Supporting Information # Synthesis of Bishomoinositols and an Entry for Construction of Substituted 3-oxabicyclo[3.3.1]nonane Skeleton Arif Baran, *,* Merve Bekarlar, * Gökay Aydin, * Mehmet Nebioglu, * Ertan Şahin, * and Metin Balci*, * Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey Department of Chemistry, Sakarya University, 54100 Sakarya, Turkey Department of Chemistry, Atatürk University, 25240 Erzurum, Turkey 1 #### **Table of Contents** Title | 1100 | _ | |--|----| | ¹ H-NMR spectrum for 9 | 3 | | Expanded ¹ H-NMR spectrum for 9 | 3 | | ¹³ C-NMR spectrum for 9 | 4 | | ¹ H-NMR spectrum for 10 | 4 | | ¹ H-NMR spectrum in benzene-d ₆ for 10 | 5 | | Expanded ¹ H-NMR spectrum in benzene-d ₆ for 10 | 5 | | ¹³ C-NMR spectrum for 10 | 6 | | DEPT Spectrum for 10 | 6 | | COSY Spectrum for 10 | 7 | | HETCOR Spectrum for 10 | 8 | | NOESY Spectrum for 10 | 9 | | ¹ H-NMR spectrum for 11 | 9 | | ¹³ C-NMR spectrum for 11 | 10 | | DEPT Spectrum for 11 | 10 | | COSY Spectrum for 11 | 11 | | HETCOR Spectrum for 11 | 11 | | ¹ H-NMR spectrum for 12 | 12 | | ¹³ C-NMR spectrum for 12 | 12 | | DEPT Spectrum for 12 | 13 | | COSY Spectrum for 12 | 13 | | HETCOR Spectrum for 12 | 14 | | ¹ H-NMR spectrum for 13 | 15 | | ¹³ C-NMR spectrum for 13 | 15 | | DEPT Spectrum for 13 | 16 | | COSY Spectrum for 13 | 16 | | HETCOR Spectrum for 13 | 17 | | | | | 1rr yr m | | |---|----------| | ¹ H-NMR spectrum for 14 | 17 | | Expanded ¹ H-NMR spectrum for 14 | 18 | | ¹³ C-NMR spectrum for 14 | 18 | | Expanded ¹³ C-NMR spectrum for 14 | 19 | | ¹ H-NMR spectrum for 18 | 19 | | ¹³ C-NMR spectrum for 18 | 20 | | COSY Spectrum for 18 | 20 | | HETCOR Spectrum for 18 | 21 | | ¹ H-NMR spectrum for 19 | 21 | | ¹³ C-NMR spectrum for 19 | 22 | | ¹ H-NMR spectrum for 20 | 22 | | ¹³ C-NMR spectrum for 20 | 23 | | COSY Spectrum for 20 | 23 | | HETCOR Spectrum for 20 | 24 | | ¹ H-NMR spectrum for 22 | 24 | | ¹³ C-NMR spectrum for 22 | 25 | | ¹ H-NMR spectrum for 21 | 25 | | ¹³ C-NMR spectrum for 21 | 26 | | COSY Spectrum for 21 | 26 | | HETCOR Spectrum for 21 | 20
27 | | ¹ H-NMR spectrum for 23 | 27 | | ¹³ C-NMR spectrum for 23 | 28 | | 111 NMD an activity for 24 | | | ¹ H-NMR spectrum for 24 | 28 | | Expanded ¹ H-NMR spectrum for 24 | 29 | | Expanded ¹ H-NMR spectrum for 24 | 30 | | ¹³ C-NMR spectrum for 24 | 31 | | DEPT Spectrum for 24 | 31 | | COSY Spectrum for 24 | 32 | | Expanded COSY Spectrum for 24 | 32 | | HETCOR Spectrum for 24 | 33 | | Expanded HETCOR Spectrum for 24 | 33 | | ¹ H-NMR spectrum for 25 | 34 | | ¹³ C-NMR spectrum for 25 | 34 | | COSY Spectrum for 25 | 35 | | ¹ H-NMR spectrum for 26 | 35 | | Expanded H-NMR spectrum for 26 | 36 | | Expanded ¹ H-NMR spectrum for 26 | 36 | | Expanded ¹ H-NMR spectrum for 26 | 37 | | ¹³ C-NMR spectrum for 26 | 37 | | DEPT Spectrum for 26 | 38 | | COSY Spectrum for 26 | 38 | | ¹ H-NMR spectrum for 27 | 39 | | Expanded [†] H-NMR spectrum for 27 | 39 | | Expanded ¹ H-NMR spectrum for 27 | 40 | | ¹³ C-NMR spectrum for 27 | 40 | | COSY Spectrum for 27 | 41 | | HMBC Spectrum for 24 | 41 | | X-ray Structural Analysis | 42 | | Experimental General | 44 | | Enpermiental General | | # ¹H-NMR in CDCl₃ # expanded ¹H-NMR spectrum # ¹³C-NMR in CDCl₃ #### ¹H-NMR in CDCl₃ #### ¹H NMR in benzene-d₆ ¹H-NMR in benzene-d₆ (expanded) ## ¹³C-NMR in benzene-d₆ #### **DEPT** spectrum ## **COSY spectrum** #### **HETCOR** # **NOESY** spectrum # ¹H NMR in CDCl₃ #### **DEPT** #### **COSY** spectrum #### **HETCOR spectrum** # ¹H NMR in CDCl₃ # ¹³C NMR spectrum #### **DEPT** spectrum # **HETCOR spectrum** # ¹H NMR in CDCl₃ # ¹³C NMR spectrum 15 #### **DEPT spectrum** #### **COSY** spectrum #### **HETCOR spectrum** ## ¹H NMR in DMSO-d₆ ## ¹H NMR spectrum (expanded) ## ¹³C NMR in DMSO-d₆ # ¹³C NMR spectrum (expanded) ¹H NMR spectrum # ¹³C NMR spectrum #### **COSY spectrum** # **HETCOR** spectrum # ¹³C NMR in CD₃OD # ¹H NMR spectrum in CDCl₃ # ¹³C NMR spectrum #### **COSY** spectrum ¹H NMR spectrum in D₂O # ^{13}C NMR spectrum at 60 $^{\rm o}C$ #### ¹H NMR in CDCl₃ # ¹³C NMR spectrum #### **COSY** spectrum # ¹³C NMR in CD₃OD at 80 °C # ¹H NMR spectrum in CDCl₃ # Expanded ¹H NMR spectrum in CDCl₃ # Expanded ¹H NMR spectra in CDCl₃ # ¹³C NMR spectrum in CDCl₃ ## **DEPT spectrum** ## **Expanded COSY spectra** ## **HETCOR spectrum** # **HETCOR** (expanded) ¹³C NMR in CDCl₃ # Expanded ¹H NMR spectra in CDCl₃ 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 fl (ppm) # ¹³C NMR spectrum in CDCl₃ #### **DEPT** spectrum ## ¹H NMR spectrum in CDCl₃ # Expanded ¹H NMR spectra in CDCl₃ # Expanded ¹H NMR spectra in CDCl₃ 3.86 3.84 3.82 3.80 3.78 3.76 3.74 3.72 3.70 3.68 3.66 3.64 3.62 3.60 3.58 3.56 3.54 3.52 3.50 3.48 3.46 3.44 3.42 3.40 3.38 3.36 3.34 fl(ppm) ## **HMBC** spectrum #### X-Ray Structural Analysis of 24 and 12 The absolute configuration of the compound **24** was confirmed by X-ray crystallography (Figure 1), which also confirmed the *cis* and *trans* stereochemistry of the acetate groups. Figure 1. Atomic displacement parameters representation of structure **24** with displacement ellipsoids drawn at the 40% probability level and numbering scheme. Figure 2. View of the cell packing along the *a*-axis. *Crystallograpy*: For the crystal structure determination, the single-crystal of the compound 24 was used for data collection on a four-circle Rigaku R-AXIS RAPID-S diffractometer (equipped with a two-dimensional area IP detector). The graphite-monochromatized Mo K_{α} radiation (λ =0.71073 Å) and oscillation scans technique with $\Delta\omega$ =5° for one image were used for data collection. The lattice parameters were determined by the least-squares methods on the basis of all reflections with $F^2 > 2\sigma(F^2)$. Integration of the intensities, correction for Lorentz and polarization effects and cell refinement was performed using CrystalClear (Rigaku/MSC Inc., 2005) software [1]. The structures were solved by direct methods using SHELXS-97 [2] and refined by a full-matrix leastsquares procedure using the program SHELXL-97 [2]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were refined by using the riding model with SHELXL-default d(C-H) values. Thermal parameters of the H atoms used were set to Uiso(H) = 1.2Ueq(C). The final difference Fourier maps showed no peaks of chemical significance. Crystal data for 4a: C₁₆H₂₂O₉, crystal system, space group: monoclinic, P2₁/a; (no:14); unit cell dimensions: a = 8.8325(4), b = 14.1648(4), c = 14.7778(5)Å, $\alpha = 90 \beta = 99.154(5)$, $\gamma = 90^{\circ}$; volume: 1825.3(2) Å³; Z=4; calculated density: 1.30 g/cm³; absorption coefficient: 0.107 mm⁻¹; F(000): 760; θ -range for data collection $2.7 - 26.4^{\circ}$; refinement method: full-matrix least-square on F^2 ; data/parameters: 3728/227; goodness-of-fit on F^2 : 1.045; final R indices [I>2 σ (I)]: R_1 = 0.075, w R_2 =0.202; R indices (all data): R_1 =0.152, $wR_2=0.252$; largest diff. peak and hole: 0.250 and -0.206 e Å⁻³; CCDC-855316 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. #### References - 1. Rigaku/MSC, Inc., 9009 new Trails Drive, The Woodlands, TX 77381. - 2. Sheldrick, G. M., SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997 #### **Data Collection** A colorless chunk crystal of $C_{16}H_{22}O_9$ having approximate dimensions of 0.70 x 0.30 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation. Indexing was performed from 0^{0} oscillations that were exposed for 0 seconds. The crystal-to-detector distance was 127.40 mm. Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions: a = 17.04(2) Å b = 8.094(12) Å c = 26.81(3) Å $V = 3697.9(83) \text{ Å}^3$ For Z = 8 and F.W. = 358.34, the calculated density is 1.29 g/cm³. Based on the systematic absences of: 0kl: $1 \pm 2n$ h0l: $h \pm 2n$ packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be: The data were collected at a temperature of $20 \pm 1^{\circ}$ C to a maximum 20 value of 50.1° . A total of 135 oscillation images were collected. A sweep of data was done using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . A second sweep was performed using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . Another sweep was performed using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode. #### Data Reduction Of the 113812 reflections that were collected, 3726 were unique ($R_{int} = 0.047$); equivalent reflections were merged. The linear absorption coefficient, μ , for Mo-K α radiation is 1.1 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.78 to 1.00. The data were corrected for Lorentz and polarization effects. #### Structure Solution and Refinement The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. **CCDC- 852778** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. #### **Experimental Section** **General:** Melting points are uncorrected. Infrared spectra were obtained from solution in 0.1 mm cells or KBr pellets on a regular instrument. The 1 H and 13 C NMR spectra were recorded on 300 (75) and 400 (100) MHz spectrometers. Apparent splitting is given in all cases. Column chromatography was performed on silica gel (60-mesh, Merck), TLC was carried out on Merck 0.2 mm silica gel 60 F₂₅₄ analytical aluminum plates.