Supplementary Material for the Manuscript

Synthesis, Magnetostructural Correlation and Catalytic Promiscuity of Unsymmetric Dinuclear Cu(II) Complexes: Models for Catechol Oxidases and Hydrolases

Renata E.H.M.B.Osório,¹ Rosely A. Peralta,¹ Adailton J. Bortoluzzi,¹ Vicente R. de Almeida,¹ Bruno Szpoganicz,² Franciele L. Fischer,³ Hernán Terenzi,³ Antonio S. Mangrich,⁴ Dalva E. C. Ferreira,⁵ Willian R. Rocha,⁵ Wolfgang Haase,⁶ Zbigniew Tomkowicz,^{6,7}, Ademir dos Anjos,⁸ and Ademir Neves^{1*}

Supplementary Material

*Corresponding author: ademir@qmc.ufsc.br; tel.: +55 4837219219; fax: +55 4837219711

Figure S1. Square wave voltammograms of complexes **1** (a) and **2** (b) in CH₃CN, 0.1 mol.L⁻¹ [(TBA)PF₆]. Concentration of complexes – 5.0 x 10⁻⁴ mol.L⁻¹; platinum working electrode; platinum wire counter electrode; Ag/Ag⁺ reference electrode. The Fc⁺/Fc couple ($E_0 = 400$ mV vs. NHE) was used as the internal standard.¹

1. Gagné, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem., 1980, 19, 2855-2857.

Figure S2. Potentiometric titration curves of complexes 1 (left) and 2 (right). Conditions: Complex = 0.05 mmol; [KCl] = $0.100 \text{ mol}.\text{L}^{-1}$; [KOH] = $0.100 \text{ mol}.\text{L}^{-1}$; in solution ethanol /water (70:30% v/v - 50 mL) at 25°C.

Figure S3. Spectrophotometric titration of **1** (a) (pH value: 5.68-7.58; $pK_a = 6.48$) and (b) (pH value: 8.28-10.31; $pK_a = 8.17$) **2** (c) (pH value: 8.45-10.43; $pK_a = 10.64$). Conditions: Complex = 0.05 mmol; [KCI] = 0.100 mol.L⁻¹; [KOH] = 0.100 mol.L⁻¹; in solution ethanol /water (70:30%v/v – 50 mL) at 25°C.

Figure S4. ESI-MS spectra of complex 1 in CH₃CN/water (50:50).

Figure S5. ESI-MS spectra of complex 2 in CH₃CN/water (50:50).

Figure S6. X-band EPR spectra of complexes **1**(top) and **2** (bottom) in acetonitrile/water (50:50) frozen solution at 77K, [buffer] = 0.05 mol.L⁻¹ (HEPES pH 7.0). Experimental (black); simulated (red). Inset gives the EPR spectra showing the $\Delta M_S = \pm 2$ transitions.

Figure S7. Dependence of the reaction rates on pH for the oxidation of 3,5-DTBC catalyzed by complexes **1** (**n**) and **2** (•) Conditions: [Complex] = 2.40 x 10^{-5} mol.L⁻¹; [3,5-DTBC] = 5.00 x 10^{-3} mol.L⁻¹ for **1** and 2.00 x 10^{-3} for **2**; [Buffer] = 3.30 x 10^{-2} mol.L⁻¹; in solution CH₃OH / H₂O (32:1) at 25°C.

Figure S8. Dependence of the initial reaction rate on the pH in the hydrolysis of 2,4-BDNPP promoted by complexes **1** (•) and **2** (•). Conditions: solution CH₃CN/H₂O 1:1; [complex] = 4.0 x 10^{-5} mol.L⁻¹; [buffer] = 0.05 mol.L⁻¹ (HEPES pH 8.0); *I* = 0.05 mol.L⁻¹ (LiClO₄); [2,4-BDNPP] = 5.0 x 10^{-3} mol.L⁻¹ (**1**) and 2.0 x 10^{-3} mol.L⁻¹ (**2**)

Figure S9. Cleavage of pBSK II (25 μ M pb) by copper(II) chloride (CuCl₂) in 25 mmol.L⁻¹ CHES buffer pH 9.0, where lane 1 is the DNA control and lanes 2-6 are DNA + CuCl₂ (10, 20, 30, 40 and 50 μ mol.L⁻¹, respectively). Incubation: 6 h at 37 °C.