Supporting Information:

A Steady-State Biofilm Model for Simultaneous Reduction of Nitrate and Perchlorate --

Part 1: Model Development and Numerical Solution

Youneng Tang ${ }^{\dagger}$, Heping Zhao^{\dagger}, Andrew K. Marcus ${ }^{\dagger}$, Bruce, E. Rittmann, ${ }^{\dagger}, *$
${ }^{\dagger}$ Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Ave., Tempe, AZ 85287-5701, USA
* Corresponding author. Email: Rittmann@asu.edu; tel.: +1 480727 0434; fax: +1 480727
0889

This supporting information contains four pages.

A steady-state mass balance for solid-component i can be written for a differential volume element $A^{\prime} \mathrm{dz}$ of the biofilm,

$$
\begin{equation*}
A^{\prime} d z \mu_{o i(z)} X_{f} f_{i(z)}=A^{\prime} J_{X i(z+d z)}-A^{\prime} J_{X i(z)} \quad(i=1,2,3,4,5) \tag{S1}
\end{equation*}
$$

In Equation $\mathrm{S} 1, A^{\prime}$ is the biofilm volume element's lateral area for mass transport $\left(\mathrm{L}^{2}\right)$, and $\mathrm{J}_{\mathrm{x}(\mathrm{z})}$ and $\mathrm{J}_{\mathrm{x}(\mathrm{z}+\mathrm{dz})}$ are the flux of solid-component i through area A^{\prime} at the points z and $(\mathrm{z}+\mathrm{dz})$ in the biofilm. The sum of the volume fraction of every solid-component must equal 1.

$$
\begin{equation*}
\sum_{i=1}^{i=5} f_{i}=1 \tag{S2}
\end{equation*}
$$

Equation S 1 divided by $A^{\prime} \mathrm{dz}_{\mathrm{f}}$ yields

$$
\begin{equation*}
\mu_{o i(z)} f_{i(z)}=\frac{1}{X_{f}} \frac{J_{X i(z+d z)}-J_{X_{i(z)}}}{d z} \quad(i=1,2,3,4,5) \tag{S3}
\end{equation*}
$$

which for dz approaching 0 leads to

$$
\begin{equation*}
\mu_{o i(z)} f_{i(z)}=\frac{1}{X_{f}} \frac{\partial J_{X i(z)}}{\partial z} \quad(i=1,2,3,4,5) \tag{S4}
\end{equation*}
$$

The biomass flux can be expressed by the velocity u at which the biomass moves with respect to the support medium multiplied by the concentration $X_{f} f_{i}$ of the solid component.

$$
\begin{equation*}
J_{X i(z)}=u_{(z)} X_{f} f_{i(z)} \quad(i=1,2,3,4,5) \tag{S5}
\end{equation*}
$$

Using Equation S5, Equation S4 can be rewritten as:

$$
\begin{align*}
& \mu_{o i(z)} f_{i(z)}=\frac{1}{X_{f}} \frac{\partial\left(u_{(z)} X_{f} f_{i(z)}\right)}{\partial z}=\frac{\partial\left(u_{(z)} f_{i(z)}\right)}{\partial z} \\
& \stackrel{\text { chain rule }}{=} f_{i(z)} \frac{\partial u_{(z)}}{\partial z}+u_{(z)} \frac{\partial f_{i(z)}}{\partial z} \quad(i=1,2,3,4,5) \tag{S6}
\end{align*}
$$

The average observed specific growth rate of all solid components at a location z in the biofilm is defined as

$$
\overline{\mu_{o(z)}}=\sum_{i=1}^{i=5}\left(\mu_{o i(z)} f_{i(z)}\right)
$$

[S7]
which can be converted to

$$
\begin{aligned}
\overline{\mu_{o(z)}} & =\sum_{i=1}^{i=5}\left(\mu_{o i(z)} f_{i(z)}\right) \\
& \left.=\sum_{i=1}^{i=5}\left(\frac{1}{X_{f}} \frac{\partial J_{X i(z)}}{\partial z}\right) \text { (obtained from equation } \mathrm{S} 4\right) \\
& =\frac{1}{X_{f}} \frac{\partial \sum_{i=1}^{i=5}\left(J_{X i(z)}\right)}{\partial z} \\
& =\frac{1}{X_{f}} \frac{\partial \sum_{i=1}^{i=5}\left(u_{(z)} X_{f} f_{i(z)}\right)}{\partial z}(\text { obtained from equation } \mathrm{S} 5) \\
& =\frac{\partial \sum_{i=1}^{i=5}\left(u_{(z)} f_{i(z)}\right)}{\partial z}=\frac{\partial\left(u_{(z)} \times \sum_{i=1}^{i=5} f_{i(z)}\right)}{\partial z} \\
& =\frac{\partial u_{(z)}}{\partial z}(\text { obtained from equation 10) } \quad(i=1,2,3,4,5)
\end{aligned}
$$

[S8]

Substituting Equation S8 into Equation S6 gives

$$
\mu_{o i(z)} f_{i(z)}=f_{i(z)} \frac{\partial u_{(z)}}{\partial z}+u_{(z)} \frac{\partial f_{i(z)}}{\partial z}=f_{i(z)} \overline{\mu_{o(z)}}+u_{(z)} \frac{\partial f_{i(z)}}{\partial z}
$$

or

$$
\begin{equation*}
\left(\mu_{o i(z)}-\overline{\mu_{o(z)}}\right) f_{i(z)}-u_{(z)} \frac{\partial f_{i(z)}}{\partial z}=0 \tag{S9}
\end{equation*}
$$

or

$$
\frac{\partial f_{i(z)}}{\partial z}=\frac{\left(\mu_{o i(z)}-\overline{\mu_{o(z)}}\right) f_{i(z)}}{u_{(z)}} \quad(i=1,2,3,4,5)
$$

The physical meaning of Equation S9 is that the fraction variation of a solid component at the
position $\mathrm{z}\left(\frac{\partial f_{i(z)}}{\partial z}\right)$ is in direct proportion to the difference between the specific growth rate of this solid component and the average specific growth rate of all solid components at the position z $\left(\left(\mu_{o i(z)}-\overline{\mu_{o(z)}}\right)\right)$ and the fraction of this solid component at the position $\mathrm{z}\left(f_{i(z)}\right)$, but it is in inverse proportion to the velocity at which the biomass moves in respect to the support media $\left(u_{(z)}\right)$.

The $\mathrm{u}_{(\mathrm{z})}$ term in Equation S 9 can be calculated using Equation S5

$$
\begin{aligned}
u_{(z)} & =\frac{J_{X i(z)}}{X_{f} f_{i(z)}}=\frac{f_{i(z)} \int_{L_{f}}^{z}(\text { net growth rate of all species) } d z}{X_{f} f_{i(z)}} \\
& =\frac{\int_{L_{f}}^{z}(\text { net growth rate of all species) }) d z}{X_{f}} \\
& =\frac{\int_{L_{f}}^{z}\left(\sum_{i=1}^{i=5} \mu_{o i} f_{i} X_{f}\right) d z}{X_{f}}=\int_{L_{f}}^{z}\left(\sum_{i=1}^{i=5} \mu_{o i} f_{i}\right) d z
\end{aligned}
$$

[S10]

Substitution of Equations S7 and S10 into Equation S9 provides the final form of the mass balance for solid component i ,

$$
\begin{equation*}
\left(\int_{L_{f}}^{z}\left(\sum_{i=1}^{i=5} \mu_{o i} f_{i}\right) d z\right) \frac{\partial f_{i(z)}}{\partial z}=\left(\mu_{o i(z)}-\sum_{i=1}^{i=5}\left(\mu_{o i(z)} f_{i(z)}\right)\right) f_{i(z)} \quad(i=1,2,3,4,5) \tag{S11}
\end{equation*}
$$

