Visible Light Mediated Utilization of α-Aminoalkyl Radicals: Addition to Electron Deficient Alkenes Using Photoredox Catalysts

Yoshihiro Miyake, Kazunari Nakajima, and Yoshiaki Nishibayashi*

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

General Method.

${ }^{1} \mathrm{H}$ NMR (270 MHz) and ${ }^{13} \mathrm{C}$ NMR (67.8 MHz) spectra were recorded on a JEOL Excalibur 270 spectrometer in suitable solvent. $\quad{ }^{19}$ F NMR (471 MHz) spectra were recorded on a JEOL JNM-ECP 500 spectrometer. Elemental analyses were performed at Microanalytical Center of The University of Tokyo. Mass spectra were measured on a JEOL JMS-700 mass spectrometer. Absorption spectra was recorded on Shimazu MultiSpec-1500 spectrometer. All reactions were carried out under dry nitrogen atmosphere. Solvents were dried by the general methods, and degassed before use. Photoirradiation was carried out with 14 W white LED. Alkenes $\mathbf{1 b}^{\mathrm{S} 1}, \mathbf{1 c}^{\mathrm{S} 1}, \mathbf{1 d}^{\mathrm{S} 2}, \mathbf{1 e}^{\mathrm{S} 1}, \mathbf{1 f}^{\mathrm{S} 1}$, $\mathbf{1 g}^{\mathrm{S} 3}, \mathbf{1 h}^{\mathrm{S} 1}, \mathbf{1 i}^{\mathrm{S} 4}, \mathbf{1}^{\mathrm{S} 5}, \mathbf{1 1}^{\mathrm{S} 6}$, and amines $\mathbf{2 a}-d_{3}{ }^{\mathrm{S} 7}, \mathbf{2 b}^{\mathrm{S} 8}, \mathbf{2 c}^{\mathrm{S} 9}, \mathbf{2 d}{ }^{\mathrm{S} 9}, \mathbf{2} \mathbf{e}^{\mathrm{S} 9}, \mathbf{2} \mathbf{S}^{\mathrm{S} 10}, \mathbf{2} \mathbf{g}^{\mathrm{S} 11}, \mathbf{2 h}^{\mathrm{S} 12}, \mathbf{2 i}^{\mathrm{S} 13}, \mathbf{2 l}^{\mathrm{S} 14}$ were prepared according to the literature procedures.

Photocatalytic Reactions of Electron Deficient Alkenes (1) with Amines (2).

A typical experimental procedure for the reaction of diethyl ethylidenemalonate (1a) with methyldiphenylamine (2a) is described below. In a 20 mL Schlenk flask (diameter: 2.5 cm) were placed [4a][BF $\left.{ }_{4}\right](2.2 \mathrm{mg}, 0.0026$ mmol) and N-methylpyrrolidone (2.5 mL) under N_{2}, and then $\mathbf{1 a}(46.3 \mathrm{mg}, 0.249 \mathrm{mmol})$ and 2a ($55.6 \mathrm{mg}, 0.303$ mmol) were added. The reaction flask was placed in a water bath and illuminated with 14 W white LED (approximately 2 cm from the light source) at $25^{\circ} \mathrm{C}$ for 18 h . The resulting mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with hexane/ethyl acetate (20/1) to give diethyl 2-(1-diphenylaminopropyl)malonate (3a) as a colorless oil ($82.8 \mathrm{mg}, 0.224 \mathrm{mmol}, 90 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.13-7.07(\mathrm{~m}, 8 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 2 \mathrm{H})$, 4.03-3.81 (m, 5H), $3.51(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 8.6 Hz$), 3.49(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.98-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 0.873(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.868(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.7,168.4,149.3,129.5,122.0$, 121.9, 61.1, 61.0, 56.4, 55.0, 32.5, 15.5, 14.0. HRMS (FAB) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]: 370.2018$. Found: 370.2024 .

Isolated yields and spectroscopic data of other products are as follows:

3b: 91\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.14-7.09(\mathrm{~m}, 8 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and $7.3 \mathrm{~Hz}), 3.99-3.81(\mathrm{~m}, 6 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.892(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $0.886(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.74(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.0,168.8,149.4,129.5,122.1,121.2,61.1$, $61.0,54.3,52.9,37.2,32.2,20.5,14.3,13.98,13.96$. HRMS (EI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4}[\mathrm{M}]: 397.2253$. Found: 397.2252.

3c: 91% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.16-7.12(\mathrm{~m}, 8 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, 1 \mathrm{H}, J=14.7$ and $8.2 \mathrm{~Hz}), 4.01-3.82(\mathrm{~m}, 6 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.76(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.0,168.9,149.3,129.5,122.2,122.0,61.1$, 61.0, 54.5, 52.9, 39.3, 35.2, 26.0, 22.9, 22.8, 14.01, 13.98. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}$: C, 72.96; H, 8.08; N, 3.40. Found: C, 72.84; H, 8.25; N, 3.28.

3d: 61\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.18-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 8.4 Hz), 3.99-3.82 (m, 6H), 2.88-2.80 (m, 1H), 1.88-1.50 (brm, 6H), 1.14-0.95 (brm, 5 H$), 0.89(\mathrm{t}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.4,169.2,149.9,129.4,122.6,122.2,61.2,61.1,52.6,52.3,42.4,38.9,30.6,30.5,27.2,27.1$, 26.8, 13.9. HRMS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{4}[\mathrm{M}]: 437.2566$. Found: 437.2575.

3e: 89% Yield. A white solid, m.p. 71.7-72.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.87$ (m, 4H), 6.83-6.77 (m, 2H), 4.36-4.26 (m, 2H), $4.00(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.69-3.57(\mathrm{~m}, 3$ H), $0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.57(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.4,167.3,149.1,139.9,129.40,129.38$, 127.2, 121.9, 121.8, 61.6, 61.1, 57.4, 56.2, 43.7, 14.0, 13.6. HRMS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4}[M]: 431.2097$. Found: 431.2081.

3f: 68% Yield. A white solid, m.p. 68.9-69.2 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.12-7.05 (m, 4H), 6.95-6.90 (m, 6H), 6.83-6.77 (m, 4H), 4.34-4.24 (m, 2H), $3.99(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $3.83(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.72-3.58(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $0.95(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.61(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.5,167.4,149.2,136.9,136.6,129.34$, 129.29, 129.0, 122.0, 121.8, 61.6, 61.1, 57.4, 56.4, 43.3, 20.9, 14.0, 13.6. HRMS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4}$ [M]: 445.2253. Found: 445.2246.

3g: 86% Yield. A white solid, m.p. 64.9-65.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.96-6.77(\mathrm{~m}, 10 \mathrm{H})$, 4.36-4.26 (m, 2H), $4.00(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.73-3.60(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 0.60(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.5,167.4,149.1,139.7,137.6,130.2,129.3,128.3,126.5$, 121.9, 121.8, 61.6, 61.1, 57.3, 56.3, 43.7, 21.2, 14.0, 13.6. HRMS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4}[\mathrm{M}]: 445.2253$. Found: 445.2240 .

3h: 83% Yield. A white solid, m.p. 96.2-97.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 8 7.11-7.03 (m, 4H), 6.94-6.77 (m, 8H), 6.69-6.66 (m, 2H), 4.25-4.16 (m, 2H), 4.01-3.93 (m, 2H), 3.68-3.47 (m, 4H), $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.59(\mathrm{t}, 3 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.2,167.1,148.9,138.4,133.1,130.8,129.4,121.9,121.8,61.7,61.2,57.1,56.0$, 43.2, 14.0, 13.6. HRMS (EI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{Cl}[\mathrm{M}]: 465.1707$. Found: 465.1690.

3i: 81% Yield. A white solid. m.p. 109.8-110.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.01 (m, 8H), 6.94-6.91 (m, 4H), 6.82-6.78 (m, 2H), 4.43-4.31 (m, 2H), 4.05-3.97 (m, 2H), 3.86-3.63 (m, 4H), $0.96(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.59(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.4,167.3,149.0,141.3,140.3,138.9,129.9$, 129.4, 128.9, 127.4, 127.3, 127.1, 121.9, 121.8, 61.7, 61.2, 57.4, 56.2, 43.5, 14.0, 13.6. HRMS (EI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{4}[\mathrm{M}]: 507.2410$. Found: 507.2405.

3j: 84% Yield. A white solid. m.p. 78.4-79. $8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ § 7.56-7.43 (m, 4H), 7.22-7.10(m, 3H), 7.03-6.97 $(\mathrm{m}, 4 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{td}, 1 \mathrm{H}, J=10.4$ and 4.7 Hz$), 4.38(\mathrm{dd}, 1 \mathrm{H}, J=14.2$ and 4.7 $\mathrm{Hz}), 4.01(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.93(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=14.2$ and 10.4 Hz$), 3.60-3.48(\mathrm{~m}, 2 \mathrm{H})$, $0.95(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.45(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.4,167.4,149.0,137.3,133.7,133.1,129.3$, 128.8, 128.1, 127.7, 127.0, 126.1, 125.9, 121.9, 121.8, 61.7, 61.1, 57.2, 56.4, 44.0, 14.0, 13.5. HRMS (EI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{4}[\mathrm{M}]: 481.2253$. Found: 481.2244.

3k: 52\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.31-7.27 (m, 4H), 7.19-7.12 (m, 4H), 6.88-6.81 (m, 2H), 4.55-4.48 (m, 1H), $4.16(\mathrm{dd}, 1 \mathrm{H}, J=15.2$ and 2.3 Hz$), 4.06-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=15.2$ and 9.3 Hz$), 3.67$ $(\mathrm{d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 3.60-3.40(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 167.5,167.3,148.8,129.5,121.7,121.6,75.8,68.0,61.4,61.3,56.1,56.0,15.7,14.0,13.9$. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5}$ [M]: 399.2046. Found: 399.2050.

31: 78-79\% Yield (isomeric ratio 1:1). A white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 7.12-7.06 (m each, 4H), 6.99-6.89 (m each, $4 \mathrm{H})$, 6.86-6.77 (m each, 7 H), 4.29-4.17 (m, 3H), $4.03(\mathrm{dd}, 1 \mathrm{H}, J=14.3$ and 4.9 Hz$), 4.00-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.79 ; 3.74(\mathrm{~d}$ each, $1 \mathrm{H}, J=10.8 ; 10.5 \mathrm{~Hz}$), $3.61-3.40\left(\mathrm{~m}, 4 \mathrm{H}\right.$), $1.95 ; 1.66$ (s each, 3 H), $0.91 ; 0.51$ (t each, $3 \mathrm{H}, J=7.0 ; 7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) 200.6; 199.9, 168.7; 167.4, 149.2; 149.1, 140.4; 139.8, 129.41; 129.38, 129.3; 129.2, 128.6; 128.3, 127.3; 127.1, 122.0; 121.9, 121.8, 64.2; 63.8, 61.6; 61.1, 57.7; 57.4, 43.4; 43.1, 29.2; 28.9, 14.0; 13.5. HRMS (EI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3}[M]: 401.1991$. Found: 401.1987.

3m: 36\% Yield. A white solid. m.p. 95.1-95.6 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.13-7.07(\mathrm{~m}, 4 \mathrm{H})$, 6.98-6.96 (m, 3H), 6.87-6.78 (m, 8H), 4.20-4.10 (m, 1H), 3.86 (d, 1H, $J=11.3 \mathrm{~Hz}$), $3.81(\mathrm{dd}, 1 \mathrm{H}, J=14.4$ and 4.6 Hz$), 3.21(\mathrm{dd}, 1 \mathrm{H}, J$ $=14.4$ and 10.0 Hz$), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 202.0,201.1,149.1,140.0,129.4,129.1,128.8$, 127.4, 122.0, 121.9, 73.6, 58.0, 43.1, 29.9, 27.6. HRMS (EI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2}$ [M]: 371.1885. Found: 371.1900 .

3n: 81\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.11-7.05 (m, 4H), 7.02-6.98 (m, 4H), 6.85-6.79 (m, 2H), 4.00 $(\mathrm{dd}, 1 \mathrm{H}, J=14.7$ and 7.7 Hz$), 3.90-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{dd}, 1 \mathrm{H}, J=14.7$ and 7.2 Hz$), 3.47-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}$, $1 \mathrm{H}, J=16.9$ and 8.8 Hz$), 2.40(\mathrm{dd}, 1 \mathrm{H}, J=16.9$ and 5.1 Hz$), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) 173.4, 171.2, 148.5, 129.6, 122.1, 121.8, 60.7, 60.5, 53.9, 40.9, 34.2, 14.1, 14.0. HRMS (FAB) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]: 356.1862$. Found: 356.1869.

30

30: 9\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.14-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{q}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.54(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 7.3 Hz$), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 7.8 Hz$), 2.55-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dd}$, $1 \mathrm{H}, J=15.5$ and 6.1 Hz), $1.99(\mathrm{dd}, 1 \mathrm{H}, J=15.5$ and 7.7 Hz$), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) 172.0, 149.3, 129.5, 121.80, 121.76, 60.0, 58.2, 39.2, 29.6, 17.9, 14.2. HRMS (FAB) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}]: 297.1729$. Found: 297.1724.

3p: 89% Yield (isomeric ratio 1:1). A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.13-7.06$ (m each, 4 H), 7.00-6.96 (m each, 4 H), 6.88-6.81 (m each, 2 H), 4.56-4.40 (m each, 1 H), 4.32; 3.61 (d each, $1 \mathrm{H}, J=3.5 ; 4.9 \mathrm{~Hz}$), 4.00-3.81 (m each, 4H), 2.83-2.70; 2.70-2.58 (m each, 1H), 1.45; 1.19 (d each, $3 \mathrm{H}, J=7.0 ; 7.0 \mathrm{~Hz}$), 1.16; 1.03 (d each, $3 \mathrm{H}, J=7.0 ; 6.8$ $\mathrm{Hz}), 0.95-0.83$ (m each, 6 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.8 ; 169.0,168.7 ; 168.5,148.1 ; 148.0,129.5 ; 129.4,124.0 ; 123.5$, $122.4 ; 122.1,61.2 ; 61.01,60.98 ; 60.8,57.3 ; 56.7,53.9 ; 53.0,38.7 ; 38.5,17.3 ; 16.5,14.9 ; 14.03,13.95 ; 13.94$. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]: 383.2097$. Found: 383.2096.

3q: 89% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.16-7.02 (m, 6 H$)$, 6.96-6.93 (m, 2H), 6.84-6.77 (m, 1H), 4.03-3.85 (m, 5H), $3.52(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.01-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{t}, 6 \mathrm{H}, J$ $=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.8,168.4,149.9,146.5,132.3,130.3,129.4,124.0,120.6,119.9,61.1,61.0,56.4$, 55.0, 32.6, 20.7, 15.5, 14.0. HRMS (FAB) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]: 384.2175$. Found: 384.2172.

3r: 80% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.70(\mathrm{~m}, 3 \mathrm{H})$, 4.01-3.83 (m, 5H), 3.56 (d, 1H, $J=6.2 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=14.4$ and 8.5 Hz$), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 1 \mathrm{H})$, $1.17(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.89(\mathrm{t}, 6 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.8,168.5,156.9,150.5,141.7,129.3,127.4$, $119.4,117.6,115.2,61.1,61.0,56.8,55.0,54.9,32.7,15.5,13.9$. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{5}$ [M]: 399.2046. Found: 399.2043.

3s: 91\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.15-7.08 (m, 2H), 6.98-6.94 (m, 2H), 6.89-6.71 (m, 5H), 4.00-3.82 (m, 5H), $3.47(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=14.3$ and 8.9 Hz$), 2.91-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.7,168.4,159.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.8\right.$ $\mathrm{Hz}), 149.6,145.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 129.5,125.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 121.0,120.0,116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}\right), 61.2$, 61.1, 56.7, 55.0, 32.4, 15.5, 14.0. HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~F}[\mathrm{M}]: 387.1846$. Found: 387.1838.

3t: 79 Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.14-6.96 (m, 6H), 6.87-6.77 (m, 3H), 4.00-3.81 (m, 5H), $3.42(\mathrm{~d}$, $1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 8.9 Hz$), 2.90-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.6,168.3,148.7,147.7,129.7,129.5,126.4,122.7,122.3,61.2$, 61.1, 56.3, 55.0, 32.4, 15.4, 14.0. HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{Cl}$ [M]: 403.1550. Found: 403.1547.

3u: 80% Yield. A pale orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.16-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 3 \mathrm{H})$, 4.00-3.81 (m, 5H), $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 9.2 Hz$), 3.39(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.89-2.74(\mathrm{~m}, 1 \mathrm{H})$, $1.04(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.5,168.2,166.7$, $153.1,147.2,131.5,130.0,126.5,125.2,121.0,115.9,61.2,61.1,56.0,55.0,51.2,32.5,15.4,14.0$. HRMS (EI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{6}[M]: 427.1995$. Found: 427.1989.

$3 v$
3v: 90\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 7.14-7.08 (m, 4H), 7.04-6.95 (m, 1H), 4.03-3.86 (m, 5H), $3.32(\mathrm{dd}$,
$1 \mathrm{H}, J=12.7$ and 8.6 Hz$), 2.99(\mathrm{dd}, 1 \mathrm{H}, J=12.7$ and 6.5 Hz$), 2.27-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.04(\mathrm{~s}$, $9 \mathrm{H}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.6,168.8,148.8,130.3,128.5,125.6$, 60.7, 60.6, 55.2, 53.3, 52.1, 33.1, 28.3, 15.1, 14.1, 14.0. HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4}$ [M]: 349.2253. Found. 349.2269 .

3w: 73\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 1 \mathrm{H})$, 3.99-3.85 (m, 4H), 3.75-3.65 (m, 1H), $3.58(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.32(\mathrm{dd}, 1 \mathrm{H}, J=13.6$ and 6.5 Hz$), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=$ 13.6 and 8.2 Hz), 2.86-2.71 (m, 1H), $1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.00-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 169.0,150.0$, 129.2, 119.7, 119.3, 61.0, 60.9, 55.1, 54.0, 47.3, 31.7, 19.8, 19.7, 15.4, 14.02, 13.98. HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]: 335.2097$. Found. 335.2110.

$\mathbf{3 x} \mathbf{x}_{1}: 76 \%$ Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.42$ $(\mathrm{dd}, 1 \mathrm{H}, J=13.6$ and 6.3 Hz$), 3.38(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.97-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $0.882(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.879(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.6,168.5,150.1,129.4,117.1,113.0$, 61.09, 61.06, 57.3, 55.3, 39.2, 32.8, 15.5, 13.97, 13.95. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{4}$ [M]: 307.1784. Found. 307.1796.
$\mathbf{3 x}_{\mathbf{2}}$: 21% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 7.29-7.21 (m, 2H), 7.11-7.00 (m, 2H), 6.76-6.70 (m, 1H), 4.02-3.86 (m, 8 H$), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=14.3$ and 5.1 Hz$), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 6.9 Hz$), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $3.36(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.32(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 8.1 Hz$), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=14.3$ and 9.2 Hz$), 3.05-2.93(\mathrm{~m}, 2 \mathrm{H})$, $1.021(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.017(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.94-0.87(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.72,168.65,168.5$, $168.4,148.0,147.9,129.7,129.6,117.5,117.4,114.41,114.36,61.15,61.11,56.5,56.1,55.4,55.1,31.7,15.54$, 15.48, 14.00, 13.98, 13.96. HRMS (EI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{8}[\mathrm{M}]: 493.2676$. Found. 493.2675.

3y: 94\% Yield. A colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.06-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 3.00-2.86(\mathrm{~m}, 2 \mathrm{H})$, 2.67-2.50 (m, 2H), 2.37-2.26(m, 1H), 1.23(d, 3H, J=6.5 Hz), 0.97-0.90(m, 18H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ 169.7, 168.8, 60.9, 60.7, 54.4, 49.4, 47.7, 33.1, 21.0, 20.7, 15.4, 14.1. HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{4}$ [M]: 301.2253. Found: 301.2265 .

3z: 83\% Yield (isomeric ratio 1:1). A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.41-7.36 ; 7.30-7.25$ (m each, 2H), 7.22-7.12 $(\mathrm{m}, 4 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 7 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.61-6.58(\mathrm{~m}, 1 \mathrm{H}), 4.56 ; 4.14(\mathrm{td} ; \mathrm{ddd}, 1 \mathrm{H}, J=9.0$ and $3.0 ; 12.2,8.6$ and 3.2 Hz), 4.01-3.68 (m, 8H), 3.64; 3.33 (d each, $1 \mathrm{H}, J=8.4 ; 11.1 \mathrm{~Hz}$), 3.28-3.15; 3.14-3.02 (m each, 1H), 2.99-2.82; 2.80-2.63 (m each, 2H), 0.99; 0.90 (d each, $3 \mathrm{H}, J=7.0 ; 6.8 \mathrm{~Hz}$), $0.90 ; 0.86$ (t each, $3 \mathrm{H}, J=7.2$ and 7.3 Hz), 0.84; 0.70 (t each, $3 \mathrm{H}, J=7.2 ; 7.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 168.91 ; 168.87$, 168.3; 168.0, 151.3; 149.8, 146.0; $143.2,129.68 ; 129.1,129.65 ; 129.6,127.5,125.0,124.8 ; 124.7,123.4 ; 122.4,119.5 ; 119.3,109.7 ; 108.3,68.6 ; 64.2$, $61.34 ; 61.28,61.2 ; 61.0,55.9 ; 53.4,36.2 ; 34.0,31.2 ; 28.8,14.8 ; 13.97,13.96 ; 13.9,13.6 ; 10.7$. HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}]: 381.1940$. Found: 381.1923.

3aa: 32\% Yield (isomeric ratio 1:1). A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.13-7.06$ (m each, 4H), 6.94-6.80 (m each, 6 H), $3.56 ; 3.49$ (dd each, $1 \mathrm{H}, J=14.6$ and $5.7 ; 15.1$ and 8.5 Hz), $3.32 ; 3.17$ (dd each, $1 \mathrm{H}, J=15.1$ and 6.3 ; 14.6 and $8.8 \mathrm{~Hz}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.73 ; 0.70(\mathrm{~d}$ each, $3 \mathrm{H}, J=7.3 ; 7.0 \mathrm{~Hz}), 062 ; 0.58$ (d each, $3 \mathrm{H}, J=7.0 ; 7.3 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 148.93 ; 148.86,129.66 ; 129.62,122.2 ; 122.1,121.9 ; 121.8,121.5$; 120.9, 56.9; 55.3, 35.2; 34.6, 28.8; 28.2, 15.8; 15.2, 13.9; 12.9. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}$ [M]: 264.1626. Found: 264.1623.

3ab: 45\% Yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.19-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 171.2,148.7,129.5,121.5$, 121.4, 51.9, 36.0, 34.9, 29.9, 23.0. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ [M]: 282.1732. Found: 282.1731.

6: 64% Yield $(Z / E=1.5: 1)$. A colorless oil. Z-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ acetone $\left.-d_{6}\right) \delta 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 4 \mathrm{H})$, 6.95-6.88 (m, 2H), $5.91(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 4.19-4.04(\mathrm{~m}, 6 \mathrm{H}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=14.6$ and 6.9 Hz$), 3.67(\mathrm{dd}, 1 \mathrm{H}, J=$ 14.6 and 7.7 Hz), $3.49(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 3.06-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{td}, 2 \mathrm{H}, J=7.4$ and 1.9 Hz$), 1.26-1.17(\mathrm{~m}, 9 \mathrm{H})$, $1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\right.$ acetone- $\left.d_{6}\right) \delta 169.3,169.0,167.9,149.5,138.3,136.1,129.9,122.11,122.07$, $61.9,61.8,60.9,58.7,52.2,37.6,29.5,17.6,14.4,14.3$. E-isomer: ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}\right) \delta 6.64(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz})$, $4.02(\mathrm{dd}, 1 \mathrm{H}, J=14.0$ and 7.0 Hz$), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=8.1$ and 6.3 Hz$), 3.33-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}$,
$3 \mathrm{H}, J=5.1 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 169.1,167.1,149.2,139.6,137.0,129.9,122.0,61.83,61.76,60.7,56.6$, 51.6, 32.6, 28.0, 16.9, 14.5. HRMS (FAB) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$ [M]: 481.2464. Found: 481.2473.

Photocatalytic Reactions of Alkenes (1) with Amines (2)

The effect of substituents at β-position of alkenes (1) was investigated as shown in Scheme S1. The reactions of $\mathbf{1 a}$ and $\mathbf{1 b}$ bearing a primary alkyl group at the β-position proceeded smoothly to give the corresponding alkylated amines 3a and 3b in high yields, while that of $\mathbf{1 d}$ bearing a sterically hindered moiety such as cyclohexyl group afforded a slightly lower yield. Unfortunately, when diethyl methylidenemalonate (1p) bearing a terminal alkene moiety was used as substrates, no formation of the corresponding amine was observed probably due to the rapid polymerization of $\mathbf{1 p}$ under these reaction conditions. No reaction of diethyl isopropylidenemalonate ($\mathbf{1 q}$) occuered at all because of steric hinderance at the β-position of $\mathbf{1 q}$. Additionaly, in the case of furanone ($\mathbf{1 s}$), trace amount of the adduct was obtained, while reaction of acrylamide ($\mathbf{1 t}$) proceeded to give the corresponding product (3ab) in 45\% yield.

Scheme S1

Next, we examined the effect of substituent on the nitrogen atom of diphenylalkylamine (2) as shown in Scheme S2. The reactions with $\mathbf{2 a}$ and $\mathbf{2 b}$ bearing a primary alkyl group on the nitrogen atom proceeded smoothly to give the corresponding alkylated amines $\mathbf{3 a}$ and $\mathbf{3 p}$ in high yields. No reaction with $\mathbf{2 m}$ occurred at all because of the steric hindrance of iso-propyl group. Unfortunately, the reaction with N-methylcarbazole (2n) did not procceeded at all.

Scheme S2

Time-Profile of Reaction of 1a with 2a.

In a 20 mL Schlenk flask (diameter: 2.5 cm) were placed [4a][BF $\left.{ }_{4}\right](2.1 \mathrm{mg}, 0.0025 \mathrm{mmol})$ and DMF- $d_{7}(2.5$ $\mathrm{mL})$ under N_{2}. To the solution were added $\mathbf{1 a}(46.5 \mathrm{mg}, 0.250 \mathrm{mmol})$ and $\mathbf{2 a}(55.7 \mathrm{mg}, 0.304 \mathrm{mmol})$. An appropriate amount $(0.7 \mathrm{~mL})$ of the resulting mixture was transferred to an NMR tube and sealed under N_{2}. The NMR tube was placed in a water bath and illuminated with 14 W white LED (approximately 2 cm from the light source) at $25^{\circ} \mathrm{C}$ during "on" periods, and placed under dark during "off" periods. At each time of measurement was quickly loaded the NMR tube to the NMR spectrometer. The ${ }^{1} \mathrm{H}$ NMR yield of 3a was determined by the integral ratio of the methyl hydrogen of $\mathbf{1 a}(\delta 1.93)$ and $\mathbf{3 a}(\delta 1.08)$.

Reactions with Radical Initiators.

When the reactions of $\mathbf{1 a}$ with $\mathbf{2 a}$ in the presence of 0.1 equiv of radical initiators such as AIBN, BEt3/air, and $\left({ }^{t} \mathrm{BuO}\right)_{2}$ were carried out, no formation of 3a was observed even at $80^{\circ} \mathrm{C}$ (Scheme S3). These results indicate that the α-hydrogen of an amine $\mathbf{2}$ can not be abstracted by radical initiators.

Scheme S3

To obtain further information on the reaction pathway, the reaction of cyanoalkene $\mathbf{1 r}$ was carried out. The reaction of $\mathbf{1 r}$ with $\mathbf{2 a}$ in the presence of $[\mathbf{4 a}]\left[\mathrm{BF}_{4}\right]$ under the visible light irradiation afforded the corresponding alkylated amine (3aa) in 32% yield (Scheme S 4 a). In this reaction, α-cyanoalkyl radical \mathbf{B}^{\prime} is considered to be formed as a reaction intermediate (Scheme S5). On the other hand, when the reaction of $\mathbf{1 r}$ with $\mathbf{2 a}$ in the presence of AIBN at $80^{\circ} \mathrm{C}$ was carried out, 3aa was not observed at all (Scheme S4b). In the reaction as shown in Scheme S4b, heating of AIBN results in the formation of α-cyanoalkyl radical (Scheme S6), which have the similar structure to \mathbf{B} as shown in Scheme S5. These results indicate that abstraction of α-hydrogen of 2a by intermediate \mathbf{B}^{\prime} (Scheme S5, path B) is not possible and the contribution of radical chain process is negligible. As a result, sequential redox pathway (Scheme S5, path A) is considered to be appropriate in our reaction system

(a)
(b)

Scheme S6

1/2

Determination of Quantum Yield.

When the quantum yield of a photochemical reaction was determined, the reaction mixture was irradiated using an Ushio high pressure mercury lamp USH-250SC (250 W) with an 440 nm band-pass filter (Kenko B-440 filter). The irradiated light intensity was estimated to 1.02×10^{-7} einstein s^{-1} by using $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ as an actinometer. ${ }^{\mathrm{S} 15}$ The initial reaction rate of $\mathbf{1 a}$ with 1.2 equiv of $\mathbf{2 a}$ in the presence of $1 \mathrm{~mol} \%$ of $[\mathbf{4 a}]\left[\mathrm{BF}_{4}\right]$ in 2.5 mL of NMP (3.29 x $10^{-8} \mathrm{~mol} \mathrm{~s}^{-1}$) was converted to quantum yield ($\Phi=0.32$).

Preparation of Photocatalysts.

4a: $R={ }^{t} \mathrm{Bu}$
4b: $R=H$

4c
[4a][$\left.\mathrm{BF}_{4}\right]:$ In a 50 mL Schlenk flask were placed $\left[\operatorname{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}\right]_{2}{ }^{\mathrm{S} 16}(0.535 \mathrm{~g}, 0.499 \mathrm{mmol})$ and 4,4'-di-tert-butyl-2,2'-bipyridyl ($0.296 \mathrm{~g}, 1.10 \mathrm{mmol}$) under N_{2}. Ethylene glycol (25 mL) was added, and the mixture was heated at $150{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, $\mathrm{NaBF}_{4}(1.09 \mathrm{~g}, 10.0 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added. The resulting precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The crude product was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ with MeCN to give a yellow solid. After recrystalization from MeOH afford $[4 \mathrm{a}]\left[\mathrm{BF}_{4}\right]$ as yellow crystals ($0.490 \mathrm{~g}, 0.572 \mathrm{mmol}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 8.87 (d, 2H, J $=1.8 \mathrm{~Hz}), 8.23(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.98-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.88(\mathrm{dd}, 2 \mathrm{H}, J=7.5$ and 1.4 Hz$), 7.78(\mathrm{ddd}, 2 \mathrm{H}, J=5.8,1.4$ and 0.8 Hz$), 7.69(\mathrm{dd}, 2 \mathrm{H}, J=5.9$ and 1.8 Hz$), 7.12(\mathrm{ddd}, 2 \mathrm{H}, J=7.6,5.8$ and 1.6 Hz$), 7.02(\mathrm{td}, 2 \mathrm{H}, J=7.5$ and 0.9 $\mathrm{Hz}), 6.89(\mathrm{td}, 2 \mathrm{H}, J=7.5$ and 1.4 Hz$), 6.33(\mathrm{dd}, 2 \mathrm{H}, J=0.9 \mathrm{~Hz}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (acetoned- $\left.d_{6}\right): 168.8$, $164.9,156.8,151.9,151.0,149.9,144.9,139.4,132.4,131.1,126.4,125.8,124.4,123.2,122.9,120.8,36.4,30.4$. Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{BF}_{4} \mathrm{IrN}_{4}$: C, 56.14; H, 4.71; N, 6.55. Found: C, 55.73; H, 4.60; N, 6.54.
[4b] $\left[\mathrm{BF}_{4}\right]$: In a 50 mL Schlenk flask were placed $\left[\operatorname{Ir}(\mathrm{ppy})_{2} \mathrm{Cl}_{2}{ }_{2}{ }^{\mathrm{S} 16}(213.8 \mathrm{mg}, 0.199 \mathrm{mmol})\right.$ and 2,2'-bipyridyl (69.1 $\mathrm{mg}, 0.442 \mathrm{mmol}$) under N_{2}. Ethylene glycol (10 mL) was added, and the mixture was heated at $150{ }^{\circ} \mathrm{C}$ for 10 h . After cooling to room temperature, $\mathrm{NaBF}_{4}(436.6 \mathrm{mg}, 3.98 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The resulting precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the obtained organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$ and concentrated. The crude product was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ with MeCN to give a yellow solid. After recrystalization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ afford $[\mathbf{4 b}]\left[\mathrm{BF}_{4}\right]$ as yellow crystals ($111.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.51(\mathrm{dt}, 2 \mathrm{H}, J=7.9$ and 0.9 Hz$), 8.11(\mathrm{td}, 2 \mathrm{H}, J=7.9$ and 1.5 Hz$), 8.05(\mathrm{dt}, 2 \mathrm{H}, J=$
8.1 and 0.9 Hz), $7.97(\mathrm{ddd}, 2 \mathrm{H}, J=5.7,1.5$ and 0.9 Hz$), 7.86-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{ddd}, 2 \mathrm{H}, J=5.7,1.4$ and 0.9 Hz$)$, $7.49(\mathrm{ddd}, 2 \mathrm{H}, J=7.9,5.7$ and 0.9 Hz$), 7.06-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{td}, 2 \mathrm{H}, J=7.5$ and 1.4 Hz$), 6.27(\mathrm{dd}, 2 \mathrm{H}, J=7.5$ and 0.8 Hz$).{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 168.4,156.8,151.6,151.3,150.2,145.1,140.3,139.5,132.5,131.4,129.4$, 125.9, 125.6, 124.5, 123.5, 120.9. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BF}_{4} \operatorname{IrN}_{4}$: C, 51.69; H, 3.25; N, 7.53. Found: C, 51.70; H, 3.41; N, 7.52.
$[4 \mathbf{c}]\left[\mathrm{BF}_{4}\right]$: In a 50 mL Schlenk flask were placed $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2} \mathrm{Cl}\right]_{2}{ }^{\mathrm{S} 17}(1.29 \mathrm{~g}, 0.867 \mathrm{mmol})$ and 4,4'-di-tert-butyl-2,2'-bipyridyl ($0.511 \mathrm{~g}, 1.91 \mathrm{mmol}$) under N_{2}. Ethylene glycol (43 mL) was added and the mixture was heated at $150{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, $\mathrm{NaBF}_{4}(1.90 \mathrm{~g}, 17.3 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(430 \mathrm{~mL})$ was added. The resulting precipitate was collected by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1 / 0$ to $1 / 1)$ to give a yellow solid. After recrystalization from acetone/(1:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$ and hexane) afford $[\mathbf{4 c}]\left[\mathrm{BF}_{4}\right]$ as yellow crystals ($1.19 \mathrm{~g}, 1.12$ mmol, 65% yield). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 8.93 (d, $2 \mathrm{H}, J=1.6 \mathrm{~Hz}$), 8.61 (dd, $2 \mathrm{H}, J=8.8$ and 2.6 Hz), 8.40 (dd, 2 H , $J=8.8$ and 2.2 Hz), $8.17(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 7.82-7.79(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{ddd}, 2 \mathrm{H}, J=13.0,9.5$ and 2.3 Hz$), 5.96(\mathrm{dd}$, $2 \mathrm{H}, J=8.4$ and 2.3 Hz), $1.42(\mathrm{~s}, 18 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (acetone- d_{6}): -65.0, $-106.1,-109.3,-152.8$. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{BF}_{14} \mathrm{IrN}_{4}$: C, 47.42; H, 3.22; N, 5.27. Found: C, 47.72; H, 3.71; N, 5.11.

Preparation of 5.

To a suspension of ethyltriphenylphosphonium bromide ${ }^{518}(958 \mathrm{mg}, 2.58 \mathrm{mmol})$ in THF (22 mL) was added dropwise ${ }^{n} \mathrm{BuLi}\left(1.45 \mathrm{~mL}, 2.36 \mathrm{mmol} ; 1.65 \mathrm{M}\right.$ in hexane) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. To the mixture was added dropwise ethyl [1,1-bis(ethoxycarbonyl)cycloprop-2-yl] oxoacetate ${ }^{\mathrm{S} 19}$ ($612 \mathrm{mg}, 2.14$ $\mathrm{mmol})$ dissolved in THF $(4.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 14 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(100$ mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with hexane/ethyl acetate (10/1) to give Z-5 $(216 \mathrm{mg}, 0.724 \mathrm{mmol}, 34 \%$ yield) and $E-5(131 \mathrm{mg}, 0.438 \mathrm{mmol}$, 20% yield). Z-5: A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{qd}, 1 \mathrm{H}, J=7.2$ and 1.4 Hz), 4.31-4.00 (m, 6H), 2.94-2.87 $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, 3 \mathrm{H}, J=7.2$ and 1.6 Hz$), 1.78(\mathrm{dd}, 1 \mathrm{H}, J=8.4$ and 5.1 Hz$), 1.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4$ and 4.9 Hz$), 1.29$ $(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 169.6,166.8,166.3,140.5$, 126.6, 61.3, 61.2, 60.0, 35.6, 30.9, 18.0, 15.2, 14.0, 13.9. HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$ [M]: 298.1416. Found: 298.1403. E-5: A colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.01(\mathrm{qd}, 1 \mathrm{H}, J=7.2$ and 2.0 Hz$), 4.33-4.01(\mathrm{~m}, 6 \mathrm{H}), 2.67-2.59$ $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, 1 \mathrm{H}, J=8.9$ and 4.9 Hz$), 1.90(\mathrm{dd}, 3 \mathrm{H}, J=7.2$ and 1.6 Hz$), 1.75(\mathrm{dd}, 1 \mathrm{H}, J=8.9$ and 4.9 Hz$), 1.30$ $(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.20(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 169.6,167.5,166.7,142.3$, 127.8, 61.4, 61.1, 60.4, 34.6, 26.1, 21.5, 14.5, 14.01, 14.00, 13.8. HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$ [M]: 298.1416. Found: 298.1410.

Synthesis of 3o by Decarboxylation of 3a.

In a 20 mL Schlenk flask were placed $\mathbf{3 a}(122.5 \mathrm{mg}, 0.332 \mathrm{mmol})$ and $\mathrm{NaCl}(29.7 \mathrm{mg}, 0.508 \mathrm{mmol})$ under N_{2}. DMSO $(0.33 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.33 \mathrm{~mL})$ was added and the mixture was heated at $170{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the mixture was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with hexane/ethyl acetate $(20 / 1)$ to give 30 ($91.1 \mathrm{mg}, 0.306 \mathrm{mmol}, 92 \%$ yield).

Synthesis of 7 by Dealkylation of 3v.

In a 20 mL Schlenk flask was placed $\mathbf{3 v}(83.3 \mathrm{mg}, 0.238 \mathrm{mmol})$ under $\mathrm{N}_{2} .1,4$-dioxane (2.4 mL) and trifluoroacetic acid $(182 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ were added and the mixture was heated to reflux for 48 h . After cooling to room temperature, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{mL} x$ 3). The combined organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ with hexane/ethyl acetate $(10 / 3)$ to give 7 as a colorless oil $(41.5 \mathrm{mg}, 0.168 \mathrm{mmol}$, 71% yield, cis/trans $=8: 1$). The stereoisomers of cis- and trans- 7 were confirmed by the NOE measurements. cis-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ § 7.65-7.60 (m, 2H), 7.18-7.10 (m, 2H), 6.96-6.90 (m, 1H), 4.14-3.97 (m, 2H), 3.15 (dd, $1 \mathrm{H}, J=8.6$ and 7.3 Hz$), 2.96(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 2.67-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 1.01(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 0.66(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 169.5,168.5,139.9,128.9,124.4,119.6,61.4,58.1,53.1,31.0$, 17.2, 14.2. trans-isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.39(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz})$, $3.28(\mathrm{t}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=8.9$ and 7.3 Hz$), 2.01-1.84(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 128.9,124.5,119.9,60.9,55.6,54.0,29.8,14.1,13.7$. HRMS (EI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]: 247.1208$. Found: 247.1200.

X-ray Diffraction Study of 3h.

Colorless block crystals suitable for an X-ray analysis were obtained by recrystalization from ethanol. Diffraction data were collected for the 2θ range of 6 to 55° on a Rigaku Varimax Saturn 70 CCD diffractometer, using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71075 \AA)$. Intensity data were corrected for empirical absorptions (REQAB) ${ }^{\text {S20 }}$ and for Lorentz and polarization effects. Structure solutions and refinements were carried out by using CrystalStructure package. ${ }^{\text {S21 }}$ The positions of non-hydrogen atoms were determined by direct methods (SIR-97) ${ }^{\mathrm{S} 22}$ and subsequent Fourier synthesis (DIRDIFF-99), ${ }^{\text {S23 }}$ and were refined on $F_{\mathrm{o}}{ }^{2}$ using all the unique reflections by full-matrix least squares with anisotropic thermal paramteters. All the hydrogen atoms were placed at the calculated positions with fixed isotropic parameters. The atomic scattering factors were taken from ref. S24, and anomalous dispersion effects were included. ${ }^{\text {S25 }}$ The Value fo Δf ' and Δf^{\prime}, were taken from ref. S26. Details of the crystal and data collection parameters are summarized in Table S1.

Table S1. Crystallographic Data for 3h.

chemical formula	$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClNO}_{4}$
formula weight	465.97
crystal size	$0.25 \times 0.20 \times 0.10$
crystal color, habit	colorless, block
crystal system	monoclinic
space group	$P 2_{1} / n$ (no. 14)
$a(\AA)$	21.4069(12)
$b(\AA)$	10.5671(7)
$c(\AA)$	21.9699(12)
α (deg)	90
β (deg)	101.1796(18)
γ (deg)	90
$V\left(\AA^{3}\right)$	4875.5(5)
Z	8
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.270
$F(000)$	1968
$\mu_{\text {calcd }}\left(\mathrm{cm}^{-1}\right)$	1.893
radiation	$\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71075 \AA)$
temperature (${ }^{\circ} \mathrm{C}$)	-180
transmission factors rage	0.734-0.981
no. measured reflections	37211
no. unique reflections	$11008\left(R_{\text {int }}=0.0779\right)$
no. refined parameters	651
$R 1(I>2 \sigma(I))^{a}$	0.0869
$w R 2$ (all data) ${ }^{b}$	0.1399
$\mathrm{GOF}^{\text {c }}$	1.000
max/min residual peaks (e^{-} / \AA^{3})	+1.250/-0.914
$R 1=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma F_{\mathrm{o}} \mid$.	
$w R 2=\left[\Sigma\left(w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right) / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2} ; w=4 F_{\mathrm{o}}{ }^{2} / 3.05 F_{\mathrm{o}}{ }^{2}$.	
GOF $=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\mid F_{\mathrm{c}}\right)^{2} /\left(N_{\text {obs }}-N_{\text {params }}\right)\right]^{1 / 2}$.	

FIGURE S1. ORTEP Drawing of 3h.

References.

[S1] Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans. 1 1990, 3137.
[S2] Guanti, G.; Banfi, L.; Narisano, E. J. Org. Chem. 1992, 57, 1540.
[S3] Booher, R. N.; Smits, S. E.; Turner, W. W., Jr.; Pohland, A. J. Med. Chem. 1977, 20, 885.
[S4] Raguin, O.; Fournié-Zaluski, M.-C.; Romieu, A.; Pèlegrin, A.; Chatelet, F.; Pélaprat, D.; Barbet, J.; Roques, B. P.; Gruaz-Guyon, A. Angew. Chem. Int. Ed. 2005, 44, 4058.
[S5] Miura, T.; Okazaki, K.; Ogawa, K.; Otomo, E.; Uematsu, S.; Takahashi, M.; Kawashima, Y.; Jyo, Y.; Koyata, N.; Murakami, Y.; Imai, N. Synthesis, 2008, 2695.
[S6] Ghorai, M. K.; Halder, S.; Das, R. K. J. Org. Chem. 2010, 75, 7061.
[S7] Manring, L. E.; Peters, K. S. J. Am. Chem. Soc. 1985, 107, 6452.
[S8] Haga, K.; Oohashi, M.; Kaneko, R. Bull. Chem. Soc. Jpn. 1984, 57, 1586.
[S9] Hill, L. L.; Moore, L. R.; Huang, R.; Craciun, R.; Vincent, A. J.; Dixon, D. A.; Chou, J.; Woltermann, C. J.; Shaughnessy, K. H. J. Org. Chem. 2006, 71, 5117.
[S10] Ali, M. H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560.
[S11] Xie, X.; Zhang, T. Y.; Zhang, Z. J. Org. Chem. 2006, 71, 6522.
[S12] Hunter, D. H.; Racok, J. S.; Rey, A. W.; Ponce, Y. Z. J. Org. Chem. 1988, 53, 1278.
[S13] Shaffer, C. L.; Morton, M. D.; Hanzlik, R. P. J. Am. Chem. Soc. 2001, 123, 8502.
[S14] Omar-Amrani, R.; Schneider, R.; Fort, Y. Synthesis 2004, 2527.
[S15] Calvert, J. G.; Pitts, J. N. Photochemistry; Wiley and Sons: New York, 1996.
[S16] Tian, N.; Thiessen, A.; Schiewek, R.; Schmitz, O. J.; Hertel, D.; Meerholz, K.; Holder, E. J. Org. Chem. 2009, 74, 2718.
[S17] Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A., Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
[S18] Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. J. Mol. Catal. A 2006, 256, 295.
[S19] Xu, H.; Zhang, W.; Shu, D.; Werness, J. B.; Tang, W. Angew. Chem. Int. Ed. 2008, 47, 8933.
[S20] Jacobson, R. A., REQAB, private communication to Rigaku Corp., Tokyo, Japan, 1998.
[S21] (a) CrystalStructure 4.0: Single Crystal Structure Analysis Software; Rigaku Corp: Tokyo, Japan and MSC: The Woodlands, TX, 2010. (b) Carruthers, J. R.; Rollett, J. S.; Betteridge, P. W.; Kinna, D.; Pearce, L.; Larsen, A.; Gabe, E. CRYSTALS Issue 11; Chemical Crystallography Laboratory: Oxford, UK, 1999.
[S22] Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
[S23] Beurskens, P. T.; Beurskens, G.; de Gelder, R.; García-Granda, S.; Gould, R. O.; Israël, R.; Smits, J. M. M. The DIRDIF-99 program system; Crystallography Laboratory, University of Nijmegen: Nijmegen, The Netherlands, 1999.
[S24] Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C. Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV., Table 2.2 A.
[S25] Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
[S26] (a) Creagh, D. C.; McAuley, W. J. International Tables for X-ray Crystallography; Wilson, A. J. C. Ed.;

Kluwer Academic Publishers: Boston, MA, 1992; Vol. C. Table 4.2.6.8. (b) Creagh, D. C.; Hubbell, J. H. International Tables for X-ray Crystallography; Wilson, A. J. C. Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C. Table 4.2.4.3.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra.

3a

3a

3b

3b

$3 c$

3c

3d

3d

$3 \mathbf{e}$

3e

$3 f$

3f

3g

3g

3h

3h

Ph

$3 i$

$3 i$

3j

3j

3k

3k

31

31

3m

3m

3n

3n

$\mathrm{Ph}_{2} \mathrm{~N}=30$

30

30

3p

3p

$3 q$

3q

3r

3r

3s

3s

$3 t$

3t

3u

3u

3v

3v

3w

3w

$3 x_{1}$

$\mathbf{3 x} \mathbf{1}_{1}$

$3 x_{2}$

$\mathbf{3 x}_{2}$

$\operatorname{iPr}_{2} \underbrace{2}_{3}$

3y

3y
$=\bigodot_{-168.823}^{-169.703}$

yIV I 4K
$\mathrm{EtO}_{2} \mathrm{C}$

3z
 (

3z

3aa

3aa

3ab

3ab

Z-5

Z-5

$\underbrace{\mathrm{CO}_{2} \mathrm{Et}}_{E-5} \mathrm{CO}_{2}^{\mathrm{CO}} \mathrm{Et}$

E-5

E-5

6

6

7

7

¢ \%			
-io		-i¢ ¢ ¢ ¢ ¢	
17		4	ir

