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Particle temperature in the optical trap

Here we estimate the temperature of the gold nanoparticles in the optical trap, due to absorption
of the trapping laser.

We calculate the particle temperature as

∆T =
Pabs

4πκR
=

σabsI

4πκR
(1)

where κ is the thermal conductivity of water, R is the particle radius, σabs is the absorption cross
section of the nanoparticle at the wavelength of the trapping laser, and I is the intensity of the
trap laser at the focal plane.

We estimate the intensity at the trap focus Ifp from the optical power in the focal plane Pfp as

Ifp =
2πPfpNA

2

λ2
(2)

where NA is the numerical aperture and λ is the wavelength of the trap laser. We take an
effective numerical aperture NA of 1.0, as characterized previously for our trapping geometry in
experiments on gold nanorods [1]. We take the effective intensity at the trap focus to be half the
value predicted by eq 2, due to aberrations resulting from the relative large trapping depth, as
found previously for our setup with trapping depths about 25 µm away from the glass substrate [1].
We neglect intensity changes resulting from a displacement from the focus. We also account for
the measured objective transmission of 19 % at the trap wavelength to compute the power at the
focal plane from the power measured at the back focal plane of the objective. We find for a power
of 75mW at the focus (the highest trapping power used) an effective intensity of 2.0×1011W/m2.

We calculated the absorption cross section of the 80 nm spheres using Mie theory. For the
rods (about 25 nm diameter and 60 nm length), the absorption cross section was calculated in the
electrostatic approximation for an ellipsoid, see Table S 1.

For the highest trapping power of 75mW used in the experiment, we find a temperature
increase of about 60K for a 80 nm diameter gold particle, and about 80K for a gold nanorod, see
Table S 2.

Particle Wavelength σabs (m
2) σsca (m2)

Sphere λres,abs (540 nm) 1.9 10−14 –
λres,sca (560 nm) – 1.5 10−14

λprobe (590 nm) 7.1 10−15 1.0 10−14

λpump (785 nm) 2.7 10−16 9.5 10−16

λtrap (1064 nm) 9.5 10−17 1.9 10−16

Rod λres,abs (623 nm) 2.0 10−14 –
λres,sca (626 nm) – 3.8 10−15

λprobe (610 nm) 1.5 10−14 2.5 10−15

λpump (785 nm) 3.3 10−16 9.5 10−17

λtrap (1064 nm) 6.3 10−17 1.2 10−17

Table S1 Calculated absorption cross-sections σabs and scattering cross-sections σsca for a gold nanosphere and
a gold nanorod, of typical dimensions used in our experiment. The cross sections are tabulated at the wavelengths of
the plasmon resonance (λres), probe beam (λprobe), pump beam (λpump) and trapping beam (λtrap). The refractive
index of the environment of the particles was that of water (n = 1.33). The optical constants of gold were taken
from from Johnson and Christy. [2]. For the sphere (80 nm diameter), cross-sections were calculated using Mie
theory [3]. The cross-sections for the nanorod were calculated in the electrostatic approximation for an ellipsoid,
for a polarization parallel to the long axis of the rod. We take into account corrections for radiation damping and
electron surface scattering [4], as reported previously [1]. The tabulated values for the nanorod are chosen for a
nanorod with an aspect ratio of 2.4, and a volume of 2.5 10−24 m3, equal to the ensemble-averaged volume of the
rods determined from electron microscopy on the sample.
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Particle ∆T (K/mW) ∆T |75mW (K)
Sphere 0.8 ± 0.3 60 ± 30
Rod 1.1 ± 0.3 85 ± 30

Table S2 Calculated temperature increase ∆T of spheres and rods in the optical trap in water, due to absorption
of the trapping laser at 1064 nm. Values are calculated for a gold nanosphere (80 nm diameter) and a nanorod
(about 25 nm diameter, 60 nm length) using Eq. 1 with absorption cross sections from Table S 1, intensity I = 2.0 ×

1011 W/m2 for 75mW power at the focal plane and thermal conductivity κ = 0.65Wm−1 K−1. The temperature
increase of the rod was calculated using Eq. 1 with the radius of a sphere of the same volume as the rod.

3



Particle temperature after pulsed excitation

Here we estimate the particle lattice temperature increase due to pump and probe laser pulses.
The energy Eabs absorbed by the nanoparticle from a pulse with energy Epulse can be approx-

imated as
Eabs =

σabs

A
Epulse (3)

where σabs is the absorption cross section of the nanoparticle at the wavelength of the pulsed laser
and A is the cross-sectional area at the focus of the pulsed laser beam. The cross-sectional areas
of the pump and probe beams are not measured independently in our experiment. To obtain an
upper limit on the absorbed energy, we assume a diffraction limited spot with effective NA 1.0,
as found previously [1] for the trap laser in our experimental setup. For the pump (λ = 785nm)
and probe (λ = 590nm) beams we then find cross-sectional areas of at least 1.8 10−13m2 and
1.0 10−13m2.

The initial temperature increase of the the lattice can be calculated from the absorbed energy
as

∆T |t=0 =
Eabs

CpVp

(4)

where Cp is the heat capacity of the solid gold (24.9 105 JK−1 m−3 ) and Vp is the particle volume
(2.68 10−22m3 for spheres and 2.5 10−23m3 for rods ).

For the typical pump and probe beam energies and wavelengths used, we find upper limits of
the transient lattice temperature rise of about 20K for the nanospheres, and about 300-400K for
the rods. See table S 3. The temperature rises of the nanoparticles in our experiment are expected
to be below these values.

Particularly for the nanorods, the estimated lattice temperatures are appreciable, and we may
worry about thermally induced shape changes of the rod. Thermally induced reshaping however, it
mostly determined by the average temperature rise, as long as the temperature is below the melting
point of the rods. Reshaping of the rods is initiated by thermal diffusion of surface atoms, that
tends to drive the rod towards the thermodynamically more favorable spherical shape [5]. For the
nanorods in water, the pump-probe induced lattice temperature rise decays with a characteristic
time around of 100ps, about 100 times shorter than the time in between pulses ( 13 ns). Due to this
low duty cycle the time-averaged temperature increase of the nanorods is still small (< 1K), and no
reshaping is expected. This is in agreement with ultrafast studies on ensembles of gold nanorods,
where no structural reshaping was observed for transient lattice temperatures below 700 ◦C. The
melting of gold nanorods upon absorption of ultrafast laser pulses has also been measured on single
gold nanorods [6]. It was found that gold nanorods of 30 nm diameter and 90 nm length melted
only when lattice temperatures reached values around the melting temperature of bulk gold at
1330K. Most importantly, we can confirm that the rods have not reshaped in our experiment by a
measurement of the scattering spectrum of the rods before and after excitation with laser pulses,
where reshaping would be seen by changes of the longitudinal plasmon resonance. See Fig. S 1
below and the accompanying text.

Particle Beam Epulse (pJ) Eabs (fJ) ∆T |t=0 (K)
Sphere Pump (λpump (785 nm ) 10± 3 15± 5 22± 7

Probe (λprobe (590 nm) 0.20± 0.05 9.0± 2.3 20± 7
Rod Pump (λpump (785 nm ) 10± 3 18± 6 290± 100

Probe (λprobe (610 nm) 0.20± 0.05 28.0± 10 450± 150

Table S3 Calculated upper bounds for the transient lattice temperature increase ∆T immediately after the
absorption of pump and probe pulses, for gold nanospheres (80 nm diameter) and nanorods (25 nm diameter, 60 nm
length). The energy Eabs absorbed by the particle due to the pump or probe pulsed is calculated from the pulse
energy Epulse using Eq. 3, with the absorption cross section from Table S 1.
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Scattering spectra of single trapped nanorods

For all gold nanorods on which we have recorded a vibrational trace, we have recorded white-
light scattering spectra to confirm that a single gold nanorod is trapped. An example of such
a spectrum is shown in Figure S 1, together with an indication of the wavelengths of the pump
and probe pulses that were used for this rod. The spectrum is well fitted by a Lorentzian (in
energy), with a resonance at λL = 645nm and a FWHM of 50 nm (150meV). The symmetric
shape of the spectrum and its narrow linewidth show that only a single nanorod is trapped [1].
The wavelength of the resonance is directly related to the aspect ratio of the nanorod. In our
experiment we measure rods with resonance wavelengths from 590 nm to about 650nm, around
the ensemble-averaged value of 627nm (measured independently in a UV-VIS photospectrometer).
These plasmon resonance wavelengths are in good agreement with the expected values for gold
nanorods of aspect ratio around 2.5, in water.

We have also measured scattering spectra of individual gold nanorods before and after the
pump-probe measurement, to check for reshaping of the rod. Here, reshaping of the nanorods
would be observable as a blue-shift of the plasmon resonance. The extreme case of complete
melting of the rod would be easily observable by a shift of the resonance to around 530 nm. For
some nanorods, in particular the rods with longer resonance wavelengths (larger aspect ratios)
blue shifts of up to 20 nm were observed. For most nanorods, no large blue-shifts larger than
2-3 nm were detected over the course of a pump-probe measurement, about 5-10 minutes. These
plasmon shifts are comparable to the shifts induced by the slow reshaping of the rod in the optical
trap. This slow reshaping occurs even the in absence of the pump-probe pulses [1]. The stability
of the plasmon resonance shows that the rods did not significantly reshape due to the absorption
of the pump and probe pulses.
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Figure S1 White light scattering spectrum for a single gold nanorod trapped in water. This spectrum was
measured on the rod for which the vibrational trace is presented in Fig 3(a) of the main text. The solid line is a
Lorentzian fit (in energy) of the data, with a resonance at λL = 645 nm and a full width at half maximum 50 nm.
The small peak observed at 785 nm is due to residual pump light.
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Vibrational modes of gold nanospheres

In our experiment, the vibrational response of the trapped gold nanospheres is dominated by
the breathing mode. However, weak signatures of other vibration modes are detected on some
particles. The vibration modes of an elastic sphere have been first calculated by Lamb more than a
century ago [7]. The vibration modes in Lamb’s theory are labeled by two integers, n, the harmonic
order, i.e. the number of radial nodes, and l, the angular momentum number, representing the
angular dependence of the mode.

Fig. S 2 (a) shows a vibrational spectrum of a trapped sphere that displayed several vibration
frequencies. Besides the fundamental breathing mode (n, l) = (0, 0) at Ω0,0 = 38.8GHz, vibration
modes are detected at 84GHz and 126GHz. These frequencies are close to the values calculated
in Lamb’s theory for the first higher order radial modes of a 80 nm gold sphere [8] with a free
boundary condition, taking the bulk elastic constants of gold. For the first higher order radial
modes (1, 0) and (2, 0) the calculated frequencies are Ω1,0 = 2.10Ω0,0 and Ω2,0 = 3.18Ω0,0. The
(1, 0) radial mode was detected for 3 out of the 10 investigated single gold spheres. The excitation
and detection of this mode appears robust: if the mode was found for a particular sphere, it was
observed in each of several (2-5) consecutive vibrational spectra acquired on that particle in the
optical trap, over a time span of up to 30 minutes. The second order radial mode (2, 0) was clearly
observed for 2 out the 3 the particles that displayed the (1, 0) mode, but in both cases appeared
in only one trace out of a series of vibrational traces acquired on the particle.

Some particles (3 out of 10) displayed a weak vibration mode with a frequency around 0.3
times the breathing mode frequency. A vibrational spectrum of a such a particle is shown in
Fig. S 2 (b). The mode at 12.5GHz is possibly the non-spherically symmetric (n, l) = (0, 2) mode,
corresponding to a uniaxial cigar-to-pancake deformation of the spheres. The excitation of this
mode is not expected for spheres, embedded in an isotropic environment and subject to a spheri-
cally symmetric excitation mechanism. However, the ellipsoidal vibration mode can be excited in
slightly elongated particles [9], where the spherical symmetry is broken.
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Figure S2 Vibration modes of single 80 nm gold spheres optically trapped in water. Vibrational spectra are
dominated by the fundamental breathing mode Ω0,0 around 40GHz, but weak traces of other vibrational modes
are detected. (a) Vibrational spectrum of a sphere with a breathing mode at Ω0,0 = 38.8GHz. Weak traces of
the higher order radial modes (n, l) = (1, 0) at Ω1,0 (84GHz, 2.16 ×Ω0,0) and (n, l) = (2, 0) at Ω2,0 (126GHz,
3.25 ×Ω0,0) are detected. (b) Vibrational spectrum of a sphere with a breathing mode at Ω2,0 = 42.4GHz. An
additional vibration mode at 12.5GHz (0.29× Ω0,0) is attributed to the (0, 2) ellipsoidal deformation mode.
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Vibrations of an embedded spherical particle

We calculate frequencies and damping times of the breathing mode of an elastic gold sphere
embedded in an elastic medium, according to the complex frequency model [10, 11], for several
matrix materials, see table S 4.

For a gold sphere in water, we estimate the effect of viscous damping following the approach
by Saviot et al., that calculates the effective (complex) velocities of sound [12] in the liquid. We
find a minor correction upon inclusion of viscous damping. Both bulk viscosity and shear viscosity
contribute to the damping of sound waves. The shear viscosity -also known as dynamic viscosity-
is the more commonly used viscosity, governing for example the diffusion constants appearing in
the Brownian motion of particles in liquid. The bulk viscosity -also known as volume viscosity
or second viscosity coefficient- needs to be taken into account when compressibility of the liquid
cannot be neglected, as is the case for sound waves [13].

Note that for the calculation of the viscous damping, viscosity values were taken for water
at 30 ◦C, as in Saviot et al. [12]. We estimate that the temperature of the trapped particles is
significantly higher, and is in the range 80-100 ◦C for the trapping powers used in our experiment,
see Table S 2. However, the damping times calculated for non-viscous water and viscous water
at 30 ◦C form upper and lower bounds to the damping time in the experiment, respectively.
This is because both shear and bulk viscosity decrease with increasing temperature. At higher
temperatures the effect of viscous damping on the nanoparticle vibration is thus reduced.

In the calculation of the viscous damping we have used the viscosity values of water at at 30 ◦C
because we could not find measurements of the bulk viscosity in the temperature range 80-100 ◦C.
For the commonly used shear viscosity accurate measurements on water are available in the whole
range from the melting point to the critical point, see for example the NIST chemistry webbook
[14]. The temperature dependence of the shear viscosity is well described by an exponential decay
with temperature, an empirical relation known as the Vogel-Fulcher law [15]. For the bulk viscosity
only a few experimental studies are available [16, 13, 17], for temperatures up to 50 ◦C [17]. In the
temperature range 7-50 ◦C, the bulk viscosity decreases monotonically with temperature, closely
following an exponential decay [17].

The effect of viscosity on the damping of the breathing mode of the nanoparticle is small, and
our results are insensitive to the details of the calculation. For the results in the main text, we
have made the arbitrary choice to use the damping times calculated for viscous water at 30 ◦C.

Matrix ρ(kg/m3) vL (m/s) vT (m/s) T (ps) τ (ps) Q
BK7 glass 2240 5100 2840 25.9 77.8 9.44
Polystyrene 1300 2350 2000 26.1 236 28.4
Water (non-viscous) 1000 1500 - 26.4 453 54.0
Water (viscous, 30 ◦C) 1000 1521 + 254i 322 + 322i 26.4 443 52.5
Gold 19700 3240 1200 - - -

Table S4 Calculated frequencies, damping times and quality factors of the fundamental breathing mode of a
80 nm gold sphere embedded in several matrices.
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Ratio of breathing and extension mode frequency of gold

nanorods

Figure S 3 displays the scaling of the breathing mode frequency νbr to the extensional mode
frequency νext measured on single gold nanorods in an optical trap in water. Data on the same
nanorods is reported in Fig. 3 from the main text. In addition to the data on the 7 PEG-coated
rods from the main text, data on 2 nanorods stabilized in CTAB are included.

It is expected that the frequency ratio νbr/νext is proportional to the aspect ratio of the rod
[18]. In our experiment we can estimate the aspect ratio for each individual nanorod in the trap
from the longitudinal plasmon resonance λL, obtained from the rods scattering spectrum. Here,
we approximate AR = (λL − 410)/85, with λL in units of nm, by calculation of the plasmon
resonance of a gold ellipsoidal particle in water, in the dipole limit. The data points in Figure S 3
all fall on a horizontal line, indicating that the frequency ratio νbr/νext is strongly correlated to the
rods aspect ratio. The graph also displays the theoretical values calculated for a polycrystalline
rod [18] (dashed line, νbr/νext = 2.32 × AR ) and for a single-crystalline rod with its long axis
along the [1 0 0 ] direction (dotted line, νbr/νext = 3.24 × AR) [19]. It appears that the data are
closer to the value expected for polycrystalline rods than for a single crystal rod. However, this
attribution depends critically on the absolute value of the aspect ratio. It is difficult to obtain
an accurate absolute relation between the aspect ratio of the rod and its longitudinal plasmon
resonance. Calculated values of the resonance depend sensitively on the exact shape of the tip of
the rod, and on the exact thickness and structure of the capping layer, parameters that are not
known with high precision for the individual rods in our experiment. Therefore, we do yet draw
quantitative conclusions from the absolute value of the proportionality constant found in Fig. S 3.
The assumption of a linear relation between aspect ratio and plasmon resonance is more robust,
as indicated by our data.

To come to a quantitative conclusion about the scaling of vibration mode frequencies in gold
nanorods, it would be necessary to determine the exact aspect ratio of each individual nanorod in
the trap by electron microscopy on the nanorod, as was done previously for nanorods immobilized
on a substrate [19].
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Figure S3 Ratio of breathing mode and extensional mode frequencies of optically trapped nanorods, as function
of aspect ratio. The aspect ratio was deduced from the measured wavelength of the longitudinal plasmon resonance
λR via AR = (λR − 410)/85, with λR in nm. Dashed line: theoretical value for a gold nanorod with polycrystalline
elastic constants [18, 19]. Dotted line: theoretical value for a single crystalline rod, with the long axis of the rod in
the the [ 1 0 0 ] direction.
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