1	Supporting Information		
2	to		
3	Dissolved organic matter enhances microbial mercury		
4	methylation under sulfidic conditions		
5			
6			
7	Andrew M. Graham, ¹ * George R. Aiken ² , and Cynthia C. Gilmour ¹		
8			
9	¹ Smithsonian Environmental Research Center, 647 Contees Wharf Rd Edgewater, MD,		
10	USA 21037		
11	² U.S. Geological Survey, 3215 Marine St., Suite E127, Boulder, CO, USA 80303		
12			
13			
14	Contents:		
15	1 Table: Thermodynamic Data for Equilibrium Speciation Modeling		
16 17	5 Figures: Ancillary data for methylation assays, relationship between filterable THg and MeHg production, and regressions of DOM concentration vs. MeHg production		
18	References		
19 20	8 pages		
21			
22			
23	* Corresponding author email: grahaman@si.edu		
24			
25			
26			
27			
28			
27			
3U 21			
51			

Table S1. Thermodynamic data for equilibrium speciation modeling.

Reaction	log K	Reference	
Hg-S Aqueous Speciation			
$Hg^{2+} + 2HS^{-} = Hg(SH)_{2}^{0}$	37.7	Benoit <i>et al.</i> ¹	
$Hg^{2+} + 2HS^{-} = HgS_2H^{-} + H^{+}$	31.5	Benoit <i>et al.</i> ¹	
$Hg^{2+} + 2HS^{-} = HgS_{2}^{2-} + 2H^{+}$	23.5	Benoit <i>et al.</i> ¹	
$Hg^{2+} + HS^{-} = HgSH^{+}$	30.2	Benoit <i>et al.</i> ¹	
Metacinnabar Precipitation			
$Hg^{2+} + HS^{-} = HgS(s) + H^{+}$	38±2	NIST Critical Database ²	
Hg-DOM Complexation			
$Hg^{2+} + 2RS^{-} = Hg(SR)_2$	42.0	Skyllberg ³	
$RS^- + H^+ = RSH$	10.0	Skyllberg ³	
Hg-CYS Complexation			
$Hg^{2+} + CYS^{2-} = HgCYS^{0}$	38.5	Basinger et al. ⁴	
$Hg^{2+} + 2H^{+} + 2CYS^{2-} = Hg(HCYS)_{2}^{0}$	39.8	Basinger <i>et al.</i> ⁴	
$Hg^{2+} + 2CYS^{2-} = Hg(CYS)_2^{2-}$	45.3	Basinger et al. ⁴	

Figure S1. Initial and final **a**) pH, **b**) optical density, **c**) total cell protein, and **d**) sulfide in washed cell Hg-methylation assays of *D. desulfuricans* ND132 in the presence of Suwannee River humic acid (SRHA) or L-cysteine (CYS). Washed cells were incubated with 5.0 nM ²⁰¹HgCl₂ for 3 hours at 31 °C. Initial measurements were taken at the beginning of the incubation, and final measurements after the 3 h incubation period. Error bars are standard deviations of triplicate methylation assays. These data correspond to the THg and MeHg data shown in Figure 1 in the main text.

Figure S2. Initial and final **a**) pH, **b**) optical density, **c**) total cell protein, and **d**) sulfide in washed cell Hg-methylation assays of *D. desulfuricans* ND132 in the presence of Suwannee River humic acid (SRHA) or L-cysteine (CYS). Washed cells were incubated with 0.5 nM ²⁰¹HgCl₂ for 3 hours at 31 °C. Initial measurements were taken at the beginning of the incubation, and final measurements after the 3 h incubation period. Error bars are standard deviations of triplicate methylation assays. These data correspond to the MeHg and THg data shown in Figure 1 in the main text.

Figure S3. Initial and final a) pH, b) optical density, c) total cell protein, and d)
sulfide in washed cell Hg-methylation assays of *D. desulfuricans* ND132 in the
presence of Williams Lake hydrophobic acid (WLHPoA) or L-cysteine (CYS).
Washed cells were incubated with 0.5 nM ²⁰¹HgCl₂ for 3 hours at 31 °C. Initial
measurements were taken at the beginning of the incubation, and final
measurements after the 3 h incubation period. Error bars are standard deviations
of triplicate methylation assays. These data correspond to the MeHg and THg data

- shown in Figure 2.

- DOM enhances Hg methylation

Figure S4. Relationship between filterable total Hg (THg) and total methylmercury115(MeHg) production in washed cell assays with (**a**) dissolved organic matter or (**b**) or116L-cysteine. SRHA = Suwannee River humic acid. WLHPoA = Williams Lake117hydrophobic acid. Filterable 201 THg and total MeHg production were not strongly118correlated in experiments with DOM isolates ($r^2 = 0.15$, p = 0.011). For experiments119with L-cysteine addition, total MeHg production was strongly correlated with120filterable THg ($r^2 > 0.99$, p < 10-7).</td>

125

Figure S5. Methylmercury production is linearly dependent upon dissolved organic
matter concentration in experiments with either (a) Suwannee River humic acid
(SRHA) or (b) Williams Lake hydrophobic acid (WLHPoA).

- 129
- 130
- 131

132 **References**

- 133 (1) Benoit, J.; Gilmour, C.; Mason, R.; Heyes, A. Sulfide controls on mercury
 134 speciation and bioavailability to methylating bacteria in sediment pore
 135 waters. *Environ. Sci. Technol.* **1999**, *33*, 951-957.
- 136 (2) National Institute of Standards and Technology. NIST Critically Selected137 Stability Constants of Metal Complexes.
- (3) Skyllberg, U. Competition among thiols and inorganic sulfides and
 polysulfides for Hg and MeHg in wetland soils and sediments under suboxic
 conditions: Illumination of controversies and implications for MeHg net
 production. J. Geophys. Res.-Biogeo. 2008, 113, G00C03.
- 142 (4) Basinger, M. A.; Casas, J.; Jones, M. M.; Weaver, A. D. Structural Requirements 143 for Hg(II) Antidotes. *J. Inorg. Nucl. Chem.* **1981**, *43*, 1419-1425.

144