(3 \mathrm{H}, \mathrm{s}), 2.95(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.7$, $4.9 \mathrm{~Hz}), 2.74-2.66(1 \mathrm{H} \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.7,4.4 \mathrm{~Hz}), 2.56(3 \mathrm{H}, \mathrm{s}), 2.52(3 \mathrm{H}, \mathrm{s}), 2.07-1.90(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta$ 145.0, 128.9, 126.8, 126.7, 58.3, 45.0, 44.7, 38.9, 38.9, 38.2, 30.3, 22.5; ${ }^{11}$ B NMR: $\delta 0.8(\mathrm{~d}, \mathrm{~J}=111 \mathrm{~Hz})$.

## Conversion of 26a to 27a Using Stoichiometric MsOH

Neat $\mathrm{MsOH}(40 \mu \mathrm{~L}, 0.62 \mathrm{mmol})$ was added by syringe to a stirred solution of $\mathbf{2 6 a}(64 \mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ under an $\mathrm{N}_{2}$ atmosphere. After 1 h , the reaction was quenched by addition of $2 \mathrm{~mL} 5 \% \mathrm{aq}$. NaOH , diluted with $3 \mathrm{~mL}_{2} \mathrm{O}$, separated and the aqueous layer extracted with $2 \times 5 \mathrm{~mL}$ DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and reduced by rotatory evaporation. The product was purified by flash chromatography (FC) on silica gel ( $15 \mathrm{~cm} \times 20 \mathrm{~mm}$ diameter, $1: 2$ hexanes/EtOAc), isolating 57 mg (3-methyl-3-butenyl)dimethylamine methylsulfonyloxy-borane (27a, 52\%): TLC on K6F silica gel $60 \AA, 1: 2$ hexanes/EtOAc, $\operatorname{Rf}=0.37$. Molecular ion calculated for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{BNNaO}_{3} \mathrm{~S}: 244.1155$; [M+Na], ESMS found $m / z=244.1156$; IR (neat, $\mathrm{cm}^{-1}$ ) 2347, B-H; 2325, B-H; 1466, B-N; 1314, B-O; 1146, C-N; ${ }^{1} \mathrm{H}$ NMR: $\delta 4.85(1 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{s}), 3.0-2.1(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.97-2.92(2 \mathrm{H}, \mathrm{m}), 2.91(3 \mathrm{H}, \mathrm{s}), 2.61(6 \mathrm{H}, \mathrm{s}), 2.42-2.36(2 \mathrm{H}, \mathrm{m}), 1.77(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 141.1,112.9,59.0,46.9,37.7,30.9,22.6 ;{ }^{11}$ B NMR: $\delta 3.2$ to -1.2 (br m).

4-(Dimethylamino)-2-phenylbutan-2-yl Acetate Borane Complex (30). To a solution of amine ( $120 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) in THF ( 2 mL ) was slowly added $\mathrm{BH}_{3} \cdot \mathrm{THF}(0.85 \mathrm{M}, 0.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at rt . After removal of solvent, flash chromatography (hexaneethyl acetate, 5:1) of the residue afforded $107 \mathrm{mg}(84 \%)$ of the amine borane 30: IR (neat) 3053, 1733, 2985, 1419, 1095, 895, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 1.20-2.00(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.73$ (m, 2H), 7.26-7.38 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.2,25.8,35.9,51.3,51.4,59.7,82.7,124.3,127.4,128.5,143.7,169.5$; HRMS (ESI) $\mathrm{m} / \mathrm{z} \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BNO}_{2} \mathrm{Na} 272.1798[\mathrm{M}+\mathrm{Na}]^{+}$, found 272.1794.

Ionic Hydrogenation of $\mathbf{3 0}$ Activated by TMSOTf; N,N-Dimethyl-3-phenylbutanamine (33). ${ }^{\mathbf{6}}$ To a solution of amine borane complex $\mathbf{3 0}$ (18 $\mathrm{mg}, 0.072 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added TMSOTf $(25 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred overnight at rt , and quenched by addition of
$\mathrm{NaOH}(2 \mathrm{~N})$. After separation, the aqueous layer was extracted with DCM , the combined organic layers were dried over sodium sulfate and concentrated (vacuum) to give $10.5 \mathrm{mg}(83 \%)$ of $\mathbf{3 3}{ }^{6}$ after preparatory TLC using $3: 1: 0.02$ hexane : ether : triethylamine; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 1.71-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 22.4,36.0,38.0,45.4,57.9,125.8,126.9,128.3$, 147.3.

2-((Dimethylamino)methyl)-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl Acetate Borane Complex (Footnote 7, $\boldsymbol{i}$ ). The same procedure was used as for the preparation of $\mathbf{3 0}$ to give $I$; IR (neat) $3052,1733,1456, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20-2.10(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.02(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.64(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.5,24.7,25.7,28.1,38.4,51.5,52.9,63.2,83.0,126.0,126.6$, 127.6, 129.0, 135.1, 138.8, 170.1; HRMS (ESI) $m / z \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BNO}_{2} \mathrm{Na} 298.1954[\mathrm{M}+\mathrm{Na}]^{+}$, found 298.1951.

N,N-Dimethyl(1-methyl-1,2,3,4-tetrahydronaphthalen-2-yl)methanamine (Footnote 7, ii). The same procedure was used as for the ionic hydrogenation of $\mathbf{3 0}$ and gave $\boldsymbol{i} \boldsymbol{i}$ in $52 \%$ yield as a mixture of diastereoisomer $(\mathrm{dr}=2.7: 1)$ from $\boldsymbol{i}$ (starting $d r=3.5: 1$ ): major isomer IR (neat) 3052, $2985,1419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.28(\mathrm{~m}$, $2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.88(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,22.5,24.1,26.2$, 36.2, 37.4, 46.0, 63.5, 125.4, 129.4, 136.1, 141.1; HRMS (ESI) $m / z \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N} 204.1752[\mathrm{M}+\mathrm{H}]^{+}$, found 204.1745.

## Reaction of 26b with (+)-Camphorsulfonic Acid

Solid (+)-camphorsulfonic acid (CSA, 34, $35 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) was added to a stirred solution of $\mathbf{2 6 b}(25 \mathrm{mg}, 0.13 \mathrm{mmol})$ in anhydrous DCM ( 5 mL ) which was then quickly capped with a septum and an $\mathrm{N}_{2}$ inlet. After stirring 2 h , neat $\mathrm{MsOH}(15 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added by syringe, monitoring the reaction by MS. After 1 h , the major peak corresponded to $\mathbf{3 6}$. The solvent was then removed by a stream of $\mathrm{N}_{2}$, and the residue was dissolved in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ which was then acidified by addition of 0.10 mL 6 M aq . HCl before heating to reflux 16 h . The mixture was cooled to rt, made alkaline with $5 \%$ aq. NaOH and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, the organic layers dried over $\mathrm{MgSO}_{4}$ and reduced by rotatory evaporation. The product was purified by PLC on silica gel ( $20 \times 20 \mathrm{~cm} \times 250 \mu \mathrm{~m}, 65: 33: 2$ hexanes/acetone/Et ${ }_{3} \mathrm{~N}$ ), isolating 12 mg ( $3-$ phenylbutyl)-dimethylamine ( $\mathbf{3 3}, 53 \%, 68 \%$ ee). Conditions for enantiomeric excess assay by HPLC (Chiralcel OD column, $0.1 \% i \operatorname{PrOH} / \mathrm{hexane}$, $1 \mathrm{~mL} / \mathrm{min}$ ) were optimized using racemic $\mathbf{3 3}$, obtained by hydrolysis of rac-29b with HCl , with peaks at 13 and 23 minutes (peak at 40 minutes for (3-phenyl-3-butenyl)-dimethylamine impurity).

## Reaction of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}$ (37) with (-)-Camphorsulfonic Acid

Solid (-)-camphorsulfonic acid (ent-CSA, ent-34, $152 \mathrm{mg}, 0.65 \mathrm{mmol}$ ) was added to a stirred solution of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{BH}_{3}(\mathbf{3 7}, 43 \mathrm{mg}, 0.59$ $\mathrm{mmol})$ in anhydrous DCM ( 2.2 mL ) which was then quickly capped with a septum and an $\mathrm{N}_{2}$ inlet. After stirring 4 h the solution was washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, the layers separated and the aqueous layer extracted with 5 mL DCM. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and reduced by rotatory evaporation. The residue was taken up in minimal DCM (ca. 1 mL ) and hexanes was added until the solution started to turn cloudy (ca. 15 mL ). The flask was left open to allow solvent evaporation, collecting the long needles that formed after 1 d , rinsing with hexanes and collecting 41 mg trimethylamine ( $(1 S, 2 R, 4 R)$-2-hydroxy-7,7-dimethyl-bicyclo[2.2.1]hept-1-yl)-methylsulfonyloxyborane (38, 27\%):

Molecular ion calculated for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{BNO}_{4} \mathrm{~S}: 302.1597$; $\left[\mathrm{M}-\mathrm{H}_{2}-\mathrm{H}^{-}\right]$, EIMS found $m / z=302.1595$; IR (neat, $\mathrm{cm}^{-1}$ ) 3512 , $\mathrm{O}-\mathrm{H}, 2427$, B-H; 2342, B$\mathrm{H} ; 1468, \mathrm{~B}-\mathrm{N} ; 1316, \mathrm{~B}-\mathrm{O} ; 1138, \mathrm{C}-\mathrm{N} ;{ }^{1} \mathrm{H}$ NMR: $\delta 4.15-4.08(1 \mathrm{H}, \mathrm{m}), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.0$ $\mathrm{Hz}), 2.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 2.8-2.0(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.64(9 \mathrm{H}, \mathrm{s}), 1.88-1.47(6 \mathrm{H}, \mathrm{m}), 1.08(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 76.4,50.0,49.9,49.7$, 48.5, 44.5, 38.8, 30.5, 27.4, 20.6, 19.9; ${ }^{11}$ B NMR: $\delta 3.4$ to -0.2 (br m).

## References for Supporting Information

(1) Harris, R. K.; Becker, E. D.; Cabral De Menezes, S. M.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795.
(2) Shapland, P.; Vedejs, E. J. Org. Chem. 2004, 69, 4094.
(3) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244.
(4) Krafft, M. E.; Juliano, C. A.; Scott, I. L.; Wright, C.; McEachin, M. D. J. Am. Chem. Soc. 1991, 113, 1693.
(5) Aoyama, H.; Sugiyama, J.-I.; Yoshida, M.; Hatori, H.; Hosomi, A. J. Org. Chem. 1992, 57, 3037.
(6) Bussas, R.; Muenster, H.; Kresze, G. J. Org. Chem. 1983, 48, 2828.

X-ray Crystal Structure of $\mathbf{3 8}$




Table 1. Crystal data and structure refinement for 38.

| Identification code | 38 |
| :---: | :---: |
| Empirical formula | C13 H28 B N O4 S |
| Formula weight | 305.23 |
| Temperature | 85(2) K |
| Wavelength | 0.71073 A |
| Crystal system, space group | Orthorhombic, P2(1)2(1)2(1) |
| Unit cell dimensions | $\begin{aligned} & \mathrm{a}=6.8265(5) \mathrm{A} \quad \text { alpha }=90 \text { deg. } . \\ & \mathrm{b}=9.4699(8) \mathrm{A} \quad \text { beta }=90 \text { deg. } \\ & \mathrm{c}=24.772(2) \mathrm{A} \quad \text { gamma }=90 \text { deg. } \end{aligned}$ |
| Volume | 1601.4(2) $\mathrm{A}^{\wedge} 3$ |
| Z, Calculated density | $4,1.266 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$ |
| Absorption coefficient | $0.214 \mathrm{~mm}^{\wedge}-1$ |
| $F(000)$ | 664 |
| Crystal size | $0.50 \times 0.34 \times 0.22 \mathrm{~mm}$ |
| Theta range for data collection | 1.64 to 28.34 deg. |
| Limiting indices | $-9<=\mathrm{h}<=9,-12<=\mathrm{k}<=12,-33<=\mathrm{l}<=33$ |
| Reflections collected / unique | $57330 / 3997[\mathrm{R}(\mathrm{int})=0.0376]$ |
| Completeness to theta $=28.34$ | 100.0 \% |


| Absorption correction | Semi-empirical from equivalents |
| :--- | :--- |
| Max. and min. transmission | 0.9545 and 0.9007 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$ |
| Data / restraints / parameters | $3997 / 0 / 190$ |
| Goodness-of-fit on $\mathrm{F}^{\wedge} 2$ | 1.171 |
| Final R indices [I>2sigma(I)] | $\mathrm{R} 1=0.0330, \mathrm{wR} 2=0.0892$ |
| R indices (all data) | $\mathrm{R} 1=0.0332, \mathrm{wR} 2=0.0893$ |
| Absolute structure parameter | $0.04(6)$ |
| Largest diff. peak and hole | 0.356 and $-0.189 \mathrm{e} . \mathrm{A}^{\wedge}-3$ |

Table 2. Atomic coordinates ( $\mathrm{x} 10^{\wedge} 4$ ) and equivalent isotropic displacement parameters ( $\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$ ) for 4-25. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

|  |  |  |  |  |
| :---: | ---: | ---: | ---: | :---: |
|  | $x$ | $y$ | $z$ | $\mathrm{y}(\mathrm{eq})$ |
| $\mathrm{B}(1)$ | $3664(3)$ | $6617(2)$ | $8546(1)$ | $26(1)$ |
| $\mathrm{N}(1)$ | $4294(2)$ | $5263(1)$ | $8193(1)$ | $18(1)$ |
| $\mathrm{S}(1)$ | $502(1)$ | $7984(1)$ | $8102(1)$ | $17(1)$ |
| $\mathrm{O}(1)$ | $1510(2)$ | $6860(1)$ | $8448(1)$ | $22(1)$ |
| $\mathrm{O}(2)$ | $-633(2)$ | $7258(2)$ | $7697(1)$ | $30(1)$ |
| $\mathrm{O}(3)$ | $1845(2)$ | $9044(1)$ | $7918(1)$ | $26(1)$ |
| $\mathrm{O}(4)$ | $-708(2)$ | $11747(1)$ | $8363(1)$ | $23(1)$ |
|  |  |  |  | $\mathrm{S}-24$ |


| $\mathrm{C}(1)$ | $2985(3)$ | $4063(2)$ | $8310(1)$ | $59(1)$ |
| :--- | ---: | ---: | :--- | ---: |
| $\mathrm{C}(2)$ | $6321(3)$ | $4857(2)$ | $8345(1)$ | $26(1)$ |
| $\mathrm{C}(3)$ | $4276(3)$ | $5583(3)$ | $7609(1)$ | $45(1)$ |
| $\mathrm{C}(4)$ | $-1217(2)$ | $8733(2)$ | $8555(1)$ | $15(1)$ |
| $\mathrm{C}(5)$ | $-429(2)$ | $9704(1)$ | $8990(1)$ | $12(1)$ |
| $\mathrm{C}(6)$ | $1174(2)$ | $9081(2)$ | $9361(1)$ | $17(1)$ |
| $\mathrm{C}(7)$ | $1072(2)$ | $10025(2)$ | $9875(1)$ | $22(1)$ |
| $\mathrm{C}(8)$ | $-559(2)$ | $11080(2)$ | $9733(1)$ | $20(1)$ |
| $\mathrm{C}(9)$ | $260(2)$ | $12077(2)$ | $9299(1)$ | $22(1)$ |
| $\mathrm{C}(10)$ | $396(2)$ | $11134(2)$ | $8787(1)$ | $16(1)$ |
| $\mathrm{C}(11)$ | $-2028(2)$ | $10165(2)$ | $9410(1)$ | $16(1)$ |
| $\mathrm{C}(12)$ | $-3744(2)$ | $11000(2)$ | $9172(1)$ | $23(1)$ |
| $\mathrm{C}(13)$ | $-2899(2)$ | $8950(2)$ | $9737(1)$ | $21(1)$ |

Table 3. Bond lengths [A] and angles [deg] for 38.

| $\mathrm{B}(1)-\mathrm{O}(1)$ | $1.507(2)$ |
| :--- | :--- |
| $\mathrm{B}(1)-\mathrm{N}(1)$ | $1.610(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.474(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(3)$ | $1.478(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | $1.485(2)$ |
| $\mathrm{S}(1)-\mathrm{O}(3)$ | $1.4340(12)$ |
| $\mathrm{S}(1)-\mathrm{O}(2)$ | $1.4428(12)$ |
| $\mathrm{S}(1)-\mathrm{O}(1)$ | $1.5306(11)$ |
| $\mathrm{S}(1)-\mathrm{C}(4)$ | $1.7716(14)$ |
| $\mathrm{O}(4)-\mathrm{C}(10)$ | $1.4174(18)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.5162(18)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.5458(19)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)$ | $1.5510(19)$ |
| $\mathrm{C}(5)-\mathrm{C}(11)$ | $1.5692(19)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.556(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.536(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.536(2)$ |
| $\mathrm{C}(8)-\mathrm{C}(11)$ | $1.548(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.554(2)$ |
| $\mathrm{C}(11)-\mathrm{C}(13)$ | $1.527(2)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.532(2)$ |
| $\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{N}(1)$ | $107.18(13)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ | $110.3(2)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$ | $108.39(15)$ |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)$ | $108.03(14)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{B}(1)$ | $110.15(15)$ |
| $\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{B}(1)$ | $111.43(14)$ |
| $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{B}(1)$ | $108.48(12)$ |
| $\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(2)$ | $117.10(8)$ |
| $\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(1)$ | $112.21(7)$ |
| $\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$ | $107.45(7)$ |
|  |  |


| $\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(4)$ | $110.20(7)$ |
| :--- | :--- |
| $\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(4)$ | $105.97(7)$ |
| $\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(4)$ | $102.78(6)$ |
| $\mathrm{B}(1)-\mathrm{O}(1)-\mathrm{S}(1)$ | $129.38(12)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{S}(1)$ | $117.27(10)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $116.26(11)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$ | $115.32(11)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$ | $105.60(11)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(11)$ | $113.19(12)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$ | $101.81(11)$ |
| $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(11)$ | $102.98(10)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $103.59(12)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | $102.69(12)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $107.17(13)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(11)$ | $102.92(12)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(11)$ | $102.57(12)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $103.89(12)$ |
| $\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(5)$ | $113.89(12)$ |
| $\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(9)$ | $109.76(12)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$ | $102.41(11)$ |
| $\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$ | $107.18(12)$ |
| $\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(8)$ | $113.56(12)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(8)$ | $113.95(13)$ |
| $\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(5)$ | $114.34(12)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(5)$ | $114.82(12)$ |
| $\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{C}(5)$ | $92.76(11)$ |

Symmetry transformations used to generate equivalent atoms:


File: tdvVI-168b-C-char
Pulse Sequence: s2pul
Solvent: cdcl3
Ambient temperature
operator: tdevries
File: tdvVI-168b-c-char
INOVA-400 "Kr.chem.lsa.umich.edu"

Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
1600 repetitions
OBSERVE C13, 100.5712664 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 0.8 Hz
FT size 65536
Total time $37 \mathrm{~min}, 34 \mathrm{sec}$
Acquisition date: Oct 112007




File: Carbon
Pulse Sequence: s2pul
Solvent: cdcl3
Ambient temperature
operator: tdevries
INOVA-400 "Zr.Chem.LSA.UMich.Edu"

Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
80 repetitions
OBSERVE C13, 100.5712647 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 0.8 Hz
T size 65536
Total time $1 \mathrm{~min}, 52 \mathrm{sec}$
Acquisition date: Nov 62007



File: Carbon
Pulse Sequence: s2pul


Solvent: cdcl3
Ambient temperature
perator: tdevries
INOVA-500 "Sn.Chem.LSA.UMich.Edu"

Relax. delay 0.100 sec
Pulse 30.0 degrees
Acq. time 1.300 sec
Width 30165.9 Hz
3520 repetitions
OBSERVE C13, 125.7010259 MHz
DECOUPLE H1, 499.9067532 MHz
Power 38 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 1.0 Hz
T size 131072
time $1 \mathrm{hr}, 22 \mathrm{~min}, 43 \mathrm{sec}$
Acquisition date: Nov 122007


Sample Mane:
Data Collected on
Sn.Chem.LSA. urich.edu-inova500 Archive directory:

Sample directory:
ridrile: SM-138-1H-Fure
Pulse Sequence: PROTOM (s2pul Sequence Data collected on: Hay 172011


Sample Hane:
Data Collected on:
Sn.Chen.LSA. ukich.edu-inova500
Archive directory:


사 Agilent Technologies

Sample directory:
ridrile: SM-138-C13
Pulse Sequence: Carmou ( $s 2$ pul)
Solvent: edel3 Solvent: edcla Data collected on: Hay 182011

## 

SM-155-1H-minorisomer-pure

## Sample Hane:

Data Collected on:
Sn.Chen.LSA. urich.edu-inova500
Archive directory:

## Sample directory:

ridrile: SM-156-1H-pure
Pulse Sequence: PROTOM ( $s 2 \mathrm{pul}$ )
Solvent: cdel3
Data collected on: Jul 62011


该 Agilent Technologies


Sanple Mane:
Data Collected on:
Yb-vnmrs700
Archive directory:
Sample directory:
ridrile: SM-156-C13-Pure
Pulse Sequence: CARDOY (s2pul) Solvent: edel3
Data collected on: Jul 72011
 LZな.

## ul)

कT9'TET- EV8*TET

## 



160
140
120
100
80
40
20
ppm

Sample Name:
Data Collected on:
Yb-vamrs700
Archive directory:
Sample directory:
Fiafile: SM-108-1H-pure
Pulse Sequence: PROTON (s2pul)
Solvent: cacl3
Data collected on: Jul 192011


Agilent Technologies



## Sample Mane:

Data Collected on Yb-vnmrs700 Archive directory:

## Sample directory:

ridrile: SM-108-C13
Pulse Sequence: CARDOM ( 52 pul ) Solvent: edcl3 Data collected on: Jul 192011

 $-115.660$


## SM-145-1H-Pure

## Sample Hane:

Data Collected on:
Sn.Chen.LSA. URich.edu-inova500
Archive directory:
Sample directory:
ridrile: SM-145-1H-Fure
Fulse Sequence: PROTOM ( $s 2 \mathrm{pul}$ ) Solvent: edcl3
Data collected on: Hay 242011


22b


Sample Mane:
Data Collected on:
Sn.Chen.LSA. urich.edu-inova500
Archive directory:
Sample directory:
ridrile: SM-145-C13-Pure
Fulse Sequence: Carmom (s2pul) Solvent: edel3 Data collected on: Hay 242011


22b



## Sample Hane:

## Data Collected on:

Sn.Chen.Lsa. urich.edu-inova500
Archive directory:
Sample directory:
ridrile: SM-96-1H-Pure
Fulse Sequence: PROTOM ( 52 pul ) Solvent: edel3
Data collected on: Har 212011


SM-96-C13-pure
Sample Hane:
Data collected on:
Sn. Chem.LSA. Unich.edu-inova500
Archive directory:
Sanple directory:
ridrile: SM-96-C13-pure


- 7 Apilent Tectrologies

Pulse Sequence: CARDOM ( $s 2$ pul)

## Solvent: edcl3 <br> Data collected on: Mar 212011




## SM-106-1H-pure

Sample Mane:
Data Collected on:
Sn. Chem.L5a. unich.edu-inova500
Archive directory:

## sample directory:

ridrile: SM-106-1H-pure
Pulse Sequence: PROTOM ( $\mathrm{s}^{2} \mathrm{pul}$ Solvent: cdel3
Data collected on: Apr 92011


22d

SM-106-C13-pure
Sample Mane:
Data Collected on:
Sn. Chem.LSA. urich.edu-inova500
Archive directory:
Sample directory:
ridrile: SM-106-C13-5h




## Sample Hane:

## Data Collected on:

Sn.Chen.LSA. urich.edu-inova500
Archive directory:


Pulse Sequence: PROTOM ( 52 pul ) Solvent: edcl3
Data collected on: Har 22011



Sanple Hane:
Data Collected on:
Yb-vnmra700
Archive directory:
Sample directory:
ridrile: SM-147-1H-Upper-diastereomer-major
Pulse Sequence: PROTOM (s2pul)
Solvent: cdel3
Data collected on: Jun 112011

-
(major diastereomer)

SM-147-C13-Upper-diastereoner-major
Sample Hane:
Data Collected on:
Yb-vnmrs700
Archive directory:

tr Apilent Technologies
(major diastereomer)
Sample directory:




SM-147-1H-Lower-diastereomer-minor

## Sanple yane:

Data Collected on:
Yb-vnmrs700
Archive directory:
Sample directory:
ridrile: SM-147-1H-Lower-diastereomer-minor

## ulse sequence: PROTOM ( $s^{2} \mathrm{pul}$ ) Solvent: cdel3

Data collected on: Jun 112011



## Sample Mane:

Data Collected on:
Yb-vnmrs700
Archive directory:


24b
(minor diastereomer)
Sample directory:

- ロinco
ridrile: sM-147-C13-Lower-diastereaner-ritnot "\% Nิ तै
Fulse Sequence: Carmon ( $s 2 \mathrm{pul}$ ) Solvent: edcl3
Data collected on: Jun 112011


Sample Mane
Data Collected on:
Sn. Chem.LSA. urich.edu-inova500
Archive directory:
Sample directory:
ridrile: sM-98-1H-pure


Pulse Sequence: PROTOM ( $s 2 \mathrm{pul}$ )
Solvent: cdel3
Data collected on: Har 182011


SM-98-C13-pure
Sample Mane:
Data Collected on:
Sn. Chen.LSA. urich.edu-inova500
Archive directory:


Sample directory:
ridrile: SM-98-C13-pure
Fulse Sequence: CARDOM ( $s 2 \mathrm{pul}$ )
Solvent: edcl3
Data collected on: Har 192011


| 160 | 140 | 120 | 100 | 80 | 60 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |



24d

Data Collected on:
Sn.Chem.LSA. unich.edu-inova500
Archive directory:
Sample directory:
ridrile: sM-94-1H-Lowerspot-clean-mir
Pulse Sequence: PROTOM ( $s 2 \mathrm{pul}$ )
Solvent: edcl3
Data collected on: Mar 102011


Sample Mane:
Data Collected on:
Sn.Chen.LSA.urich.edu-inova500
Archive directory:


24d
$\mathrm{BH}_{3}$
Me
26a


File: tdvVI-173p-C


Solvent: cdcl3
Ambient temperature
perator: tdevries
ile: tdvVI-173
INOVA-400 "Kr.chem.1sa.umich.edu"
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
64 repetitions
OBSERVE C13, 100.5712654 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 0.8 Hz
FT size 65536
rotal time $1 \mathrm{~min}, 30 \mathrm{sec}$
Acquisition date: Oct 162007
$\mathrm{Me}_{2} \mathrm{~N}$
26b


File: AMSI-134-C
Pulse Sequence: s2pul
Solvent: cdcl3
Solvent: cdcl3
Ambient temperature
ile: AMSI-134-C
INOVA-400 "Kr.chem.1sa.umich.edu"
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
128 repetitions
OBSERVE C13, 100.5712626 MHz DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
Ata processing
Line broadening 0.8 Hz
FT size 65536
Total time $3 \mathrm{~min}, 0 \mathrm{sec}$
Acquisition date: Oct 162007


26b


27a



27a

Solvent: cdcl3
Ambient temperature
Operator: tdevries
ile: tdvVI-177a-C
INOVA-400 "Kr.chem.1sa.umich.edu"

Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
64 repetitions
OBSERVE C13, 100.5712626 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 0.8 Hz
FT size 65536
Total time $1 \mathrm{~min}, 30 \mathrm{sec}$
Acquisition date: Oct 162007





29a a

Solvent: cdcl3
Ambient temperature
operator: tdevries
INOVA-400 "Zr.Chem.LSA.UMich.Edu"

Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
96 repetitions
OBSERVE C13, 100.5712653 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.8 Hz
T size 65536
Total time $2 \mathrm{~min}, 15 \mathrm{sec}$
Acquisition date: Nov 102007


## 

$\mathrm{BH}(\mathrm{OMs})_{2}$
$\mathrm{Me}_{2} \mathrm{~N} \sim_{\mathrm{Ph}}^{\mathrm{Me}}$
29b


File: tdvVI-188-12-C
Pulse Sequence: s2pul


Solvent: cdcl3
Ambient temperature
Operator: tdevries
File: tdvVI-188-12-C
INOVA-400 "Zr.Chem.LSA.UMich.Edu"
Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1.300 sec
Width 24140.0 Hz
544 repetitions
OBSERVE C13, 100.5712660 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
data processing
Line broadening 0.8 Hz
FT size 65536
Total time $12 \mathrm{~min}, 46 \mathrm{sec}$
Acquisition date: Nov 102007








33


200
180
160
120
100
80
60
40
20
0 ppm




footnote 7, i





Pulse Sequence: s2pul
Solvent: cdcl3
Ambient temperature
perator: tdevries
INOVA-400 "Zr.Chem.LSA.UMich.Edu"

Relax. delay 0.100 sec
Pulse 45.0 degrees
Acq. time 1300
Width 24140.0 Hz
2144 repetitions
BSERVE C13, 100.5712660 MHz
DECOUPLE H1, 399.9669644 MHz
Power 39 dB
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 0.8 Hz
FT size 65536
Total time $50 \mathrm{~min}, 21 \mathrm{sec}$
Acquisition date: Nov 142007



