Supporting Information

Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex

Jiyun Park,[†] Yuma Morimoto,[‡] Yong-Min Lee,[†] Wonwoo Nam,^{*,†} and Shunichi Fukuzumi^{*,†,‡}

[†]Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea [‡]Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871,

Japan

E-mail: fukuzumi@chem.eng.osaka-u.ac.jp, wwnam@ewha.ac.kr

Table S1. One-Electron Oxidation Potentials (E_{ox}) of *para*-X-Substituted Thioanisoles and One-Electron Reductants and Second-Order Rate Constants of Sulfoxidation and Electron-Transfer Reactions with [(N4Py)Fe^{IV}(O)]²⁺ in MeCN at 298K

thioanisole or one- electron reductant	E _{ox}	$k_2 \text{ or } k_{\text{et}}, \mathrm{M}^{-1} \mathrm{s}^{-1}$		10 mM HClO ₄
		without HClO ₄	10 mM HClO ₄	$\log (k_2, \mathbf{M}^{-1} \mathbf{s}^{-1})$
para-X-thioanisoles				
<i>p</i> -Me	1.24	1.3 ± 0.1	$(3.2 \pm 0.2) \times 10^3$	3.5
<i>р</i> -Н	1.34	$(8.7 \pm 0.4) \times 10^{-1}$	$(1.5 \pm 0.1) \times 10^3$	3.2
p-Cl	1.37	$(8.7 \pm 0.4) \times 10^{-1}$	$(7.2 \pm 0.4) \times 10^2$	2.8
<i>p</i> -Br	1.41	$(1.5 \pm 0.1) \times 10^{-1}$	$(8.4 \pm 0.4) \times 10^2$	2.9
<i>p</i> -CN	1.61	$(4.4 \pm 0.2) \times 10^{-2}$	$(6.2 \pm 0.3) \times 10$	1.8
one-electron reductant				
$\left[Fe^{II}(Me_2bpy)_3\right]^{2+}$	0.92	NR ^a	$(3.2 \pm 0.2) \times 10^2$	2.5
$\left[Ru^{II}(Me_2bpy)_3\right]^{2+}$	1.10	NR^{a}	$(1.2 \pm 0.1) \times 10^2$	2.1
[Fe ^{II} (Clphen) ₃] ²⁺	1.17	\mathbf{NR}^{a}	$(2.1 \pm 0.1) \times 10$	1.3
[Ru ^{II} (Clphen) ₃] ²⁺	1.36	NR ^a	1.4 ± 0.1	$1.6 imes 10^{-1}$

^aNR : No Reaction

Figure S1. ESI-MS spectrum of the final products obtained in the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ (0.5 mM) with thioanisole (5.0 mM) in the presence of HClO₄ (10 mM) in MeCN at 298 K. Peaks at *m/z* of 231.9 and 522.0 correspond to $[Fe^{II}(N4Py)(MeCN)]^{2+}$ (calcd *m/z* 232.1) and $[Fe^{II}(N4Py)(ClO_4)]^+$ (calcd *m/z* 522.1), respectively. Inset shows the observed isotope distribution patterns for $[Fe^{II}(N4Py)(MeCN)]^{2+}$.

Figure S2. Plots of the pseudo-first-order rate constants (k_1) vs concentrations of *para*-X-thioanisoles to determine the second-order rate constants (k_{obs}) in the sulfoxidation of *para*-X-thioanisoles by [(N4Py)Fe^{IV}(O)]²⁺ (0.25 mM) in the presence of HClO₄ (10 mM) in MeCN at 298 K.

Figure S3. ¹H NMR spectrum of thioanisole (5.0 mM) in the presence of $HClO_4$ (20 mM) in CD₃CN at 298 K. A broadened Ph-S⁺(H)-CH₃ peak appeared in the range of 8.1 – 9.1 ppm, indicating that there is an equilibrium between thioanisole and protonated thioanisole in the presence of $HClO_4$. Number of scan was 2048.

Figure S4. Plots of concentration of $[Ru^{III}(Clphen)_3]^{3+}$ produced in PCET from $[Ru^{II}(Clphen)_3]^{2+}$ to $[(N4Py)Fe^{IV}(O)]^{2+}$ (0.25 mM) in the presence of various HClO₄ concentrations (black line; 5.0 mM, red line; 7.5 mM, blue line; 15 mM and green line; 20 mM) in deaerated MeCN at 298 K vs initial concentration of $[Ru^{II}(Clphen)_3](PF_6)_2$, $[[Ru^{II}(Clphen)_3](PF_6)_2]_0$.

Figure S5. Visible spectral changes observed in the reaction of $[(N4Py)Fe^{IV}(O)]^{2+}$ (0.25 mM) with $[Fe^{II}(Me_2bpy)]^{2+}$ (5.0 mM) in the presence of HClO₄ (10.0 mM) in MeCN at 298 K (left panel). Right panel shows time course monitored at 695 nm due to the decay of $[(N4Py)Fe^{IV}(O)]^{2+}$.

Figure S6. Plot of the pseudo-first-order rate constant (k_1) vs concentration of $[\text{Fe}^{II}(\text{Me}_2\text{bpy})]^{2+}$ to determine the second-order rate constant (k_{obs}) of PCET from $[\text{Fe}^{II}(\text{Me}_2\text{bpy})]^{2+}$ to $[(\text{N4Py})\text{Fe}^{IV}(\text{O})]^{2+}$ (0.25 mM) in the presence of HClO₄ (10 mM) in MeCN at 298 K.