Nickel-Catalyzed Enantioselective Cross-Couplings of Racemic Secondary Electrophiles that Bear an Oxygen Leaving Group

Alexander J. Oelke, Jianwei Sun, and Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Supporting Information

Table of Contents

I. General S-1
II. Preparation of Materials S-1
III. Stereoconvergent Cross-Coupling Reactions S-9
IV. ${ }^{1} \mathrm{H}$ NMR Spectra, ee Determination S-21

I. General

The following reagents were purchased and used as received: $\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ (Aldrich or Strem), ligand L* (Aldrich), 2,4,6-trimethoxybenzaldehyde (Acros, TCI, or Aldrich), phosgene (20% solution in toluene; Aldrich), ZnI_{2} (Strem), PhMgBr (1.0 M solution in THF; Aldrich), p Tol MgBr (1.0 M solution in THF; Aldrich), 4-chloro-3-fluorophenylmagnesium bromide (1.0 M solution in THF; Aldrich), DME (anhydrous; Aldrich), THF (anhydrous; Aldrich).

Unless otherwise noted, reactions were conducted in oven-dried glassware under an inert atmosphere.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were collected on a Bruker Avance 400 spectrometer or a Bruker Avance 600 spectrometer at r.t. HPLC analyses were carried out on an Agilent 1100 series system with Daicel CHIRACEL® columns (internal diameter 4.6 mm , column length 250 mm , particle size $5 \mu \mathrm{~m}$ or $3 \mu \mathrm{~m}$). GC analyses were carried out on an Agilent 6850 series system with a Chirasil Dex-CB column for chiral separation (length 25 m , internal diameter 0.25 mm) or an Agilent 6890 N series system with an HP-5 column (length 30 m , internal diameter 0.32 mm).

II. Preparation of Materials

These procedures have not been optimized.

Representative procedure for the synthesis of propargylic alcohols: A solution of LDA (2.0 M in THF / heptane/ethylbenzene; $15 \mathrm{~mL}, 1.0$ equiv) was added over one minute to a solution of TMS-acetylene ($4.2 \mathrm{~mL}, 30 \mathrm{mmol}$) in THF $(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at r.t. for 30 min , and then it was cooled to $-78^{\circ} \mathrm{C}$. Valeraldehyde ($4.2 \mathrm{~mL}, 40 \mathrm{mmol}$) was added dropwise over one minute. The reaction mixture was allowed to warm to r.t. overnight, and then the reaction was quenched by the addition of aqueous $\mathrm{HCl}(1 \mathrm{~m} ; 10 \mathrm{~mL})$. Next, saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$ was added, and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification by flash chromatography afforded the propargylic alcohol as a pale-yellow liquid (4.6 g, 82\%).

Representative procedure for the synthesis of propargylic carbonates:

1. Preparation of the chloroformate: A solution of 2,4,6-trimethoxyphenol ${ }^{1}$ ($4.4 \mathrm{~g}, 23 \mathrm{mmol}$) and triethylamine $(4.4 \mathrm{~mL}, 31 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added to a solution of phosgene $(20 \%$; $60 \mathrm{~mL}, 118 \mathrm{mmol})$ in toluene $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min , and then the excess phosgene was removed by purging the mixture with nitrogen or argon for 16 h (quenching the gas stream with KOH).
2. A solution of the propargylic alcohol ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$) and pyridine $(2.5 \mathrm{~mL}, 30 \mathrm{mmol})$ in toluene (5 mL) was added to the $0^{\circ} \mathrm{C}$ mixture containing the chloroformate. The resulting reaction mixture was allowed to warm to r.t. overnight. Next, saturated aqueous NaHCO_{3} (50 mL) was added, and the organic layer was separated and concentrated. The residue was dissolved in ethyl acetate (25 mL), and the solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, water $(25 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo. Flash chromatography of the residue afforded the propargylic carbonate as a colorless solid ($4.2 \mathrm{~g}, 53 \%$).
(1) Matsumoto, M.; Kobayashi, H.; Hotta, Y. J. Org. Chem. 1984, 49, 4740-4741.

2,4,6-Trimethoxyphenyl (4-(trimethylsilyl)but-3-yn-2-yl) carbonate. The title compound was synthesized from TMS-acetylene and acetaldehyde, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.18(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $1.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,152.8,152.7,123.7,102.7,91.6,90.8,65.7,56.3,55.7,21.5$, 0.0.

FT-IR (neat) 2961, 2349, 1766, 1600, 1511, 1470, 1252, 1207, 1134, 1042, 929, $846 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{Si}$: 353.1, found: 353.1.

2,4,6-Trimethoxyphenyl (1-(trimethylsilyl)hept-1-yn-3-yl) carbonate. The title compound was synthesized from TMS-acetylene and valeraldehyde, and it was purified by chromatography $\left(0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$, which afforded a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,152.9,152.8,123.8,102.0,91.6,91.5,69.5,56.3,55.7,34.7$, 27.1, 22.3, 14.1, 0.0.

FT-IR (neat) 2959, 2179, 1768, 1617, 1510, 1458, 1252, 1133, 1036, 951, 844, $761 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si}$: 395.2, found: 395.2.

5-Methyl-1-(trimethylsilyl)hex-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and isovaleraldehyde, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{~s}, 2 \mathrm{H}), 5.35(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{app} \mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,152.4,152.3,123.3,101.7,91.1,91.0,67.8,55.8,55.2,43.3$, 24.3, 22.0, -0.5.

FT-IR (neat) 2959, 1766, 1600, 1512, 1469, 1207, 1134, 1037, $845 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{Si}$: 395.2, found: 395.2.

7-((4-Methoxybenzyl)oxy)-1-(trimethylsilyl)hept-1-yn-3-yl (2,4,6-trimethoxyphenyl)
carbonate. The title compound was synthesized from TMS-acetylene and 5-(4methoxybenzyloxy)pentanal, and it was purified by chromatography ($0 \% \rightarrow 100 \%$ $\mathrm{Et}_{2} \mathrm{O}$ / hexanes), which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 2 \mathrm{H}), 5.30$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 9 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,158.6,152.9,152.8,130.8,129.3,123.7,113.9,101.9,91.5$, $72.7,69.8,69.8,69.3,56.3,55.7,55.4,34.8,29.4,21.8,0.0$.

FT-IR (neat) 2956, 2844, 1767, 1616, 1512, 1458, 1251, 1156, 1035, $846 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{SiNa}$: 553.2, found: 553.2.

6-(5,5-Dimethyl-1,3-dioxan-2-yl)-1-(trimethylsilyl)hex-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and 4-(5,5-dimethyl-1,3-dioxan-2-yl)butanal, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ ($\mathrm{s}, 6 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.58(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.2,152.6,152.5,123.5,101.7,101.5,91.3,77.0,69.1,69.0,56.0$, $55.4,34.6,34.1,30.0,22.9,21.7,19.3,-0.2$.

FT-IR (neat) 2956, 2845, 2361, 1768, 1618, 1510, 1471, 1252, 1207, 1135, $845 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{SiNa}$: 517.2, found: 517.2.

7-((Tert-butyldimethylsilyl)oxy)-1-(trimethylsilyl)hept-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and 5-(tertbutyldimethylsilyloxy)pentanal, ${ }^{2}$ and it was purified by chromatography ($0 \% \rightarrow 100 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes), which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,152.9,152.8,123.7,101.8,91.6,91.6,69.4,63.0,56.3,55.7$, 34.7, 32.4, 26.1, 21.5, 18.5, 0.0, -5.0.

FT-IR (neat) 2956, 2858, 2361, 1768, 1617, 1510, 1472, 1252, 1207, 1134, $844 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}$: 547.2, found: 547.2.

5-(((2,4,6-Trimethoxyphenoxy)carbonyl)oxy)-7-(trimethylsilyl)hept-6-yn-1-yl acetate. The title compound was synthesized from TMS-acetylene and 5-oxopentyl acetate, ${ }^{3}$ and it was purified by chromatography $\left(0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$, which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{~s}, 2 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.73(\mathrm{~m}$, $9 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,158.6,152.8,152.8,123.6,101.6,91.9,91.6,69.0,64.3,56.2$, 55.6, 34.4, 28.2, 21.4, 21.0, -0.1.

FT-IR (neat) 2959, 1768, 1738, 1600, 1510, 1458, 1251, 1207, 1134, $845 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{8} \mathrm{Si}$: 453.1, found: 453.1.
(2) Frankowski, K. J.; Golden, J. E.; Zeng, Y.; Lei, Y.; Aube, J. J. Am. Chem. Soc. 2008, 130, 60186024.
(3) Fryszkowska, A.; Ostaszewski, R. J. Heterocyclic Chem. 2008, 45, 765-772.

(5S)-5,9-Dimethyl-1-(trimethylsilyl)dec-8-en-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and (S)-(-)-citronellal, and it was purified by chromatography $\left(0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$, which afforded a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereoisomers) $\delta 6.15(\mathrm{~s}, 2 \mathrm{H}), 5.41-5.32(\mathrm{~m}, 1 \mathrm{H})$, $5.13-5.07(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60$ ($\mathrm{s}, 3 \mathrm{H}$), 1.45-1.14 (m, 4H), 0.98-0.86 (m, 3H), 0.17 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereoisomers) $\delta 158.5,152.8,152.8,132.6,131.4$, 131.0, 128.9, 124.6, 123.8, 102.3, 102.1, 91.6, 91.4, 68.5, 68.3, 68.1, 56.3, 55.7, 42.2, 41.8, 38.9, 37.1, 37.1, 30.5, 29.3, 29.1, 25.8, 25.5, 25.4, 23.9, 23.1, 19.5, 19.5, 17.8, 14.2, 11.1, 0.0.

MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{Si}: 463.2$, found: 463.2.

8-Chloro-1-(trimethylsilyl)oct-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and 6-chlorohexanal, ${ }^{4}$ and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.15(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,152.9,152.8,123.7,101.7,91.8,91.6,69.2,56.2,55.7,44.9$, 34.7, 32.5, 26.4, 24.2, 0.0.

FT-IR (neat) 2957, 1768, 1600, 1510, 1458, 1251, 1207, 1134, $845 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClO}_{6} \mathrm{SiNa}$: 465.2, found: 465.2.
(4) Fox, R. J.; Lalic, G.; Bergman, R. G. J. Am. Chem. Soc. 2007, 129, 14144-14145.

Tert-butyl 3-(5-(((2,4,6-trimethoxyphenoxy)carbonyl)oxy)-7-(trimethylsilyl)hept-6-yn-1-yl)-1H-indole-1-carboxylate. The title compound was synthesized from TMS-acetylene and 3-(5-oxo-pentyl)-indole-1-carboxylic acid tert-butyl ester, ${ }^{5}$ and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes), which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $2.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 11 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,152.5,152.4,149.6,135.4,130.5,124.0,123.3,122.0,120.7$, $118.8,115.0,101.5,91.4,91.2,91.0,83.0,69.0,65.6,55.9,55.3,34.4,28.5,28.0,24.6,-0.4$.

FT-IR (neat) 2940, 1767, 1731, 1600, 1511, 1456, 1378, 1253, 1157, 1134, 846, $766 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{SiNa}$: 632.2, found: 632.2.

Hex-4-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from 4-hexyn-3-ol, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.08$ (s, 2H), 5.18-5.13 (m, 1H), 3.71 (s, 6H), 3.68 (s, 3H), 1.80$1.78(\mathrm{~m}, 5 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,153.0,152.8,123.6,91.4,83.0,75.9,70.6,56.1,55.5,28.5$, 9.2, 3.5.

FT-IR (neat) 2973, 2362, 1768, 1617, 1508, 1457, 1206, 1132, 1035, 949, $812 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{6}$: 309.1, found: 309.1.
(5) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640-11641.

2,2-Dimethylnon-3-yn-5-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from tert-butylacetylene and valeraldehyde, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$, which afforded a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.5,153.0,152.8,123.6,95.4,91.4,75.5,69.7,56.2,55.6,35.0$, 30.9, 27.5, 27.1, 22.3, 14.1.

FT-IR (neat) 2967, 2361, 2339, 1838, 1767, 1617, 1509, 1457, 1252, 1206, 1134, 1036, 950, $812 \mathrm{~cm}^{-}$ ${ }^{1}$.

MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{6}$: 379.2, found: 379.3.

4-Phenylbut-3-yn-2-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from phenylacetylene and acetaldehyde, and it was purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes), which afforded a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,152.9,152.8,132.0,128.8,128.4,123.8,122.5,91.6,86.8$, 85.7, 65.9, 56.3, 55.7, 21.6.

FT-IR (neat) 2941, 1765, 1600, 1510, 1457, 1250, 1206, 1132, 1088, 1034, $759 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{6}: 357.1$, found: 357.1.

5-((Tert-butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate. The title compound was synthesized from TMS-acetylene and 3-(tert-
butyldimethylsilyloxy)propanal, ${ }^{6}$ and it was purified by chromatography $(0 \% \rightarrow 100 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes), which afforded a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.18(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H})$, 0.95 (s, 9H), 0.13 (s, 6H).
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,152.8,132.0,131.9,128.9,128.4,123.7,122.4,91.5,86.6$, 85.9, 66.9, 58.9, 56.3, 55.7, 38.1, 26.1, 18.4, -5.2.

FT-IR (neat) 2955, 2856, 2361, 1770, 1600, 1510, 1471, 1253, 1207, 1134, 835, $778 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{Si}$: 501.2, found: 501.2.

III. Stereoconvergent Cross-Coupling Reactions

General procedure for the preparation of the organozinc reagents: A solution of the aryl bromide (10 mmol) in THF (10 mL) was prepared. A portion $(2.0 \mathrm{~mL})$ of this solution was added to magnesium powder $(0.27 \mathrm{~g}, 12 \mathrm{mmol})$ in one portion. The suspension was vigorously stirred, and the temperature was monitored until it reached reflux (heating with a heat gun or cooling in a water bath, as required). The remaining aryl bromide solution was added to the reaction mixture over $\sim 10 \mathrm{~min}$, and stirring was continued at r.t. for 20 min . The suspension was filtered through an acrodisc, and then the solution was titrated using Knochel's method ($\sim 1.0 \mathrm{M}$). ${ }^{7}$

In a glovebox, a solution of the Grignard reagent $(3.0 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added to a suspension of zinc iodide ($1.0 \mathrm{~g}, 3.1 \mathrm{mmol}$) in THF (7.0 mL) in a 20-mL vial. The vial was capped and taken out of the glovebox, and the resulting suspension was stirred at r.t. for 30 min and then used directly in the cross-coupling reaction.

General cross-coupling procedure: DME (3.75 mL) was added to a $20-\mathrm{mL}$ vial charged with the propargylic carbonate (0.75 mmol), ($3 S, 8 R$)-pybox ligand \mathbf{L}^{*} (the enantiomer illustrated in eq $1 ; 39 \mathrm{mg}, 0.098 \mathrm{mmol})$, and $\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(53 \mathrm{mg}, 0.076 \mathrm{mmol})$ under argon. The resulting suspension was cooled to $10^{\circ} \mathrm{C}$, and then the suspension that contained the organozinc reagent ($3.75 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added in one portion. The reaction mixture was stirred vigorously at $10^{\circ} \mathrm{C}$ for 20 h , during which the initially colorless suspension turned into a dark-red solution, from which a precipitate formed during the course of the reaction. The reaction was quenched by the addition of ethanol $(0.75 \mathrm{~mL})$. Next, the mixture was allowed to warm to r.t., diluted with diethyl ether / hexane ($1: 1 ; 5 \mathrm{~mL}$), and filtered through a short plug of silica, eluting with diethyl ether / hexane ($1: 1 ; 20 \mathrm{~mL}$). The solvent was removed in vacuo, and the residue was purified by reverse-phase flash chromatography ($5 \rightarrow 100 \% \mathrm{MeCN}$ in water, Biotage 10-g SNAP cartridge).

A second run was performed with the $(3 R, 8 S)$ enantiomer of ligand \mathbf{L}^{*}.
(6) Marshall, J. A.; Van Devender, E. A. J. Org. Chem. 2001, 66, 8037-8041.
(7) Krasovskiy, A.; Knochel, P. Synthesis 2006, 890-891.

(R)-Trimethyl(3-(p-tolyl)but-1-yn-1-yl)silane (Table 2, entry 1). 2,4,6-Trimethoxyphenyl (4-(trimethylsilyl)but-3-yn-2-yl) carbonate ($264 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p-tolylzinc iodide $(0.30 \mathrm{M}$ solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: $117 \mathrm{mg}(72 \%, 92 \%$ ee $)$. Second run (using (3S, $8 R)-1)$: $105 \mathrm{mg}(65 \%, 94 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column ($75 \rightarrow 160^{\circ} \mathrm{C} @ 0.25^{\circ} \mathrm{C} / \mathrm{min}$, then $\rightarrow 170{ }^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}$, hold 10 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=77.5 \mathrm{~min}$ (major), 78.6 min (minor).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,136.3,129.3,126.9,110.0,86.1,32.6,24.8,21.2,0.4$.
FT-IR (neat) 2961, 2166, 1513, 1250, 1095, 917, $843 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}-2 \mathrm{H}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Si}$: 215.1, found: 215.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=-6.1\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$.

(R)-Trimethyl(3-phenylhept-1-yn-1-yl)silane (Table 2, entry 2). 2,4,6-Trimethoxyphenyl (1-(trimethylsilyl)hept-1-yn-3-yl) carbonate ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) and phenylzinc iodide (0.30 M solution in THF; $2.5 \mathrm{~mL}, 0.75 \mathrm{mmol}$) were used. The product was obtained as pale-yellow oil. First run: $97 \mathrm{mg}(80 \%, 90 \%$ ee). Second run (0.75 mmol): 150 mg ($82 \%, 90 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column ($100 \rightarrow 130^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}$, hold 10 min , then $\rightarrow 170^{\circ} \mathrm{C} @ 9{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=13.2 \mathrm{~min}$ (minor), 13.3 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.63(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.1,128.4,127.4,126.5,108.6,87.0,38.8,38.4,29.4,22.4,14.0$, 0.2.

FT-IR (neat) 2959, 2934, 2172, 1453, 1249, 843, 759, $698 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{Si}: 245.2$, found: 245.1.
$[\alpha]^{23}=-11$ (c 0.50, CHCl_{3}, (S)-enantiomer).

The absolute configuration of the product was assigned by comparison with literature data. ${ }^{8}$

(R)-(3-(2-Methoxyphenyl)hept-1-yn-1-yl)trimethylsilane (Table 2, entry 3). 2,4,6Trimethoxyphenyl (1-(trimethylsilyl)hept-1-yn-3-yl) carbonate ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$) and omethoxyphenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as pale-yellow oil. First run: 133 mg ($65 \%, 92 \%$ ee). Second run: 134 mg ($66 \%, 93 \%$ ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=4.7$ \min (major), 5.0 min (minor).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dt}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.72(\mathrm{~m}$, $1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,130.7,128.7,127.7,120.7,110.5,109.5,86.3,55.5,36.6$, 32.1, 29.6, 22.5, 14.2, 0.5.

FT-IR (neat) 2958, 2169, 1601, 1493, 1465, 1246, 1051, 1032, $842 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSiNa}$: 297.2, found: 297.2.
$[\alpha]_{\mathrm{D}}^{23}=+20\left(\mathrm{c} 0.68, \mathrm{CHCl}_{3}\right)$.
The absolute configuration of the product was assigned by comparison with literature data. ${ }^{8}$

(R)-(3-(3-Methoxyphenyl)hept-1-yn-1-yl)trimethylsilane (Table 2, entry 4). 2,4,6-

Trimethoxyphenyl (1-(trimethylsilyl)hept-1-yn-3-yl) carbonate ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$) and m methoxyphenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a yellow oil. First run: $147 \mathrm{mg}(72 \%, 92 \%$ ee $)$. Second run: 151 mg ($74 \%, 91 \%$ ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=7.0$ min (minor), 8.8 min (major).
(8) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645-12647.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.43$ ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $0.72(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,143.3,128.9,119.5,112.8,111.6,108.2,86.8,54.8,38.4$, 37.9, 29.1, 22.0, 13.6, -0.1.

FT-IR (neat) 2958, 2860, 2171, 1601, 1487, 1466, 1437, 1250, 1153, 1046, $843 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSiNa}$ 297.2, found: 297.2.
$[\alpha]_{\mathrm{D}}^{23}=+16\left(\mathrm{c} 0.67, \mathrm{CHCl}_{3}\right)$.

(R)-(3-(4-Methoxyphenyl)hept-1-yn-1-yl)trimethylsilane (Table 2, entry 5). 2,4,6Trimethoxyphenyl (1-(trimethylsilyl)hept-1-yn-3-yl) carbonate ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p methoxyphenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a yellow oil. First run: $148 \mathrm{mg}(73 \%, 89 \%$ ee). Second run: 159 mg (78\%, 88\% ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=6.0$ \min (minor), 6.6 min (major).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,133.8,128.0,113.4,108.6,86.4,54.9,38.1,37.5,29.0,22.0$, 13.6, -0.1.

FT-IR (neat) 2958, 2361, 2171, 1512, 1249, 1176, 1039, $842 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{OSi}$: 275.2, found: 275.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+4.7\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)$.

(R)-Trimethyl(5-methyl-3-(p-tolyl)hex-1-yn-1-yl)silane (Table 2, entry 6). 5-Methyl-1-(trimethylsilyl)hex-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p -
tolylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: 111 mg ($58 \%, 94 \%$ ee). Second run: 108 mg ($56 \%, 92 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column ($100 \rightarrow 130^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}$, hold 10 min , then $\rightarrow 170{ }^{\circ} \mathrm{C} @ 9{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=15.9 \mathrm{~min}$ (minor), 16.0 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=9.3$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, J=13.3,9.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 1 \mathrm{H})$, $0.97(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,136.0,129.1,127.3,108.9,86.5,48.1,36.4,25.9,22.9,21.9$, 20.9, 0.2.

FT-IR (neat) 2958, 2170, 1735, 1513, 1250, $842 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{Si}: 259.2$, found: 259.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+1.7\left(\mathrm{c} 0.63, \mathrm{CHCl}_{3}\right)$.

(R)-(3-(3,5-Bis(trifluoromethyl)phenyl)-7-((4-methoxybenzyl)oxy)hept-1-yn-1-
yl)trimethylsilane (Table 2, entry 7). 7-((4-Methoxybenzyl)oxy)-1-(trimethylsilyl)hept-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate ($398 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 3,5-bis(trifluoromethyl)phenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: 313 mg ($81 \%, 84 \%$ ee). Second run: 342 mg ($88 \%, 86 \%$ ee).

The ee was determined by HPLC on an OD-H column ($1 \% \mathrm{IPA}$ in hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=4.3 \mathrm{~min}$ (major), 4.7 min (minor).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,144.7,131.9\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=33 \mathrm{~Hz}\right), 130.7,129.4,127.9,123.6(\mathrm{q}$, $\left.{ }^{1} J_{\text {CF }}=273 \mathrm{~Hz}\right), 121.0,113.9,106.1,89.7,72.7,69.8,55.4,38.7,38.3,29.4,24.2,0.1$.

FT-IR (neat) 2955, 2859, 2174, 1616, 1514, 1376, 1280, 1251, 1173, 1137, $845 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}-2 \mathrm{H}+\mathrm{Na}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{SiNa}$: 537.2, found: 537.3.
$[\alpha]_{\mathrm{D}}^{23}=+12\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right)$.

(R)-(3-(4-(Tert-butyl)phenyl)-6-(5,5-dimethyl-1,3-dioxan-2-yl)hex-1-yn-1-yl)trimethylsilane (Table 2, entry 8). 6-(5,5-Dimethyl-1,3-dioxan-2-yl)-1-(trimethylsilyl)hex-1-yn-3-yl (2,4,6trimethoxyphenyl) carbonate ($371 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p-tert-butylphenylzinc iodide $(0.30 \mathrm{M}$ solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: 264 mg ($88 \%, 91 \%$ ee). Second run: 259 mg ($86 \%, 92 \%$ ee).

The ee was determined by HPLC on an OD-H column (0.3% IPA in hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=8.7 \mathrm{~min}$ (minor), 10.9 min (major).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.51$ $(\mathrm{m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.5,138.9,127.2,125.4,108.7,102.3,87.2,38.7,38.4,34.7,34.6$, 31.5, 30.3, 23.1, 22.1, 22.0, 0.4.

FT-IR (neat) 2957, 2868, 2171, 1508, 1463, 1394, 1363, 1249, 1134, $843 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}: 401.2$, found: 401.2.
$[\alpha]_{\mathrm{D}}^{23}=+10\left(\mathrm{c} 0.51, \mathrm{CHCl}_{3}\right)$.

(R)-Tert-butyl((5-(6-methoxynaphthalen-2-yl)-7-(trimethylsilyl)hept-6-yn-1yl)oxy)dimethylsilane (Table 2, entry 9). 7-((Tert-butyldimethylsilyl)oxy)-1-(trimethylsilyl)hept-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate ($393 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 6methoxynaphthylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: $324 \mathrm{mg}(95 \%, 88 \%$ ee $)$. Second run: 317 mg ($93 \%, 94 \%$ ee).

The ee was determined by HPLC on an IB column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=18.8 \mathrm{~min}$ (major), 20.4 min (minor).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,137.2,133.7,129.4,129.1,127.1,126.5,126.0,119.0,108.8$, $105.8,87.4,63.3,55.4,38.9,38.5,32.7,26.2,23.9,18.5,0.4,-5.0$.

FT-IR (neat) 2955, 2361, 2170, 1607, 1507, 1390, 1250, 1105, 1035, $841,775 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}_{2}: 455.3$, found: 455.3.
$[\alpha]^{23}{ }_{\mathrm{D}}=-8.6\left(\mathrm{c} 0.51, \mathrm{CHCl}_{3}\right)$.

(R)-5-(4-Chloro-3-fluorophenyl)-7-(trimethylsilyl)hept-6-yn-1-yl acetate (Table 2, entry 10). 5-(((2,4,6-Trimethoxyphenoxy)carbonyl)oxy)-7-(trimethylsilyl)hept-6-yn-1-yl acetate (340 mg, 0.75 mmol) and 4-chloro-3-fluorophenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13$ $\mathrm{mmol})$ were used. The product was obtained as a colorless oil. First run: $204 \mathrm{mg}(77 \%, 87 \%$ ee). Second run: 226 mg (85%, 85\% ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=25.8$ \min (major), 29.2 min (minor).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.36$ (m, 2H), 0.18 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,158.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=250 \mathrm{~Hz}\right), 142.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=6 \mathrm{~Hz}\right), 130.6,124.0$, $119.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=17 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22 \mathrm{~Hz}\right), 106.7,88.6,64.4,38.1,37.9,28.3,23.7,21.2,0.3$.

FT-IR (neat) 2957, 2351, 2172, 1740, 1487, 1424, 1249, 1062, 843, $760 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}-\mathrm{Ac}+\mathrm{H}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClFOSi}$: 313.1, found: 313.1.
$[\alpha]^{23}=+10\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right)$.

((3R,5S)-5,9-Dimethyl-3-phenyldec-8-en-1-yn-1-yl)trimethylsilane (Table 2, entry 11). (5S)-5,9-Dimethyl-1-(trimethylsilyl)dec-8-en-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate (349 mg , 0.75 mmol) and phenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: $190 \mathrm{mg}(81 \%, 90 \%$ de $)$. Second run: 177 mg (76%, 88% de).

The de was determined by GC on an HP-5 column ($120^{\circ} \mathrm{C}$ for 1 min , then $120 \rightarrow 280^{\circ} \mathrm{C} @ 10$ ${ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 2 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=9.3 \mathrm{~min}$ (minor), 9.4 min (major).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.04-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.64-$ $3.60(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 3 \mathrm{H})$, $1.16-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86-0.79(\mathrm{~m}, 1 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7,131.4,128.6,127.5,126.7,124.9,108.5,87.3,46.7,37.5$, $36.9,30.6,26.0,25.5,19.3,17.9,0.4$.

FT-IR (neat) 2961, 2927, 2361, 2171, 1466, 1250, $842 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{Si}: 313.2$, found: 313.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+6.7\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right)$.

(R)-(3-(Benzo[d][1,3]dioxol-5-yl)-8-chlorooct-1-yn-1-yl)trimethylsilane (Table 2, entry 12). 8-Chloro-1-(trimethylsilyl)oct-1-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate ($332 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 3,4-methylenedioxophenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: $157 \mathrm{mg}(65 \%, 83 \%$ ee $)$. Second run: 157 mg (65%, 85% ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=19.1$ \min (major), 23.7 min (minor).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,146.4,135.8,120.6,108.4,108.2,108.1,101.1,87.4,45.2$, 38.7, 38.5, 32.6, 26.6, 26.5, 0.4.

FT-IR (neat) 2940, 2170, 1504, 1486, 1442, 1249, 1041, 938, $843 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{ClO}_{2} \mathrm{Si}$: 337.1, found: 337.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=+9.0\left(\mathrm{c} 0.60, \mathrm{CHCl}_{3}\right)$.

(R)-Tert-butyl 3-(5-(p-tolyl)-7-(trimethylsilyl)hept-6-yn-1-yl)-1H-indole-1-carboxylate (Table 2, entry 13). Tert-butyl 3-(5-(((2,4,6-trimethoxyphenoxy)carbonyl)oxy)-7-
(trimethylsilyl)hept-6-yn-1-yl)-1H-indole-1-carboxylate ($457 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p-tolylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: 262 mg ($74 \%, 90 \%$ ee). Second run: 247 mg ($70 \%, 89 \%$ ee).

The ee of the deprotected product (i.e., the free indole) was determined by HPLC using an IB column (5% IPA in hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=26.1 \mathrm{~min}$ (minor), 29.5 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,139.1,136.3,131.0,129.3,127.5,124.3,122.4,121.4,119.2$, 115.4, 108.9, 100.2, 87.2, 83.4, 38.7, 38.5, 29.1, 28.4, 27.4, 25.0, 21.2, 0.4.

FT-IR (neat) 2932, 2857, 2361, 2171, 1733, 1455, 1379, 1251, 1160, 1092, $843,745 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}-\mathrm{Boc}+\mathrm{H}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NSi}$: 374.2, found: 374.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+5.7\left(\mathrm{c} 0.78, \mathrm{CHCl}_{3}\right)$.

(R)-1-(Hex-4-yn-3-yl)-4-methylbenzene (eq 4). Hex-4-yn-3-yl (2,4,6-trimethoxyphenyl) carbonate ($231 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p-tolylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13$ mmol) were used. The product was obtained as a colorless oil. First run: $90 \mathrm{mg}(70 \%, 78 \% \mathrm{ee})$. Second run: 96 mg ($74 \%, 78 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column $\left(90 \rightarrow 110{ }^{\circ} \mathrm{C} @ 0.4^{\circ} \mathrm{C} / \mathrm{min}\right.$, then $\rightarrow 140{ }^{\circ} \mathrm{C} @ 15^{\circ} \mathrm{C} / \mathrm{min}$, hold 6 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=31.4 \mathrm{~min}$ (minor), 34.0 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.9,136.2,129.2,127.5,81.2,78.3,39.2,31.9,21.3,12.2,3.9$.
FT-IR (neat) 2967, 2927, 2361, 1513, 1457, $807 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{17}$: 173.1, found: 173.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=+6.0\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)$.

(R)-(2,2-Dimethylnon-3-yn-5-yl)benzene (eq 5). 2,2-Dimethylnon-3-yn-5-yl (2,4,6trimethoxyphenyl) carbonate ($142 \mathrm{mg}, 0.375 \mathrm{mmol}$) and phenylzinc iodide (0.30 M solution in THF; $1.88 \mathrm{~mL}, 0.56 \mathrm{mmol}$) were used. The product was obtained as a yellow oil. First run: 54 $\mathrm{mg}(64 \%, 84 \%$ ee). Second run: $51 \mathrm{mg}(60 \%, 81 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column $\left(100 \rightarrow 130^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}\right.$, hold 10 min , then $\rightarrow 170{ }^{\circ} \mathrm{C} @ 9{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=11.4 \mathrm{~min}$ (minor), 11.6 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,128.2,127.4,126.3,91.9,80.0,39.0,37.7,31.4,29.5,27.5$, 22.4, 14.0.

FT-IR (neat) 2929, 2361, 1494, $1452 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{25}$: 229.2, found: 229.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+8.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

(R)-1-Methyl-4-(4-phenylbut-3-yn-2-yl)benzene (eq 6). 4-Phenylbut-3-yn-2-yl (2,4,6trimethoxyphenyl) carbonate ($270 \mathrm{mg}, 0.75 \mathrm{mmol}$) and p-tolylzinc iodide $(0.30 \mathrm{M}$ solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. The product was obtained as a colorless oil. First run: 162 $\mathrm{mg}(98 \%, 88 \%$ ee $)$. Second run: 152 mg ($92 \%, 88 \%$ ee).

The ee was determined by HPLC on an OD-H column (hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=13.8$ \min (minor), 22.2 min (major).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,136.4,131.9,129.5,128.4,127.9,127.1,124.1,93.1,82.5$, 32.3, 24.8, 21.3.

FT-IR (neat) 2975, 2928, 2361, 1598, 1513, 1490, 1303, 1070, 816, 756, $691 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{17}$: 221.1, found: 221.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=-2.8\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right)$.

(R)-Tert-butyl((3-(3-(cyclopentyloxy)-4-methoxyphenyl)-5-phenylpent-4-yn-1yl)oxy)dimethylsilane (eq 7). 5-((Tert-butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-yl (2,4,6trimethoxyphenyl) carbonate ($325 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 3-cyclopentyloxy-4-methoxyphenylzinc iodide (0.30 M solution in THF; $3.75 \mathrm{~mL}, 1.13 \mathrm{mmol}$) were used. ${ }^{9}$ The product, a colorless oil that included the corresponding allene ($3: 1$ alkyne:allene), was used directly in the subsequent steps. First run: 273 mg ($79 \%, 92 \%$ ee). Second run: 269 mg ($78 \%, 92 \%$ ee). Third run (4.0 mmol): $1.34 \mathrm{~g}(73 \%, 90 \%$ ee).

The ee of the desilylated product was determined by HPLC on an IB column (3% IPA in hexanes, $0.9 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=35.8 \mathrm{~min}$ (major), 38.1 min (minor).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=13.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-$ $1.82(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture with allene) $\delta 205.8,149.0,147.8,134.5,131.7,128.6$, $128.4,127.9,127.2,124.0,121.1,119.7,114.8,112.2,109.7,91.9,91.0,83.3,80.6,80.5,60.8,56.3,41.8$, 34.2, 33.0, 33.0, 26.2, 24.3, 24.2, 18.5, -4.9.

MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}: 465.3$, found: 465.3.

(R)-3-(3-(Cyclopentyloxy)-4-methoxyphenyl)-5-phenylpent-4-ynoic acid (eq 7). HCl (2.0 M solution in diethyl ether; $4.0 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added to a solution of (R)-tert-butyl($(3-(3-$ (cyclopentyloxy)-4-methoxyphenyl)-5-phenylpent-4-yn-1-yl)oxy)dimethylsilane (485 mg of a $3: 1$ alkyne:allene mixture, corresponding to $364 \mathrm{mg}(0.78 \mathrm{mmol})$ of the alkyne) in dichloromethane $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to r.t. and stirred for 2.5 h . Next, the reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The layers were separated, and the organic layer was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed in vacuo.
(9) Meyers, A. I.; Snyder, L. J. Org. Chem. 1993, 58, 36-42.

TPAP ($30 \mathrm{mg}, 0.085 \mathrm{mmol}$) was added to a solution of the unpurified alcohol and N -methylmorpholine- N -oxide ($1.12 \mathrm{~g}, 8.0 \mathrm{mmol}$) in acetonitrile $(2 \mathrm{~mL})$ in a water bath. ${ }^{10}$ The reaction mixture was stirred for 3 h , and then it was quenched by the addition of methanol (0.5 $\mathrm{mL})$. The volatiles were removed in vacuo, and the residue was purified by flash chromatography ($1 \rightarrow 4 \% \mathrm{MeOH}$ with $1 \% \mathrm{AcOH}$ in dichloromethane), which afforded the title compound as a yellow oil ($244 \mathrm{mg}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.50-10.81(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 3 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.01$ $(\mathrm{s}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.68(\mathrm{~m}$, 6H), 1.68-1.55 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,149.1,147.8,133.1,131.8,128.4,123.5,119.5,114.3,112.1$, 90.4, 83.6, 80.5, 56.2, 44.2, 34.5, 33.0, 32.9, 24.3.

FT-IR (neat) 2960, 2361, 2339, 1717, 1514, 1260, 1136, 1029, 911, 758, 733, $692 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{4}$: 365.1, found: 365.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=-3.5\left(\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right)$.
The ee value (90%) was determined by HPLC analysis of the desilylated primary alcohol (see the preceding experimental procedure).

(R)-Trimethyl(3-phenylhept-1-yn-1-yl)silane (eq 8). (3-Bromohept-1-yn-1yl)trimethylsilane ($188 \mathrm{mg}, 0.75 \mathrm{mmol}$) and phenylzinc iodide (0.30 M solution in THF; 3.75 mL , 1.13 mmol) were used. The product was obtained as pale-yellow oil. First run: 132 mg (72%, 90% ee). Second run: $135 \mathrm{mg}(74 \%, 88 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column ($100 \rightarrow 130^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}$, hold 10 min , then $\rightarrow 170^{\circ} \mathrm{C} @ 9{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=12.9 \mathrm{~min}$ (minor), 13.0 min (major).

(R)-Trimethyl(3-phenylhept-1-yn-1-yl)silane (eq 9). (3-Chlorohept-1-yn-1yl)trimethylsilane ($152 \mathrm{mg}, 0.75 \mathrm{mmol}$) and phenylzinc iodide (0.30 M solution in THF; 3.75 mL , 1.13 mmol) were used. The product was obtained as pale-yellow oil. First run: $132 \mathrm{mg}(72 \%$, 90% ee). Second run: $153 \mathrm{mg}(84 \%, 90 \%$ ee).

The ee was determined by GC on a Chirasil Dex-CB column ($100 \rightarrow 130^{\circ} \mathrm{C} @ 10^{\circ} \mathrm{C} / \mathrm{min}$, hold 10 min , then $\rightarrow 170{ }^{\circ} \mathrm{C} @ 9{ }^{\circ} \mathrm{C} / \mathrm{min}$, hold 5 min ; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=12.9 \mathrm{~min}$ (minor), 13.0 min (major).
(10) Schmidt, A.-K. C.; Stark, C. B. W. Org. Lett. 2011, 13, 4164-4167.

Data File $C: \backslash H P C H E M \backslash 3 \backslash D A T A \backslash A J O \backslash A O T R 2 D . D$

Table 2, entry 1 with (3S,8R)

Initial test

Data File C: \HPCHEM\3\DATA \HD\AO478B.D

Last changed : 3/12/2011 6:09:42 PM by AJO
Analysis Method : C: \HPCHEM\3\METHODS \backslash SN100150.M
Last changed : 1/25/2012 10:45:54 AM by SN (modified after loading)

Table 2, entry 1 with (3S,8R)

Initial test

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier \&	Dilution	Factor with

Signal 1: FID1 A,

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area $\%$
1	67.011	MF	0.5358	1556.18994	48.40761	96.97963
2	68.189	FM	0.3314	48.46662	2.43725	3.02037
Total	s :			1604.65656	50.84486	

Results obtained with enhanced integrator!
 *** End of Report ***

Data File C:\HPCHEM\3\DATA\AJO\AO299.D

Table 2, entry 2 with (3S,8R)

Initial test
FID1 A, (AJOUAO299.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: FID1 A,

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	14.411	MM	0.0634	13.97968		
2	14.561	MM	0.0696	13.97968 268.13626	3.67282 64.24078	$\begin{array}{r} 4.95529 \\ 95.04471 \end{array}$
Total	s :			282.11594	67.91359	

Results obtained with enhanced integrator!
*** End of Report ***

```
Data File C:\HPCHEM\3\DATA\AJO\AO477.D
```


Table 2, entry 2 with ($3 R, 8 \mathrm{~S}$)

Initial test

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution		1.0000
Use Multip		tor wi

Signal 1: FID1 A,

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.130	MF	0.1025	34.88464	5.67405	95.12416
2	13.299	FM	0.0819	1.78810	$3.63884 \mathrm{e}-1$	4.87584
Total	s :			36.67274	6.03793	

Results obtained with enhanced integrator!
 *** End of Report ***
Instrument 1 10/11/2011 3:02:59 PM NB
 $\begin{array}{lll}\text { Last changed } & : 4 / 7 / 2011 \quad 2: 46: 23 \text { AM by CC } \\ \text { Analysis Method } & \text { C: } 1 \text { HPCHEM } 1 \backslash \text { METHODS YYL-ADO4.M } \\ \text { Last changed } & : & 10 / 11 / 2011 \quad 3: 02: 56 \text { PM by NB } \\ & \text { (modified after loading) }\end{array}$

Sample Name

Instrument 1 10/11/2011 3:02:59 PM NB

Signal 5: DAD1 E, Sig $=280,10$ Ref $=360,100$ Results obtained with enhanced integrator! $\begin{array}{rrrrr}2 & 4.819 & \mathrm{FM} & 0.0881 & 24.75788 \\ & & 640.58638 & 82.24\end{array}$
 Signal 4: DAD1 D, Sig=230,10 $\operatorname{Ref}=360,100$ Signal 3: DAD1 C, Sig $=210,10 \operatorname{Ref}=360,100$ Signal 2: DAD1 B, Sig=254, 10 Ref $=360,100$ Signal 1: DAD1 A, Sig=250, 10 Ref $=360,100$ Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcr}\text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000 \\ \text { Use Multiplier \& } & \text { Dilution Factor with }\end{array}$

$$
\text { Data File } C: \backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 336 B . D \quad \text { Sample Name: AO336E }
$$

$$
\begin{aligned}
& \text { Acq. Operator } \\
& \text { Acq. Instrumer } \\
& \text { Different Inj }
\end{aligned}
$$

Instrument 1 10/11/2011 3:01:53 PM NB

Instrument 1 10/11/2011 3:01:53 PM NB

Instrument 1 10/11/2011 3:05:00 PM NB

Acq. Operator : NB
Acq. Instrument : Instrument 1
Different Inj Volume from Sequence ! Actual Inj $\begin{array}{lll}\text { Injection Date } & 4 / 28 / 2011 & 6: 34: 46 \mathrm{PM} \\ \text { Sample Name } & \text { AO355A } \\ \text { Acq. Operator } & \text { NB }\end{array}$

Data File C: $\backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 355 A . D$

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 $\operatorname{Ref}=360,100$
Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Dilution Multiplier \& Dilution Factor with ISTDS
Data File $C: \backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 355 A . D$
Area Percent Report
Instrument 1 10/11/2011 3:07:14 PM NB

Instrument 1 10/11/2011 3:07:14 PM NB

TMS $\begin{gathered}\text { Table 2, entry } 4 \\ \text { with (} 3 R, 8 S)\end{gathered}$

Signal 5: DAD1 E, Sig=280,10 Ref=360,100 Results obtained with enhanced integrator! Totals : $\quad 2172.77755 \quad 184.42378$ $\begin{array}{rrrrrr}1 & 7.000 \mathrm{MM} & 0.1972 & 2069.72974 & 174.89160 & 95.2573 \\ 2 & 8.854 \mathrm{MM} & 0.1802 & 103.04781 & 9.53217 & 4.7427\end{array}$ Signal 4: DAD1 D, Sig=230,10 $\operatorname{Ref}=360,100$ Signal 3: DAD1 C, Sig=210,10 Ref=360,100 Signal 2: DAD1 B, Sig=254,10 Ref=360,100 Signal 1: DAD1 A, Sig=250,10 Ref=360,100 Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcr}\text { Sorted By } & \vdots & 1.0000 \\ \text { Multiplier } & \vdots & 1.000 \\ \text { Dilution } & \end{array}$

Instrument 1 10/10/2011 10:22:42 AM NB
z э๐ I abed

Data File C: \HPCHEM $\backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 356 A . D$
Sample Name: A0356F

Instrument 1 10/10/2011 10:22:42 AM NB

*** 7 xodey $\ddagger 0$ pul ***

Signal 5: DAD1 E, Sig=280, 10 Ref=360, 100 Results obtained with enhanced integrator! Totals : $3365.54593 \quad 317.49596$ | $\begin{array}{c}\text { Peak } \\ \text { \# }\end{array} \begin{array}{c}\text { RetTime Type } \\ \text { [min] }\end{array}$ | $\begin{array}{c}\text { Width } \\ \text { [min] }\end{array}$ | $\begin{array}{c}\text { Area } \\ \text { [mAU*s] }\end{array}$ | $\begin{array}{c}\text { Height } \\ \text { [mAU] }\end{array}$ | $\begin{array}{c}\text { Area } \\ \%\end{array}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -1 | 6.006 | FM | 0.1427 | 189.28445 | 22.10045 |
| 2 | 6.617 MM | 0.1792 | 3176.26147 | 295.39551 | 94.3758 | Signal 4: DAD1 D, Sig=230, 10 Ref=360, 100 Signal 3: DAD1 C, Sig=210, 10 Ref=360, 100 Signal 2: DAD1 B, Sig=254,10 $\operatorname{Ref}=360,100$

Signal 1: DAD1 A, Sig=250, 10 Ref $=360,100$
Use Multiplier \& Dilution Factor with ISTD
Data File C:\HPCHEM\1\DATA\GROUP\AO356A.D
Instrument 1 10/10/2011 10:20:21 AM NB
₹ ๖๐ โ ə6ed

Instrument 1 10/10/2011 10:20:21 AM NB

*** End of Report ***
Signal 5: DAD1 E, Sig=280, 10 $\operatorname{Ref}=360,100$ Results obtained with enhanced integrator! Totals: $3351.71375 \quad 348.6971$
 Signal 4: DAD1 D, Sig=230, 10 Ref $=360,100$ Signal 3: DAD1 C, Sig=210, $10 \operatorname{Ref}=360,100$ Signal 2: DAD1 B, Sig $=254,10 \operatorname{Ref}=360,100$ Signal 1: DAD1 A, Sig=250, 10 Ref=360, 100

$\begin{array}{lccc}\text { Multiplier } & : & 1.0000 \\ \text { Dilution } & \vdots & 1.0000 \\ \text { Use Multiplier } & \text { \& } & \text { Dilution } & \text { Factor }\end{array}$

Sample Name: AO356E

```
Data File C:\HPCHEM\3\DATA\AJO\AO361A.D
```


Table 2, entry 6 with (3S,8R)

Initial test

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \&	Dilution	Factor
with	ISTDs	

Signal 1: FID1 A,

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.884	MM	0.0396	6.10832	2.56914	2.93937
2	15.980	MM	0.0496	201.70221	67.73990	97.06063
				207.81053	70.30904	

Results obtained with enhanced integrator!
===12n *** End of Report ***
Data File C: \HPCHEM\3\DATA\AJO\AO361B.D

TMS
Table 2, entry 6 with $(3 R, 8 S)$

Initial test

Area Percent Report			
Sorted By :	Signal		
Multiplier :	1.0000		
Dilution	1.0000		
Use Multiplier \& Dilution	Factor with	ISTDs	
Signal 1: FID1 A,			
Peak RetTime Type Width $\#$ [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area \%
$1 \quad 15.888 \mathrm{MM} \quad 0.0486$	127.71436	43.83421	96.09572
$2 \quad 15.982 \mathrm{MM} \quad 0.0399$	5.18891	2.16550	3.90428
Totals :	132.90327	45.99971	
Results obtained with enh	nced integ	ator!	

z ま๐ I abed

Instrument 1 10/11/2011 3:28:53 PM NB

Instrument 1 10/11/2011 3:28:53 PM NB

$\stackrel{-1}{2}$

Signal 5: DAD1 E, $\operatorname{Sig}=280,10 \operatorname{Ref}=360,100$ Results obtained with enhanced integrator Totals : $7186.60229 \quad 961.34724$
 Signal Signal 3: DAD1 C, $\operatorname{Sig}=210,10$ Ref $=360,100$ Signal 2: DAD1 B, $\operatorname{Sig}=254,10 \operatorname{Ref}=360,100$ Signal 1: DAD1 A, Sig=250, 10 Ref $=360,100$ Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcr}\text { Sorted By } & \vdots & \text { Signal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000 \\ \text { Use Multiplier \& } & \text { Dilution } & \text { Factor }\end{array}$ Data File C: \HPCHEM\1\DATA\GROUP\AO385A1.D \GROUP \AO385A1.D
$=================$
Area Percent Rep
$===========m=m=m$
Instrument 1 10/11/2011 3:27:22 PM NB

 Data File C: \HPCHEM $\backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 385 B 1$.D
Instrument 1 10/11/2011 3:27:22 PM NB

Instrument 1 10/11/2011 3:09:56 PM NB

$$
\text { Data File C: } \backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 408 B 1 \text {.D }
$$

$$
\begin{aligned}
& \text { Injection Date } \\
& \text { Sample Name } \\
& \text { Acq. Operator } \\
& \text { Acq. Instrumer } \\
& \text { Different Inj } \\
& \text { Acq. Method }
\end{aligned}
$$

Instrument 1 10/11/2011 $3: 11: 23 \mathrm{PM}$ NB

Signal 5: DAD1 E, Sig=280,10 $\operatorname{Ref}=360,100$
Signal 4: DAD1 D, Sig=230, 10 Ref=360, 100 Results obtained with enhanced integrator! Totals : $3764.38702 \quad 203.35521$

Signal 2: DAD1 B, Sig=254, 10 Ref $=360,100$
Signal 1: DAD1 A, Sig=250,10 $\operatorname{Ref}=360,100$
Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcc}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000\end{array}$

Instrument 1 10/11/2011 10:01:04 AM NB
6ed
I abed

Sample Name Data File C: $\backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 394 A 7 . D$

Signal 5: DAD1 E, Sig=280, 10 Ref $=360,100$
 Totals : $9479.30164 \quad 278.12960$ $\begin{array}{rrrrrrr}-18.869 & \text { MM } & 0.5689 & 8896.73828 & 260.66391 & 93.8544 \\ 2 & 20.367 & \text { MM } & 0.5559 & 582.56335 & 17.46569 & 6.1456\end{array}$ Signal 4: Feak RetTime Type Width Area Height Area Signal 3: DAD1 C, Sig=210, 10 Ref $=360,100$ Signal 2: DAD1 B, Sig=254,10 $\operatorname{Ref}=360,100$ Signal 1: DAD1 A, $\operatorname{Sig}=250,10$ Ref $=360,100$ Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcr}\text { Sorted By } & : & \text { Signal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000\end{array}$

gN W甘 9乌：乌̧： 6 โTOZ／โT／OT โ 7uəumazsuI

$$
\begin{aligned}
& 0 \\
& 01 \\
& 0 z \\
& 0 \varepsilon \\
& 0 \downarrow \\
& 0 \mathrm{~g}
\end{aligned}
$$

Eos
Data File C:\HPCHEM\1\DATA\GROUP\AO394B7.D

$$
\begin{aligned}
& \text { Injection Dat } \\
& \text { Sample Name }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acq. Operator } \\
& \text { Acq. Instrumer } \\
& \text { Different Inj } \\
& \text { Acq. Method } \\
& \text { Last changed }
\end{aligned}
$$

Sample Name

$$
\begin{aligned}
& \text { Acq. Method } \\
& \text { Last changed } \\
& \text { Analysis Metho } \\
& \text { Last changed }
\end{aligned}
$$

Signal 5：DAD1 E，Sig $=280,10$ Ref $=360,100$
Signal 4：DAD1 D，Sig＝230， 10 Ref $=360,100$ Results obtained with enhanced integrator！ Totals ： 2811.32648
 Peak RetTime Type Width
［min］$[\mathrm{min}] \quad[\mathrm{mAU}$ s］ Signal 3：DAD1 C，Sig＝210， 10 Ref $=360,100$ Signal 2：DAD1 B，Sig＝254， 10 Ref $=360,100$ Signal 1：DAD1 A，Sig＝250，10 $\operatorname{Ref}=360,100$ Use Multiplier \＆Dilution Factor with ISTDs $\begin{array}{lcr}\text { Sorted By } & \vdots & \text { Signal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000 \\ \text { Use Multiplier \＆} & \text { Dilution } & \text { Factor with }\end{array}$

$$
\text { Instrument } 1 \text { 10/11/2011 9:55:56 AM NB }
$$

Instrument 1 10/11/2011 3:19:41 PM NB

5
3:19:41 PM NB
Instrument 1 10/11/2011 3:21:28 PM NB

Data File C:\HPCHEM\1\DATA\GROUP\AO383B2.D

$$
\begin{aligned}
& \text { Injection Dat } \\
& \text { Sample Name } \\
& \text { Acq. Operator }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acq. Instrument : Instrument } 1 \\
& \text { Different Inj Volume from Sequence ! } \\
& \text { Acq. Method } \quad: \text { C:\HPCHEM } 1 \backslash \text { METHODS } \\
& \text { Last changed }: \\
& \text { La/3/2005 8:24:08 PM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acq. Operator } \\
& \text { Acq. Instrumen } \\
& \text { Different Inj }
\end{aligned}
$$

$* * *$ End of Report ***

Sorted By	:	Signal		
Multiplier				
Dilution	:	1.0000		
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: DAD1 A, Sig=250,10 $\operatorname{Ref}=360,100$				
Signal 2: DAD1 B, Sig=254,10 Ref=360,100				
Signal 3: DAD1 C, Sig=210,10 Ref=360,100				
Signal 4: DAD1 D, Sig $=230,10$ Ref $=360,100$				
$\begin{aligned} & \text { Peak } \\ & \# \underset{[\mathrm{~min}]}{\text { RetTime Type }} \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\underset{\%}{\text { Area }}$
27.766 MM	0.7914	97.52222	2.05370	7.6222
30.345 MM	0.943711	181.93335	20.87317	92.3778
Totals :		279.45557	22.92687	
Results obtained with enhanced integrator!				
Signal 5: DAD1 E, Sig=280,10 Ref=360,100				

Data File C: \HPCHEM\1\DATA\GROUP\AO383B2.D

```
Data File D:\HPCHEM\2\DATA\AJO\AO360A2.D
```


Data File D: \HPCHEM\2\DATA $\backslash A J O \backslash A O 360 B 2$.D

Instrument 1 10/11/2011 3:15:51 PM NB

$$
\begin{aligned}
& \text { Acq. Instrument : Instrument 1 } \\
& \text { Different Inj Volume from Sequence ! Actual } \\
& \text { Acq. Method } \quad: \text { C: } \backslash \text { HPCHEM } 1 \backslash M E T H O D S O D-00-50 . M
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sample Name } \\
& \text { Acq. Operator } \\
& \text { Acq. Instrumen } \\
& \text { Different Inj }
\end{aligned}
$$

Signal 5: DAD1 E, $\operatorname{Sig}=280,10$ Ref $=360,100$
Signal 4: DAD1 D, Sig=230, $10 \quad \operatorname{Ref}=360,100$ Results obtained with enhanced integrator! Totals : $9460.06818 \quad 277.14800$
 Use Multiplier \& Dilution Factor with ISTDs $\begin{array}{lcr}\text { Sorted By } & \vdots & \text { Signal } \\ \text { Multiplier } & \vdots & 1.0000 \\ \text { Dilution } & \vdots & 1.0000\end{array}$

₹ э๐ I abed

Instrument 1 10/11/2011 3:14:13 PM NB
Instrument 1 10/10/2011 10:12:28 AM NB
Instrument 1 10/10/2011 10:10:58 AM NB

Instrument 1 10/10/2011 10:10:58 AM NB

Data File $C: \backslash H P C H E M \backslash 3 \backslash D A T A \backslash A J O \backslash A O 334 A 2$.D

Area Percent Report

Sorted By	\vdots	Signal
Multiplier	\vdots	1.0000
Dilution	\vdots	1.0000
Use Multiplier \&	Dilution	Factor

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	31.438		0.1971	20.57044	1.73922	11.00156
2	34.003		0.2269	166.40704	12.22372	88.99844
Total	(s :			186.97748	13.96295	

Results obtained with enhanced integrator!
 *** End of Report ***
ile C: \HPCHEM\3\DATA \AJO\AO334B2.D
nj==10
Injection Date : 4/7/2011 5:51:29 PM
Seq. Line : 4
Sample Name : Location : Vial
${ }^{n}$ cq. Operator : AJO
Inj : 1
zq. Instrument : Instrument 3 Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence ! Actual Inj Volume : $3 \mu \mathrm{l}$
Acq. Method : C: \HPCHEM $\backslash 3 \backslash$ METHODS $\backslash J S S S 33 B . M$
Last changed : 4/7/2011 4:43:53 PM by JTB
Analysis Method : C: \HPCHEM\3\METHODS\JC100200.M
Last changed : 4/7/2011 6:44:54 PM by JTB (modified after loading)

Equation 4
with $(3 R, 8 S)$
Initial test

Signal 1: FID1 A,

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area \%
1	31.365	MM	0.2212	207.15323	15.60810	89.11034
2	34.077	MM	0.2055	25.31501	2.05351	10.88966
Total	s :			232.46824	17.66161	

Results obtained with enhanced integrator!


```
Data File C:\HPCHEM\3\DATA\HD\AO512A2.D
```


Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Use Multiplier \&	lution	Factor with	ISTDs	
Signal 1: FID1 A,				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ p A * s \end{gathered}$	Height [pA]	Area \%
$1 \quad 11.387 \mathrm{MF}$	0.0939	120.97383	21.47045	8.24628
211.565 FM	0.0962	1346.03687	233.19830	91.75372
Totals :		1467.01070	254.66875	
Results obtained with enhanced integrator!				

Data File C: \HPCHEM\3\DATA\HD\AO512B2.D

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution		1.0000		
Use Multiplier \&	lution	Factor with	ISTDs	
Signal 1: FID1 A,				
$\begin{aligned} & \text { Peak RetTime Type } \\ & \# \text { [min] } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[p A^{*} s\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
111.463 PV	0.1057	3884.07568	541.16205	90.29608
211.615 VB	0.0868	417.41281	71.83868	9.70392
Totals :		4301.48849	613.00072	
Results obtained	ith en	hanced integ	ator!	

 Different Inj Volume from sequence Actual In \quad C: \HPCHEM\1\METHODS\OD-00-30.M
Acq. Method
Iast

 Data File C: $\backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 320 A . D$

Instrument 1 4/7/2011 9:39:43 AM CC

Instrument 1 4/7/2011 9:41:42 AM CC
z ¥o I abed

 $\begin{array}{ll}\text { Injection Date } & \text { :- } \\ \text { S/7/7/2011 } 4: 52: 49 \text { AM } \\ \text { Sample Name } \\ \text { Acq Operator }\end{array}: \mathrm{cc}$

$$
\text { Data File } C: \backslash H P C H E M \backslash 1 \backslash D A T A \backslash G R O U P \backslash A O 327 A . D
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { Dilution } & \vdots & 1.0000 \\
\text { Use Multiplier \& Dilution Factor with } & \\
\text { ISTDs }
\end{array}
\end{aligned}
$$

Instrument 1 10/10/2011 10:16:04 AM NB

$$
\begin{aligned}
& \text { Injection Dat } \\
& \text { Sample Name } \\
& \text { Acg. Operator }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Acq. Instrument }: \text { Instrument } 1 \\
& \text { ifferent Inj Volume from Sequence } \quad \text { Actual } \\
& \text { Acq. Method } \\
& \text { I } \\
& \text { I }: \backslash H P C H E M \backslash 1 \backslash M E T H O D S \backslash I B-03-60 . M
\end{aligned}
$$

z ј0 I abed
Instrument 1 10/10/2011 10:17:08 AM NB

Data File C:\HPCHEM $\backslash 3 \backslash D A T A \backslash H D \backslash A O 531 A . D$
$===============================10=$
Injection Date : 12/11/2011 3:42:42 PM
Sample Name :
Acq. Operator : hd
Acq. Instrument : Instrument 3
Different Inj Volume from Sequence !
Actual Inj Volume : 5 ul
Acq. Method : C: \HPCHEM $\backslash 3 \backslash M E T H O D S \backslash A J O 100 . M$
Last changed : 10/13/2010 9:09:31 AM by AJO
Analysis Method : C: \HPCHEM\3\METHODS\CJC18.M
Last changed : 1/22/2012 2:18:26 PM by HD (modified after loading)

TMS
Equation 8
with ($3 S, 8 R$)

Initial test

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: FID1 A,

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{A}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area \%
1	12.866	PV	0.0850	27.32010	4.90110	5.19883
2	13.038		0.0985	498.18481	77.99696	94.80117
Totals :				525.50491	82.89806	

Results obtained with enhanced integrator!

Data File C: \HPCHEM\3\DATA $\backslash H D \backslash A O 531 B . D$

TMS
Equation 8 with ($3 R, 8 S$)

Initial test

FID1A. (HDMO531B.D)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \& Dilution	Eactor with ISTDs	

Signal 1: FID1 A,

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA*s}} \end{array}$	Height [pA]	Area $\%$
1	12.883	MF	0.1037	568.93274	91.43867	
2	13.041	FM	0.0858	37.86594	7.35501	6.24028
Total	s :			606.79868	98.79369	

Results obtained with enhanced integrator!

Data File C: \HPCHEM\3\DATA\HD\AO532A.D

Injection Date	12/11/2011 4:34:56 PM	Seq. Line	13
Sample Name	:	Location	Vial 3
Acq. Operator	: hd	Inj	1
Acq. Instrument	: Instrument 3	Inj Volume	$1 \mu \mathrm{l}$
Different Inj Vo	Volume from Sequence ! Actual	Inj Volume	$5 \mu \mathrm{l}$
Acq. Method	: C: \HPCHEM S $^{\text {SMETHODS } \backslash \text { AJO100.M }}$		
Last changed	: 10/13/2010 9:09:31 AM by AJO		
Analysis Method	d : C: \HPCHEM 3 \METHODS CCJC18.M $^{\text {d }}$		
Last changed	: $1 / 22 / 2012$ 2:21:35 PM by HD (modified after loading)		

Equation 9 with (3S,8R)

Initial test

Signal 1: FID1 A,

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area $\%$
1	12.878	MF	0.0974	30.15556	5.15921	4.72710
2	13.049	FM	0.1080	607.77362	93.80832	95.27290
Total	s :			637.92918	98.96753	

Results obtained with enhanced integrator!

Data File C: \HPCHEM\3\DATA\HD\AO532B.D

Injection Date : 12/11/2011 5:01:01 PM Seq. Line : 14
Sample Name : Location : Vial 4
Acq. Operator : hd
Acq. Instrument : Instrument 3
Inj : 1

Acq. Method : C: \HPCHEM\3\METHODS\AJO100.M
Last changed : 10/13/2010 9:09:31 AM by AJO
Analysis Method : C: \HPCHEM\3\METHODS\CJC18.M
Last changed : 1/22/2012 2:23:52 PM by HD (modified after loading)

Equation 9 with ($3 R, 8 \mathrm{~S}$)

Initial test

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	\vdots	1.0000
Use Multiplier \& Dilution Factor with ISTDs		

Signal 1: EID1 A,

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~s}\right]} \end{array}$	Height [pA]	Area 8
1	12.889	MF	0.1053	685.20050	108.47028	94.32277
2	13.044	FM	0.0895	41.24178	7.68089	5.67723
Total	:			726.44228	116.15118	

Results obtained with enhanced integrator!

