
Supporting Information:

Luminescence Rigidochromism and Redox Chemistry of Pyrazolate-Bridged Binuclear Platinum(II) Diimine Complex Intercalated into Zirconium Phosphate Layers

Eladio J. Rivera,[†] Cindy Barbosa,[†] Rafael Torres,[†] Harry Rivera,[†] Estevao R. Fachini,[†] Tyler W. Green,[§] and William B. Connick[§], and Jorge L. Colón^{†*}

[†]Department of Chemistry, University of Puerto Rico, P.O. Box 23346, Río Piedras, P.R. 00931, USA [§]Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, USA

Figure S1. IR spectra of α -ZrP, [{Pt(dmbpy)(μ -pz)}₂](BF₄)₂, and [{Pt(dmbpy)(μ -pz)}₂]²⁺-exchanged ZrP at different loading levels.

FT-IR Results: The θ -ZrP material possesses an IR spectrum similar to that of α -ZrP. The α -ZrP spectrum exhibits three bands at 3589, 3508, and 1617 cm⁻¹ corresponding to OH water stretching vibrations in ZrP and the "lattice" water band.^{83,84} Upon the intercalation of [{Pt(dmbpy)(μ -pz)}₂]²⁺ the water is displaced from the ZrP lattice. The phosphate groups give rise to bands near 1021 cm⁻¹ due to orthophosphate vibrations, a band at 1247 cm⁻¹ attributed to the deformation of the P-O-H bond and one at 956 cm⁻¹ corresponding to the vibrations of the phosphate group with symmetry C_{3v} . The spectra of the intercalated materials show some characteristic bands of this layered material in the region from 2000 to 400 cm⁻¹. The IR spectrum of the [{Pt(dmbpy)(µ-pz)}₂]²⁺ complex shows bands at 1621, 834 and 739 cm⁻¹ due to v(C=C), v(C-H) and v(C=N) of the bridge pyrazolate ligands.^{85,86} The vibrational bands at 1558-1396 cm⁻¹ are due to the bipyridyl ring vibrations and the 1448 and 1396 cm⁻¹ bands correspond to the CH₃ vibrations of the dmbpy ligand.^{56,87} In addition, a sharp medium intensity band located at 521 cm⁻¹ is characteristic of the Pt-N vibrational band.^{85,88,89} As the loading increases, the intercalated materials show bands at 1623, 1396, 839, 762 and 520 cm⁻¹, corresponding to vibrations of the platinum complex. There is no evidence of the presence of uncoordinated pyrazolate ligand since no v(N-H) band is observed in the 3460-3380 cm⁻¹ region.⁹⁰ The most prominent difference occurs in the phosphate group region in which the vibrational bands are shifted to higher frequencies, from 1021 to 1035 cm⁻¹ and 956 cm⁻¹ to 993 cm⁻¹, respectively. This shift may result from more restricted phosphate group vibrational motions and a crowding of the dimer molecules as the loading level increases within the ZrP.

References:

- (56) Martí, A.; Paralitici, G.; Maldonado, L.; Colón, J. L. Inorg. Chim. Acta 2007, 360, 1535-1542.
- (83) Horsley, S. E.; Nowell, D. V.; Stewart, D. T. Spectrochim. Acta 1974, 30A, 535-541.
- (84) Casciola, M.; Donnadio, A.; Montanari, F.; Piaggio, P.; Valentini, V. J. Solid State Chem. 2007, 180, 1198-1208.
- (85) Boixassa, A.; Pons, J.; Solans, X.; Font-Bardia, M.; Ros, J. Inorg. Chem. Comm. 2003, 6, 922-925.
- (86) Zecchina, A.; Cerruti, L.; Coluccia, S.; Borello, E. J. Chem. Soc. 1967, 1363-1367.
- (87) Hennessy, B.; Megelski, S.; Marcolli, C.; Shklover, V.; Barlocher, C.; Calzaferri, G. J. Phys. Chem. B **1999**, *103*, 3340-3351.
- (88) Gillard, R. D.; Sengul, A. Trans. Metal. Chem. 2001, 26, 339-341.
- (89) Annibale, G.; Brandolisio, M.; Pitteri, B. Polyhedron 1995, 14, 451-453.
- (90) López, G.; Ruiz, J.; Vicente, C.; Marti, J.; García, G.; Chaloner, P.; Hitchcock, P.; Harrison, R. M. Organometallics **1992**, 11, 4090-4096.

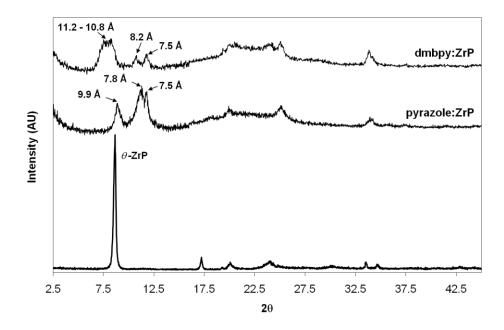
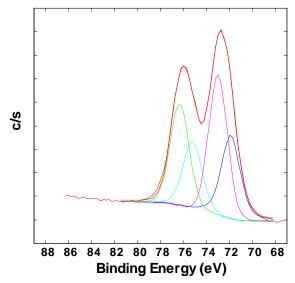



Figure S2. XRPD patterns of dmbpy- and pyrazole-intercalated ZrP materials and θ -ZrP.

Figure S3. High resolution XPS spectra for the yellow-brown powders of 1:1 $[{Pt(dmbpy)(\mu-pz)}_2]^{2+}$ -exchanged ZrP at the Pt 4f binding energy region. The red color spectrum represents the fitted curved of the individual function doublet peaks.