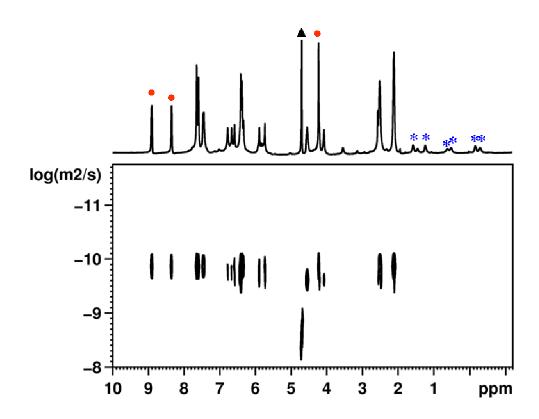
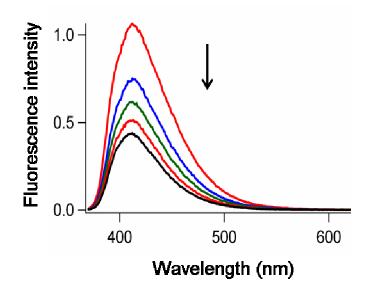
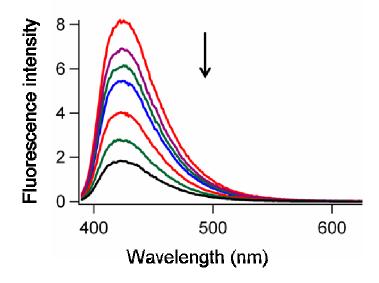
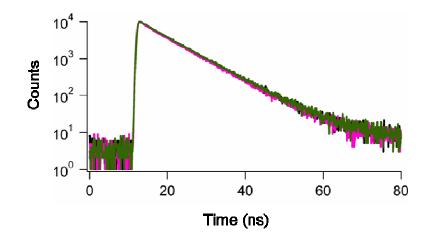

Photoinduced Electron Transfer Across a Molecular Wall: Coumarin Dyes as Donors and Methyl viologen and TiO₂ as Acceptors

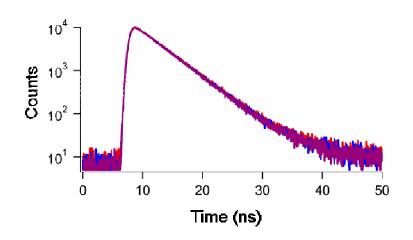

Mintu Porel,^a Agnieszka Klimczak,^b Marina Freitag, ^b Elena Galoppini^{b,*} and V. Ramamurthy^{a,*}

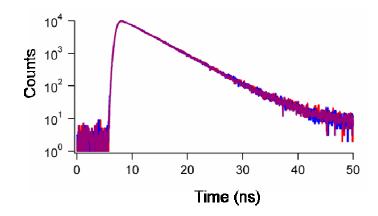
^a Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA
^b Chemistry Department, Rutgers University, Newark, NJ 07102, USA
<u>murthy1@miami.edu</u>; galoppin@rutgers.edu


	Content	Page #
Figure S1	¹ H NMR spectra of the C-153@OA ₂ in presence of MV^{2+}	S2
Figure S2	2D DOSY spectrum of C-153@OA ₂ + MV^{2+}	S3
Figure S3	Fluorescence quenching experiments of C-1@OA ₂ with MV ²⁺	S4
Figure S4	Fluorescence quenching experiments of C-480@OA ₂ with MV ²⁺	S4
Figure S5	Time resolved titration of C-153@OA ₂ with MV ²⁺	S5
Figure S6	Time resolved titration of C-1@OA ₂ with MV ²⁺	S5
Figure S7	Time resolved titration of C-480@OA ₂ with MV ²⁺	S6
Figure S8	Fluorescence spectra of C-153@OA ₂ in presence of MV^{2+} and $MV^{2+}@CB7$	\$6
Figure S9	FTIR-ATR spectra of OA	S7
Figure S10	Fluorescence titration experiments of C-153@OA ₂ with ZrO ₂	S7
Figure S11	Time resolved titration of C-153@OA ₂ with TiO ₂ solution	S 8
	Experimental section	S8


Figure S1. ¹H NMR (500 MHz, D₂O) spectra of (a) OA, (b) C-153@OA₂ + MV²⁺, (c) C-153 and (d) MV^{2+} ; [C-153]= 0.5 mM, [OA]=1 mM, [MV²⁺]= 1 mM and in 10 mM sodium tetraborate buffer; "*", "•"and "▲"represent bound C-153 protons, MV^{2+} protons and residual proton signal in D₂O respectively.


Figure S2. 2D DOSY (500 MHz, D₂O) spectra of C-153@OA₂ + MV^{2+} ; [C-153]= 0.5 mM, [OA]=1 mM, [MV^{2+}]= 1 mM; "*" and "•" represent bound C-153 and MV^{2+} proton signals, diffusion constant of C-153@OA₂ and MV^{2+} are 1.19×10^{-6} cm²/s and 1.2×10^{-6} cm²/s respectively.


Figure S3. Fluorescence titration spectra of C-1@OA₂ with MV^{2+} ; $\lambda_{ex} = 350$ nm; [C-1] = 2×10^{-5} M, [OA] = 1×10^{-4} M, [MV²⁺] = 1.5×10^{-5} M to 4×10^{-5} M in 10 mM sodium tetraborate buffer.


Figure S4. Fluorescence titration spectra of C-480@OA₂ with MV^{2+} ; $\lambda_{ex} = 380$ nm; [C-480] = 2 × 10⁻⁵ M, [OA] = 1 × 10⁻⁴ M, [MV²⁺] = 1.5 × 10⁻⁵ M to 5 × 10⁻⁵ M in 10 mM sodium tetraborate buffer.

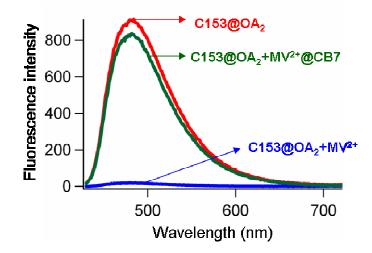

Figure S5. Time resolved titration spectra of C-153@OA₂ with MV^{2+} ; $\lambda_{ex} = 420$ nm, $\lambda_{em} = 480$ nm, [C-153] = 1.5×10^{-5} M, [OA] = 1×10^{-4} M and [MV²⁺] = 1.5×10^{-5} M to 7.5×10^{-5} M in 10 mM sodium tetraborate buffer; Lifetime $\tau = 7.3$ ns.

Figure S6. Time resolved titration spectra of C-1@OA₂ with MV^{2+} ; $\lambda_{ex} = 350$ nm, $\lambda_{em} = 412$ nm, [C-1] = 2 × 10⁻⁵ M, [OA] = 1 × 10⁻⁴ M and [MV²⁺] = 1.5 × 10⁻⁵ M to 4 × 10⁻⁵ M in 10 mM sodium tetraborate buffer; Lifetime $\tau = 4.3$ ns.

Figure S7. Time resolved titration spectra of C-480@OA₂ with MV²⁺; $\lambda_{ex} = 380$ nm, $\lambda_{em} = 435$ nm, [C-480] = 2 × 10⁻⁵ M, [OA] = 1 × 10⁻⁴ M and [MV²⁺] = 1.5 × 10⁻⁵ M to 5 × 10⁻⁵ M in 10 mM sodium tetraborate buffer; Lifetime $\tau = 4.7$ ns.

Figure S8. Fluorescence spectra of C-153@OA₂ in presence of MV²⁺ and MV²⁺@CB7, $\lambda_{ex} = 420$ nm; [C-153] = 1.5×10^{-5} M, [OA] = 1×10^{-4} M and [MV²⁺] = 7.5×10^{-5} M and [CB7] = 7.5×10^{-5} M in 10 mM sodium tetraborate buffer.

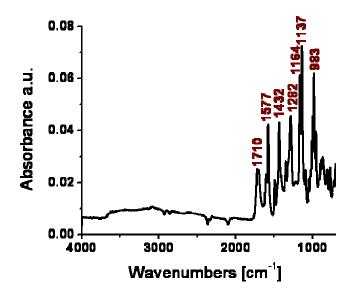
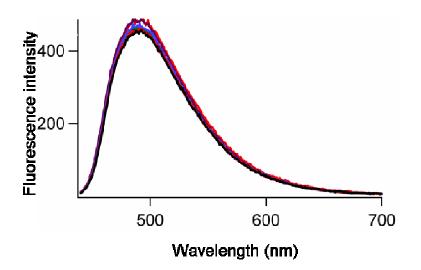
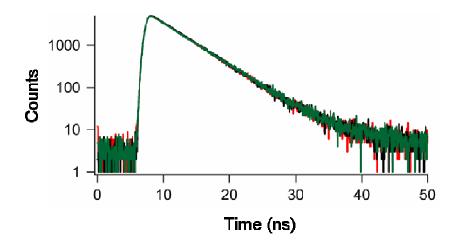




Figure S9. FTIR-ATR spectra of OA (solid)

Figure S10. Fluorescence titration spectra of C-153@OA₂ with ZrO₂ colloidal solution; $\lambda_{ex} = 440 \text{ nm}; \text{ [C-153]} = 1.5 \times 10^{-5} \text{ M}, \text{ [OA]} = 1 \times 10^{-4} \text{ M}$ in water.

Figure S11. Time resolved titration spectra of C-153@OA₂ with TiO₂ solution; $\lambda_{ex} = 440$ nm, $\lambda_{em} = 480$ nm, [C-153] = 1.5×10^{-5} M and [OA] = 1×10^{-4} M in water; Lifetime $\tau = 7.3$ ns.

Experimental Section

Material: The hosts octa acid¹, cucurbit[7]uril² were synthesized following published procedures. Laser grade coumarin 153 (C-153), coumarin 1 (C-1) and coumarin 480 (C-480) were used as received from Sigma-Aldrich/Acros.

General protocol for NMR study

¹H NMR studies were carried out on a Bruker 500 MHz NMR spectrometer at 25 °C. 600 μ L of a D₂O solution of host OA (1mM OA in 10 mM Na₂B₄O₇) was taken in a NMR tube and to this 0.5 equivalent increments of coumarin (5 μ L of a 60 mM solution in DMSO-*d*₆) was added. The ¹H NMR experiments were carried out after shaking the NMR tube for 5 min after addition. Completion of complexation was monitored by the disappearance of the free host OA signals upon addition of guest. The required amount of quencher solution (MV²⁺; stock solutions of 30 mM were prepared in D₂O) was added and ¹H NMR was recorded after shaking the NMR tube for 5 min. For experiments in the presence of CB7, the calculated amount of CB7 (solid) was added to coumarin@OA₂ + quencher solutions and shaken properly before ¹H NMR spectra were recorded.

General protocol for fluorescence study

Fluorescence emission spectra were recorded on a FS920CDT Edinburgh steady-state fluorimeter and the lifetime measurements on FL900CDT fluorescence lifetime spectrometer. A 30 mM stock solution of the guest was prepared in CHCl₃. The host (OA) aqueous solution was prepared in 10 mM sodium tetraborate buffer (1 mM). The complex solutions were prepared by adding required amount of guest solution in a vial, evaporating the solvent, and adding to the vial 2.5 mL of the host solution. The resulting aqueous solution was sonicated for 30 min. Calculated amounts of quencher solution (aqueous MV^{2+} solution, TiO₂ and ZrO₂ colloidal solution) were added and mixed thoroughly and then the fluorescence spectra were recorded. The required amount of CB7 was added to the solution (host/guest + MV^{2+}), sonicated and fluorescence spectra were recorded.

pH adjustment

Capsular assembly (C-153@OA₂) was made in sodium tetraborate buffer (pH~9) and its emission was recorded. At each step of the acid-titration, aqueous HCl was added drop wise and pH of the solution was checked. After adjusting a certain pH, emission of the solution was recorded. It was observed that upto pH~7, λ_{max} of complex emission remain almost same. From pH=7, λ_{max} was gradually red shifted with increasing pH of the solution indicating that C-153 was decomplexing from OA capsule. Depending upon this result pH of C-153@OA₂ was fixed at 7 for binding study with TiO₂.

Mesoporous metal oxide film preparation and binding

Binding was done on semiconducting TiO₂ ($E_b = 3.2 \text{ eV}$) films, as well as insulating ZrO₂ ($E_b = 5 \text{ eV}$) films to study excited states. Synthesis of TiO₂ / ZrO₂ nanoparticles were carried out by acidic hydrolysis of titanium(IV) iso-propoxide and zirconium(IV) propoxide under nitrogen atmosphere and autoclaved at 200 °C for 8 hours as previously described ^{3,4}. Poly(ethylene glycol) (PEG 2,000) was added (6g/L) to the colloidal pastes of TiO₂/ZrO₂to optimize the solution viscosity of the pastes. The pastes were applied to a micro cover glass (VWR) or a conductive glass (FTO, TEC 7 by Pilkington, with 8 – 10

 Ω /sq resistance of the sheet). TheTiO₂ / ZrO₂ pastes were spread on a conductive glass by using a glass test tube and holding the edge of a conductive glass by the tape. The films were air dried and then sintered in the oven at 450 °C for 30 minutes under oxygen flow. Then, the films were cooled down before using, or stored in a desiccator in dark.

The binding of C153@OA₂ complexes onto TiO₂ and ZrO₂ films was performed by immersing the MO_n films in 1 mM aqueous solutions of the complex overnight in the dark. The functionalized films were rinsed with water, dried, and then used for the spectroscopic measurements.

General protocol for FTIR-ATR study of the films

All FTIR-ATR spectra for OA (soild) and C-153@OA₂ (at pH=7) on TiO₂/ZrO₂ films were recorded on a Thermo Scientific, Nicolet 6700Ft-IR. The films were dried by heating in the oven to 110 $^{\circ}$ C for 30 minutes before all measurements.

General protocol for emission study of the films

Fluorescence emission spectra of the C-153@OA₂ (at pH=7) binding on TiO₂/ZrO₂ films were collected on a Cary Eclipse, Varian fluorescence spectrometer. The fluorescence spectra were recorded at λ_{ex} = 420 nm. Before the spectroscopic measurements all films were heated in the oven to 110 °C for 30 minutes to remove moisture.

Reference

¹ Gibb, C. L. D.; Gibb, B. C. J. Am. Chem. Soc. **2004**, 126, 11408.

² Day, A; Arnold, A. P.; R. Blanch, J.; Snushall, B. J. Org. Chem. 2001, 66, 8094.

³ Taratula, O.; Wang, D.; Chu D.; Galoppini, E.; Zhang Z.; Chen, H.; Saraf, G; Lu, Y; *J. Phys. Chem. B*, **2006**, *110*, 6506-6515.

⁴ Rochford, J.; Chu, D.; Hagfeldt, A.; Galoppini, E.; J. Am. Chem. Soc., 2007, 129, 4655.