
Phase boundary propagation in large LiFePO₄ single crystals on delithiation

Katja Weichert¹, Wilfried Sigle², Peter A. van Aken², Janez Jamnik³, Changbao Zhu¹, Ruhul Amin¹, Tolga Acartürk¹, Ulrich Starke¹ and Joachim Maier^{1,*}

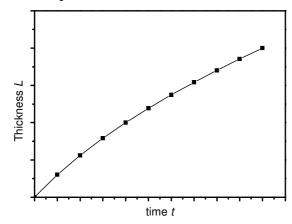
Supporting Information

Appendix

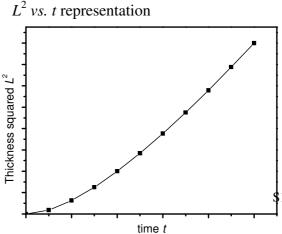
We assume steady state growth and can hence ignore capacitive current elements in the below equivalent circuit.

S: surface, B: bulk

$$j \propto \frac{1}{R_{\rm S} + R_{\rm B}} \Delta \mu_{Li}$$


$$R_{\rm S} = \frac{1}{\rm s}; \ R_{\rm B} = \frac{L}{\sigma^{\delta}}$$

$$\frac{dL}{dt} = \left(\frac{1}{s} + \frac{L}{\sigma^{\delta}}\right)^{-1} \Delta \mu_{Li}$$


L: thickness of growth layer, s: reaction constant of surface (or interfacial) reaction, \bullet^{δ} : ambipolar conductivity of Li

$$L = -\frac{\sigma^{\delta}}{s} + \sqrt{\frac{\sigma^{\delta^{2}}}{s^{2}} + 2\sigma^{\delta} \Delta \mu_{Li} t}$$

L vs. t representation

 L^2 vs. t representation

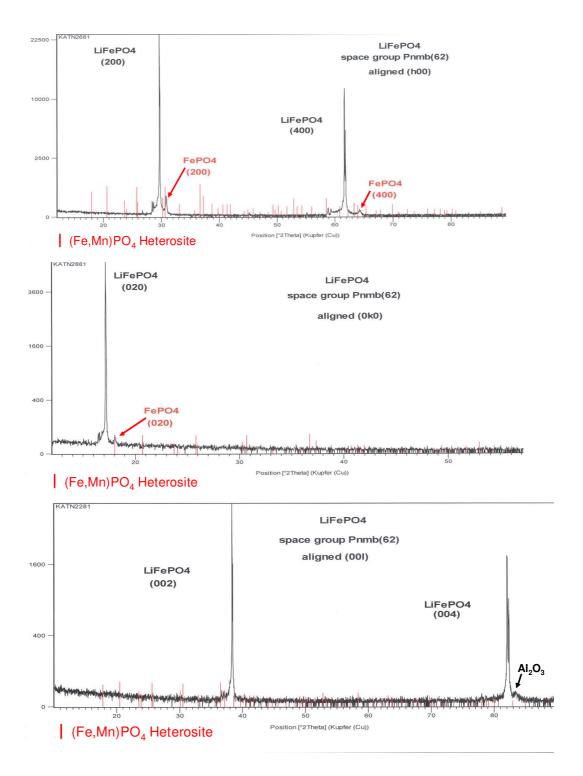


Figure S1. Powder XRD pattern of the partially delithiated LiFePO₄ single crystal. In addition to the a) [h00], b) [0k0], and c) [00l] peaks of LiFePO₄ the corresponding diffraction peaks for FePO₄ can be seen demonstrating epitaxial growth of FePO₄. c) Due to the increased *c*-parameter in FePO₄ compared to LiFePO₄ and the corresponding peak shift to lower 2Θ values the [002] peak of FePO₄ is not visible.

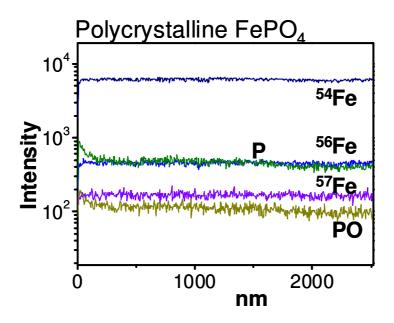
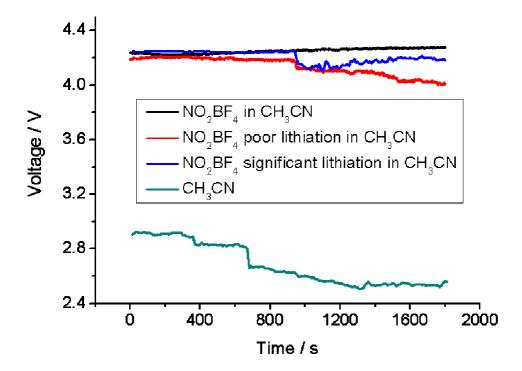
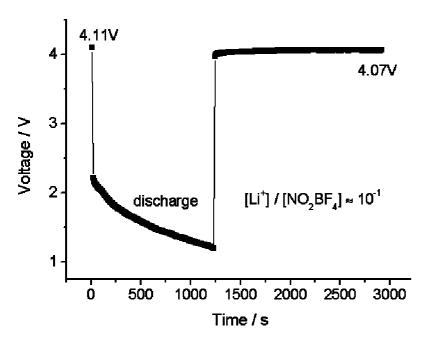




Figure S2. SIMS analysis of polycrystalline FePO₄.

Figure S3. The measurement of redox potential of NO_2BF_4 dissolved in acetonitrile (CH₃CN) (cell: NO_2BF_4 (CH₃CN) / lithium ion conducting glass ceramic / Li foil). The redox potential of NO_2BF_4 is sound to be 4.2 V (black curve). Contacting NO_2BF_4 with LiFePO₄ and then removing it leads only to a small decrease of the potential (red curve), quite independent of the degree of lithiation (blue curve). (Note that at least NO_2 leaves the system).

Figure S4. The redox potential of NO₂BF₄ dissolved in acetonitrile (CH₃CN) before and after the electrochemical incorporation of Li into the NO₂BF₄ (cell: NO₂BF₄ (CH₃CN) / lithium ion conducting glass ceramic / Li foil). Before the discharging, the OCV is around 4.11 V, and after the discharging, the voltage goes back to 4.07 V. The mole ratio of Li⁺ to NO₂BF₄ was around 0.1.