QUANTITATIVE 3-D ELEMENTAL MAPPING BY LA-ICP-MS OF BASALTIC CLAST FROM THE HANFORD 300 AREA, WASHINGTON, USA

Sheng Peng, Qinhong Hu*, Robert P. Ewing, Chongxuan Liu, and John M. Zachara

SUPPORTING INFORMATION

Contents

1. Instrumentation and operating conditions

Table S1. Operation condition for LA-ICP-MS.

Table S2. Eight major composition percentages for 13 rocks.

Table S3. Point-by-point correlation between measured elements in the Hanford basaltic clast.

Figure S1. Instrumental response (signal intensity) to the liquid internal standards: Li, Sc, In, and Bi.

Figure S2. Calculated K^i values for each spot at each depth. K^i values are basically uniform in each layer except for some focused areas. High K^i values correspond to low sampling volume.

Figure S3. Average relative concentrations of intrinsic elements with depth.

Figure S4. 3-D maps for Ni, Mn, Zr, Rb, Th.

1. Instrumentation and operating conditions

A UP-213 laser ablation system (New Wave, Freemont, CA), interfaced with a PerkinElmer/SCIEX ELAN DRC II (Sheldon, CT) ICP-MS system, was used to characterize the elemental distribution in the basaltic clast sample. The liquid standards of 2 μg/L ⁶Li, ⁴⁵Sc, ¹¹⁵In, and ²⁰⁹Bi were continuously introduced to monitor the ICP-MS stability and provide a basis for time-drift correction. During data acquisition, signal intensities (counts per second, CPS) were recorded for the contaminant elements of primary interest (²³⁸U, ⁶³Cu, and ²⁷Al), other possible contaminants with lesser (or unknown) released amounts (⁵¹V, ⁵⁸Ni, ¹³⁷Ba, and ²³²Th), and several other elements intrinsic to the basalt with a range of atomic mass (e.g., ²³Na, ²⁴Mg, ²⁹Si, ³⁹K, ⁴⁴Ca, ⁵⁴Fe, ⁵⁵Mn, ⁸⁵Rb, ⁸⁸Sr, and ⁹⁰Zr). Please see Table S1 for more concrete operation conditions.

During a 7-second pause before laser firing, the measured signal intensity was used to determine the instrument background for each element. After laser firing, when the ablated sample reached the detector, there was a sharp rise in signal intensity, followed by a gradual return to background levels within a minute. After subtracting the background, the integrated signal intensity was obtained by adding all signals from this transient analysis. Differences in the integrated signal intensity of the elements reflect their differences in abundance/concentration within the ablated volume (1).

(1) Hu, Q.; Kneafsey, T.J.; Wang, J.S.Y.; Tomutsa, L.; Roberts, J.J. Characterizing unsaturated diffusion in porous tuff gravels. *Vadose Zone J.* **2004**, *3*, 1425–1438.

Table S1. Operation condition for LA-ICP-MS.

Laser ablation	
Laser system	New Wave UP213; Tempest Nd:YAG
Wavelength	213 nm
Output power (mJ)	2.8-3.0
Ablation chamber	New Wave SuperCell
Pulse duration (ns)	3-5
Spot size (µm)	100
Repetition rate (Hz)	20
Pre-ablation time (s)	6-10
ICP-MS	
Spectrometer	PerkinElmer Elan DRC II
Forward power (W)	1300
Argon flow rate	
Nebulizer Ar gas (L/min)	0.60
LA carrier He gas (L/min)	0.60
Auxiliary gas (L/min)	0.95
Cooling gas (L/min)	14.0
Spray chamber	cyclonic
Nebulizer	Meinhard® type A
Sample and skimmer cones	Platinum
Data acquisition mode	Peak jumping
Dwell time per peak (ms)	2 (Al, Si, and K), 5 (Na, Mg), 20 (all others)
Acquisition duration (s)	30-60 (dependent on the numbers of laser pulses)

ID	1	data aannaa			sum							
ID	rock	data source	Si	Al	Fe(II)	Fe(III)	Mg	Ca	Na	K	Mn	percentage
1	basalt, Columbia River, Oregon, BCR-2	USGS Certificate of Analysis	25.3	7.1	0.0	9.7	2.2	5.1	2.3	1.5	0.0	53.2
2	Costa Rica basalt	microprobe data from PSU	25.3	9.2	5.2	0.0	1.8	6.4	2.0	1.1	0.1	51.2
3	grimsel granodiorite	LTD progress Meeting; May 2007	31.6	8.3	2.6	0.0	0.4	1.5	3.3	3.2	0.1	50.9
4	stripa granite	Introduction to the hydrogeochemical investigations within the International Stripa Project; Nordstrom et al., GCA, 53:1717-1726	35.9	7.4	0.0	0.9	0.2	0.5	3.0	3.8	0.0	51.8
5	Andesite AGV-2	USGS Certificate of Analysis	27.7	8.9	0.0	4.7	1.1	3.7	3.1	2.4	0.0	51.6
6	Dunite DTS-2	USGS Certificate of Analysis	18.4	0.2	0.0	5.4	29.8	0.1	0.0	0.0	0.0	54.0
7	granite G-2	USGS Certificate of Analysis	32.3	8.1	1.1	0.7	0.5	1.4	3.0	3.7	0.0	51.0
8	granodiorite GSP-2	USGS Certificate of Analysis	31.1	7.9	0.0	3.4	0.6	1.5	2.1	4.5	0.0	51.1
9	quartz latite QLO-1	USGS Certificate of Analysis	30.7	8.6	2.3	0.7	0.6	2.3	3.1	3.0	0.0	51.2
10	rhyolite RGM-1	USGS Certificate of Analysis	34.3	7.3	1.0	0.3	0.2	0.8	3.0	3.6	0.0	50.5
11	shale SGR-1	USGS Certificate of Analysis	27.7	8.9	0.0	4.7	1.1	3.7	3.1	2.4	0.0	51.6
12	syenite STM-1	USGS Certificate of Analysis	27.9	9.7	1.6	2.0	0.1	0.8	6.6	3.6	0.0	52.3
13	NIST glass SRM 610	•	33.7	1.1				8.6	10.4			53.7
											Average STDEV	51.8 1.1

Table S2. Eight major composition percentages for 13 rocks.

	Na	Mg	Al	Si	K	Ca	V	Fe	Mn	Ni	Cu	Rb	Sr	Zr	Ba	Ce	Pb	Th	U
Na		-0.78	0.77	-0.09	0.28	-0.58	-0.11	-0.27	-0.33	-0.26	-0.09	0.09	0.69	0.07	0.38	0.05	0.01	0.16	-0.05
Mg			-0.85	-0.21	-0.39	0.73	0.1	0.27	0.33	0.26	0.03	-0.15	-0.69	-0.17	-0.44	-0.16	-0.01	-0.31	-0.05
Al				-0.21	0.15	-0.54	-0.07	-0.24	-0.33	-0.25	-0.13	-0.04	0.85	0.02	0.32	-0.01	-0.01	0.08	-0.11
Si					0.43	-0.6	-0.19	-0.16	-0.16	-0.15	0.1	0.38	-0.31	0.2	0.14	0.15	0.01	0.37	0.2
K						-0.52	0	-0.01	-0.08	-0.02	0.19	0.47	0.03	0.34	0.42	0.37	0.14	0.54	0.33
Ca							-0.06	0.02	0.13	0.02	-0.19	-0.33	-0.35	-0.31	-0.49	-0.21	-0.07	-0.43	-0.24
V								0.9	0.58	0.89	0.41	0.01	-0.12	0.27	0.17	0.19	0.08	0.14	0.28
Fe									0.68	0.97	0.58	0.04	-0.25	0.35	0.18	0.26	0.14	0.15	0.4
Mn										0.69	0.53	0.03	-0.25	0.33	0.26	0.47	0.18	0.22	0.6
Ni											0.61	0.05	-0.23	0.36	0.19	0.26	0.1	0.15	0.4
Cu												0.23	-0.07	0.38	0.45	0.35	0.17	0.26	0.63
Rb													-0.09	0.29	0.27	0.29	0.11	0.38	0.32
Sr														-0.06	0.37	-0.01	0	-0.03	-0.08
Zr															0.35	0.42	0.11	0.65	0.46
Ba																0.54	0.18	0.47	0.5
Ce																	0.21	0.62	0.59
Pb																		0.17	0.31
Th																			0.55

Table S3. Point-by-point correlation between measured elements in the Hanford basaltic clast.

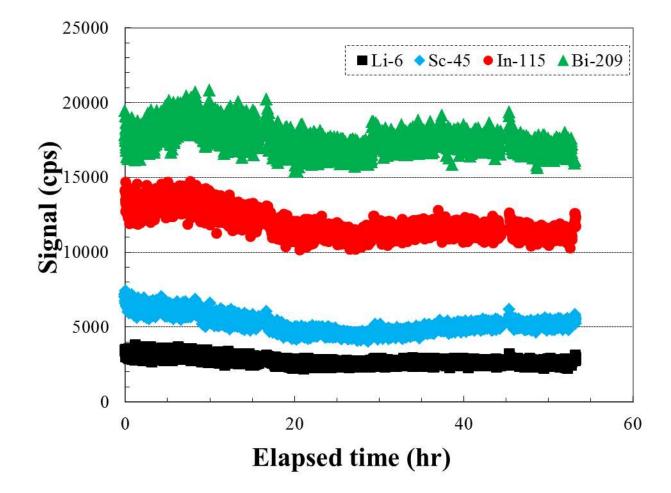


Figure S1. Instrumental response (signal intensity) to the liquid internal standards: ⁶Li, ⁴⁵Sc, ¹¹⁵In, and ²⁰⁹Bi

Figure S2. Calculated K^i values for each spot at each depth. K^i values are basically uniform in each layer except for some focused areas. High K^i values correspond to low sampling volume.

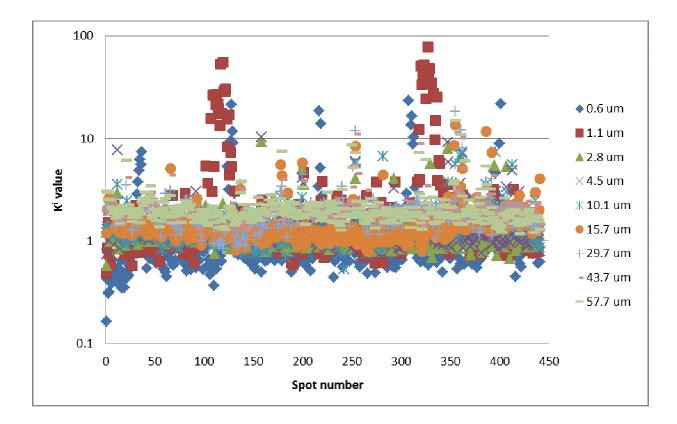
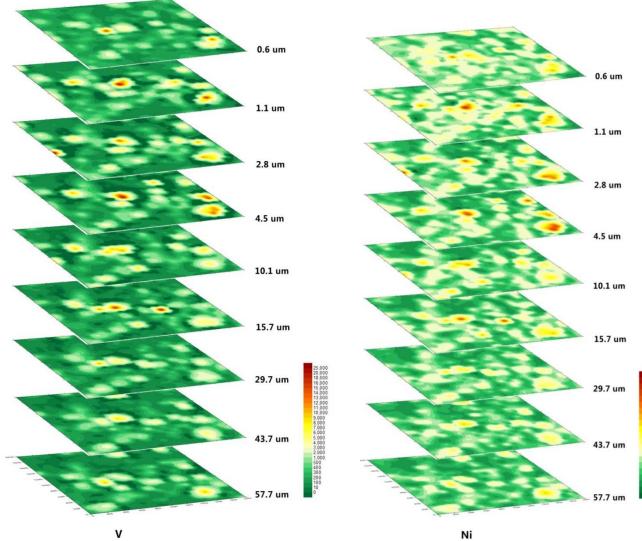
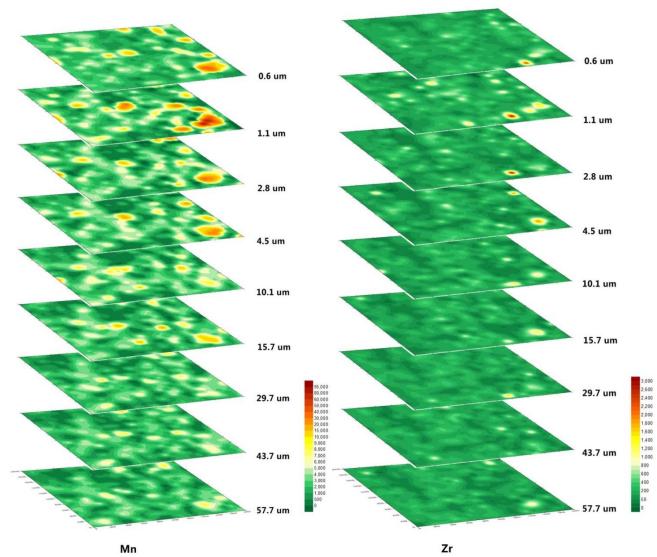
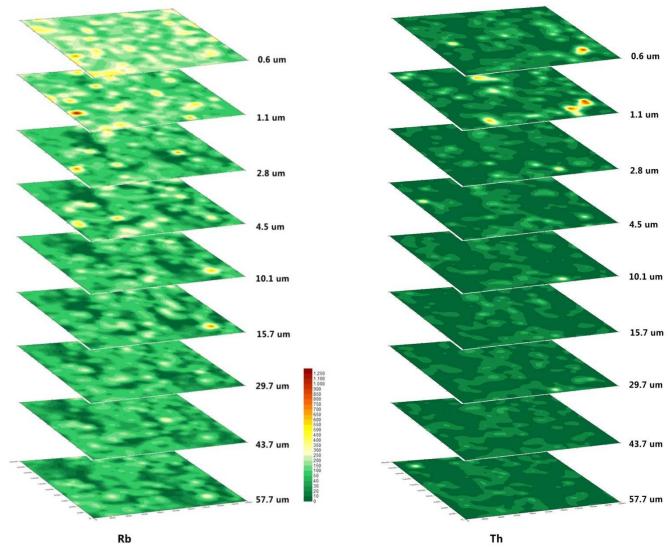
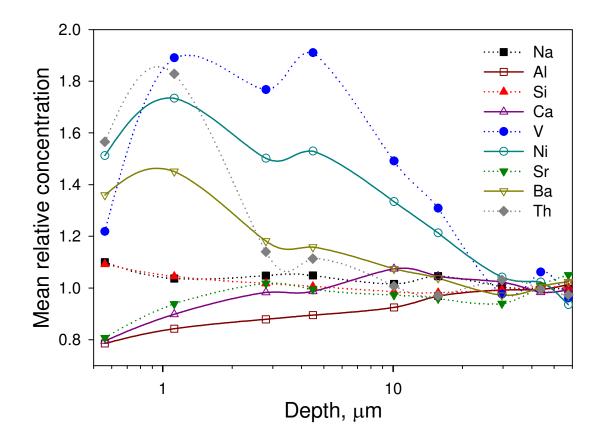




Figure S3. 3-D maps for V, Ni, Mn, Zr, Rb, Th.




9,500 8,000 7,000 6,000 4,500 4,500 4,000 3,000 2,500 2,500 2,500 2,500 2,500 1,500 1,500 1,500 400 300 200 100 100



Mn

