Supporting Information

Synthesis of Bishomoinositols and an Entry for Construction of Substituted 3-oxabicyclo[3.3.1]nonane Skeleton

Arif Baran, *,* Merve Bekarlar, * Gökay Aydin, * Mehmet Nebioglu, * Ertan Şahin, * and Metin Balci*, *

Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey

Department of Chemistry, Sakarya University, 54100 Sakarya, Turkey

Department of Chemistry, Atatürk University, 25240 Erzurum, Turkey

1

Table of Contents

Title

1100	_
¹ H-NMR spectrum for 9	3
Expanded ¹ H-NMR spectrum for 9	3
¹³ C-NMR spectrum for 9	4
¹ H-NMR spectrum for 10	4
¹ H-NMR spectrum in benzene-d ₆ for 10	5
Expanded ¹ H-NMR spectrum in benzene-d ₆ for 10	5
¹³ C-NMR spectrum for 10	6
DEPT Spectrum for 10	6
COSY Spectrum for 10	7
HETCOR Spectrum for 10	8
NOESY Spectrum for 10	9
¹ H-NMR spectrum for 11	9
¹³ C-NMR spectrum for 11	10
DEPT Spectrum for 11	10
COSY Spectrum for 11	11
HETCOR Spectrum for 11	11
¹ H-NMR spectrum for 12	12
¹³ C-NMR spectrum for 12	12
DEPT Spectrum for 12	13
COSY Spectrum for 12	13
HETCOR Spectrum for 12	14
¹ H-NMR spectrum for 13	15
¹³ C-NMR spectrum for 13	15
DEPT Spectrum for 13	16
COSY Spectrum for 13	16
HETCOR Spectrum for 13	17

1rr yr m	
¹ H-NMR spectrum for 14	17
Expanded ¹ H-NMR spectrum for 14	18
¹³ C-NMR spectrum for 14	18
Expanded ¹³ C-NMR spectrum for 14	19
¹ H-NMR spectrum for 18	19
¹³ C-NMR spectrum for 18	20
COSY Spectrum for 18	20
HETCOR Spectrum for 18	21
¹ H-NMR spectrum for 19	21
¹³ C-NMR spectrum for 19	22
¹ H-NMR spectrum for 20	22
¹³ C-NMR spectrum for 20	23
COSY Spectrum for 20	23
HETCOR Spectrum for 20	24
¹ H-NMR spectrum for 22	24
¹³ C-NMR spectrum for 22	25
¹ H-NMR spectrum for 21	25
¹³ C-NMR spectrum for 21	26
COSY Spectrum for 21	26
HETCOR Spectrum for 21	20 27
¹ H-NMR spectrum for 23	27
¹³ C-NMR spectrum for 23	28
111 NMD an activity for 24	
¹ H-NMR spectrum for 24	28
Expanded ¹ H-NMR spectrum for 24	29
Expanded ¹ H-NMR spectrum for 24	30
¹³ C-NMR spectrum for 24	31
DEPT Spectrum for 24	31
COSY Spectrum for 24	32
Expanded COSY Spectrum for 24	32
HETCOR Spectrum for 24	33
Expanded HETCOR Spectrum for 24	33
¹ H-NMR spectrum for 25	34
¹³ C-NMR spectrum for 25	34
COSY Spectrum for 25	35
¹ H-NMR spectrum for 26	35
Expanded H-NMR spectrum for 26	36
Expanded ¹ H-NMR spectrum for 26	36
Expanded ¹ H-NMR spectrum for 26	37
¹³ C-NMR spectrum for 26	37
DEPT Spectrum for 26	38
COSY Spectrum for 26	38
¹ H-NMR spectrum for 27	39
Expanded [†] H-NMR spectrum for 27	39
Expanded ¹ H-NMR spectrum for 27	40
¹³ C-NMR spectrum for 27	40
COSY Spectrum for 27	41
HMBC Spectrum for 24	41
X-ray Structural Analysis	42
Experimental General	44
Enpermiental General	

¹H-NMR in CDCl₃

expanded ¹H-NMR spectrum

¹³C-NMR in CDCl₃

¹H-NMR in CDCl₃

¹H NMR in benzene-d₆

¹H-NMR in benzene-d₆ (expanded)

¹³C-NMR in benzene-d₆

DEPT spectrum

COSY spectrum

HETCOR

NOESY spectrum

¹H NMR in CDCl₃

DEPT

COSY spectrum

HETCOR spectrum

¹H NMR in CDCl₃

¹³C NMR spectrum

DEPT spectrum

HETCOR spectrum

¹H NMR in CDCl₃

¹³C NMR spectrum

15

DEPT spectrum

COSY spectrum

HETCOR spectrum

¹H NMR in DMSO-d₆

¹H NMR spectrum (expanded)

¹³C NMR in DMSO-d₆

¹³C NMR spectrum (expanded)

¹H NMR spectrum

¹³C NMR spectrum

COSY spectrum

HETCOR spectrum

¹³C NMR in CD₃OD

¹H NMR spectrum in CDCl₃

¹³C NMR spectrum

COSY spectrum

¹H NMR spectrum in D₂O

^{13}C NMR spectrum at 60 $^{\rm o}C$

¹H NMR in CDCl₃

¹³C NMR spectrum

COSY spectrum

¹³C NMR in CD₃OD at 80 °C

¹H NMR spectrum in CDCl₃

Expanded ¹H NMR spectrum in CDCl₃

Expanded ¹H NMR spectra in CDCl₃

¹³C NMR spectrum in CDCl₃

DEPT spectrum

Expanded COSY spectra

HETCOR spectrum

HETCOR (expanded)

¹³C NMR in CDCl₃

Expanded ¹H NMR spectra in CDCl₃

5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 fl (ppm)

¹³C NMR spectrum in CDCl₃

DEPT spectrum

¹H NMR spectrum in CDCl₃

Expanded ¹H NMR spectra in CDCl₃

Expanded ¹H NMR spectra in CDCl₃

3.86 3.84 3.82 3.80 3.78 3.76 3.74 3.72 3.70 3.68 3.66 3.64 3.62 3.60 3.58 3.56 3.54 3.52 3.50 3.48 3.46 3.44 3.42 3.40 3.38 3.36 3.34 fl(ppm)

HMBC spectrum

X-Ray Structural Analysis of 24 and 12

The absolute configuration of the compound **24** was confirmed by X-ray crystallography (Figure 1), which also confirmed the *cis* and *trans* stereochemistry of the acetate groups.

Figure 1. Atomic displacement parameters representation of structure **24** with displacement ellipsoids drawn at the 40% probability level and numbering scheme.

Figure 2. View of the cell packing along the *a*-axis.

Crystallograpy: For the crystal structure determination, the single-crystal of the compound 24 was used for data collection on a four-circle Rigaku R-AXIS RAPID-S diffractometer (equipped with a two-dimensional area IP detector). The graphite-monochromatized Mo K_{α} radiation (λ =0.71073 Å) and oscillation scans technique with $\Delta\omega$ =5° for one image were used for data collection. The lattice parameters were determined by the least-squares methods on the basis of all reflections with $F^2 > 2\sigma(F^2)$. Integration of the intensities, correction for Lorentz and polarization effects and cell refinement was performed using CrystalClear (Rigaku/MSC Inc., 2005) software [1]. The structures were solved by direct methods using SHELXS-97 [2] and refined by a full-matrix leastsquares procedure using the program SHELXL-97 [2]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were refined by using the riding model with SHELXL-default d(C-H) values. Thermal parameters of the H atoms used were set to Uiso(H) = 1.2Ueq(C). The final difference Fourier maps showed no peaks of chemical significance. Crystal data for 4a: C₁₆H₂₂O₉, crystal system, space group: monoclinic, P2₁/a; (no:14); unit cell dimensions: a = 8.8325(4), b = 14.1648(4), c = 14.7778(5)Å, $\alpha = 90 \beta = 99.154(5)$, $\gamma = 90^{\circ}$; volume: 1825.3(2) Å³; Z=4; calculated density: 1.30 g/cm³; absorption coefficient: 0.107 mm⁻¹; F(000): 760; θ -range for data collection $2.7 - 26.4^{\circ}$; refinement method: full-matrix least-square on F^2 ; data/parameters: 3728/227; goodness-of-fit on F^2 : 1.045; final R indices [I>2 σ (I)]: R_1 = 0.075, w R_2 =0.202; R indices (all data): R_1 =0.152, $wR_2=0.252$; largest diff. peak and hole: 0.250 and -0.206 e Å⁻³; CCDC-855316 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

- 1. Rigaku/MSC, Inc., 9009 new Trails Drive, The Woodlands, TX 77381.
- 2. Sheldrick, G. M., SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997

Data Collection

A colorless chunk crystal of $C_{16}H_{22}O_9$ having approximate dimensions of 0.70 x 0.30 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation.

Indexing was performed from 0^{0} oscillations that were exposed for 0 seconds. The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 17.04(2) Å b = 8.094(12) Å c = 26.81(3) Å $V = 3697.9(83) \text{ Å}^3$

For Z = 8 and F.W. = 358.34, the calculated density is 1.29 g/cm³. Based on the systematic absences of:

0kl: $1 \pm 2n$ h0l: $h \pm 2n$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of $20 \pm 1^{\circ}$ C to a maximum 20 value of 50.1° . A total of 135 oscillation images were collected. A sweep of data was done using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . A second sweep was performed using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . Another sweep was performed using w oscillations from 0.0 to 180.0° in 4.0° steps. The exposure rate was 30.0 [sec./ $^{\circ}$]. The detector swing angle was 0.08° . The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 113812 reflections that were collected, 3726 were unique ($R_{int} = 0.047$); equivalent reflections were merged.

The linear absorption coefficient, μ , for Mo-K α radiation is 1.1 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.78 to 1.00. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model.

CCDC- 852778 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Experimental Section

General: Melting points are uncorrected. Infrared spectra were obtained from solution in 0.1 mm cells or KBr pellets on a regular instrument. The 1 H and 13 C NMR spectra were recorded on 300 (75) and 400 (100) MHz spectrometers. Apparent splitting is given in all cases. Column chromatography was performed on silica gel (60-mesh, Merck), TLC was carried out on Merck 0.2 mm silica gel 60 F₂₅₄ analytical aluminum plates.